1
|
Patel MM, Gerakopoulos V, Lettenmaier B, Petsouki E, Zimmerman KA, Sayer JA, Tsiokas L. SOX9-dependent fibrosis drives renal function in nephronophthisis. EMBO Mol Med 2025; 17:1238-1258. [PMID: 40211043 PMCID: PMC12162883 DOI: 10.1038/s44321-025-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Fibrosis is a key feature of a broad spectrum of cystic kidney diseases, especially autosomal recessive kidney disorders such as nephronophthisis (NPHP). However, its contribution to kidney function decline and the underlying molecular mechanism(s) remains unclear. Here, we show that kidney-specific deletion of Fbxw7, the recognition receptor of the SCFFBW7 E3 ubiquitin ligase, results in a juvenile-adult NPHP-like pathology characterized by slow-progressing corticomedullary cysts, tubular degeneration, severe fibrosis, and gradual loss of kidney function. Expression levels of SOX9, a known substrate of FBW7, and WNT4, a potent pro-fibrotic factor and downstream effector of SOX9, were elevated upon loss of FBW7. Heterozygous deletion of Sox9 in compound mutant mice led to the normalization of WNT4 levels, reduced fibrosis, and preservation of kidney function without significant effects on cystic dilatation and tubular degeneration. These data suggest that FBW7-SOX9-WNT4-induced fibrosis drives kidney function decline in NPHP and, possibly, other forms of autosomal recessive kidney disorders.
Collapse
Affiliation(s)
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bryan Lettenmaier
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Chen Y, Zhang J, Feng X, Ma Q, Sun C. Single-cell RNA-seq uncovers lineage-specific regulatory alterations of fibroblasts and endothelial cells in ligamentum flavum hypertrophy. Front Immunol 2025; 16:1569296. [PMID: 40443657 PMCID: PMC12119296 DOI: 10.3389/fimmu.2025.1569296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Background Lumbar spinal stenosis (LSS) represents a major global healthcare burden resulting in back pain and disorders of the limbs among the elderly population. The hypertrophy of ligamentum flavum (HLF), marked by fibrosis and inflammation, significantly contributes to LSS. Fibroblasts and endothelial cells are two important cells in the pathological process of ligamentum flavum (LF) fibrosis and inflammation. These two cells exhibit heterogeneity in various fibrotic diseases, yet their heterogeneity in LF fibrosis remains poorly defined. Methods Using single-cell RNA-seq, we examined the alterations of fibroblasts, endothelial cells, and key genes in the hypertrophic LF, aiming to establish a comprehensive single-cell atlas of LF to identify high-priority targets for pharmaceutical treatment of LSS. Results Here, we find there are five distinct subpopulations of LF fibroblasts: secretory-papillary, secretory-reticular, mesenchymal, pro-inflammatory, and unknown. Importantly, in HLF, the proportion of mesenchymal fibroblast subpopulations increases significantly compared to normal LF (NLF), reflecting their close association with the pathogenesis of HLF. Furthermore, critical target genes that might be involved in HLF and fibrosis, such as MGP, ASPN, OGN, LUM, and CTSK, are identified. In addition, we also investigate the heterogeneity of endothelial cells and highlight the critical role of AECs subpopulation in LF fibrosis. Conclusion This study will contribute to our understanding of the pathogenesis of HLF and offer possible targets for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Huang E, Ammerman N, Vo A, Hou J, Kumar S, Badash N, Falk B, Hernando K, Gillespie M, Kim IK, Lim K, Najjar R, Peng A, Shin B, Steggerda JA, Todo T, Brennan TV, Voidonikolas G, Wisel SA, Heeger PS, Jordan SC. Back-table intra-arterial administration of C1 esterase inhibitor to deceased donor kidney allografts improves posttransplant allograft function: Results of a randomized double-blind placebo-controlled clinical trial. Am J Transplant 2025:S1600-6135(25)00233-3. [PMID: 40349965 DOI: 10.1016/j.ajt.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/18/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Ischemia-reperfusion injury commonly causes delayed graft function (DGF) after kidney transplantation and is associated with poorer graft function and lower allograft survival. Activation of the lectin complement pathway is one mediator of ischemia-reperfusion injury. In this randomized double-blind placebo-controlled pilot study, we tested whether preimplantation intragraft administration of C1 esterase inhibitor (C1INH, a lectin/classical pathway inhibitor) into deceased donor organs improves graft function and/or reduces DGF. Forty patients were randomized 1:1 to receive allografts treated with 500 units C1INH or placebo (normal saline) into the transplant renal artery during back-table preparation. We observed no effect on DGF, but recipients of C1INH-treated allografts showed higher estimated glomerular filtration rate than recipients of placebo at 6 months (C1INH median: 55 mL/min/1.73 m2, interquartile range [IQR]: 42-63; placebo median: 39 mL/min/1.73 m2, IQR: 34-50; P = .02) and 30 months (C1INH median: 54 mL/min/1.73 m2, IQR: 47-66; placebo median: 43 mL/min/1.73 m2, IQR 38-51; P = .03), with no differences in adverse events. Analysis of postreperfusion biopsies showed positive intra-arterial C1INH staining and reduced C4d staining in C1INH-treated grafts compared with controls. Posttransplant serum mannose-binding lectin and classical pathway activity and bradykinin levels did not differ between study arms. We conclude that this treatment strategy improves allograft function independent of DGF, likely via local intragraft complement inhibition. Clinical trial registration number: NCT04696146.
Collapse
Affiliation(s)
- Edmund Huang
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Noriko Ammerman
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Vo
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jean Hou
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjeev Kumar
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nicole Badash
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ben Falk
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathleen Hernando
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Gillespie
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Irene K Kim
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathlyn Lim
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reiad Najjar
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alice Peng
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bongha Shin
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justin A Steggerda
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tsuyoshi Todo
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Todd V Brennan
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Georgios Voidonikolas
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Steven A Wisel
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter S Heeger
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stanley C Jordan
- Departments of Medicine and Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
4
|
Yu JT, Xie SS, Shen XY, Li Z, Hu XW, Zhang Y, Dong ZH, Wang JN, Li XY, Dong YH, Li C, Ji ML, Suo XG, Yang C, Jin J, Wang W, Wen JG, Liu MM, Li L, Yang Q, Meng XM. Renal tubular epithelial IGFBP7 interacts with PKM2 to drive renal lipid accumulation and fibrosis. Mol Ther 2025:S1525-0016(25)00382-X. [PMID: 40346800 DOI: 10.1016/j.ymthe.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/12/2025] Open
Abstract
Renal fibrosis serves as a critical pathological mechanism driving the progression of chronic kidney disease (CKD). However, the pathogenesis and therapeutic targets involved in this process remain unclear. Interestingly, we currently found that IGFBP7 is highly expressed in tubular epithelial cells (TECs) from the fibrotic kidneys of human patients and animal models. However, their functional roles in abnormal kidney repair and renal fibrosis remain unclear. Here, we report that IGFBP7 knockout (KO) or TEC conditional KO (cKO) attenuated renal fibrosis in multiple mouse models, whereas IGFBP7 knock-in or restoration in IGFBP7-KO mice enhanced renal fibrosis. These in vivo findings were verified using cultured TECs and organoids generated from IGFBP7-cKO mice. Mechanistically, we found that IGFBP7 bound to pyruvate kinase M2 (PKM2) to promote the acetylation of PKM2 at the K433 site, thereby enhancing PKM2 dimerization and nuclear translocation, and subsequently accelerating lipid production and renal fibrosis via SREBP1-dependent mechanisms. Notably, through drug screening, we identified salmeterol (an asthma medication) as an IGFBP7 antagonist that effectively reduced fibrosis. Our findings reveal the IGFBP7/PKM2/SREBP1 axis as a central regulator of lipogenic fibrosis, offering genetic and pharmacological inhibition of IGFBP7 as promising therapeutic strategies for CKD.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Yang
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57 Renmin Road, Zhanjiang, Guangdong 524001, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Li Li
- National Key Laboratory for Prevention and Treatment of Multi-organ Injury, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qin Yang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Hall AM. Protein handling in kidney tubules. Nat Rev Nephrol 2025; 21:241-252. [PMID: 39762367 DOI: 10.1038/s41581-024-00914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/23/2025]
Abstract
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Zong C, Xu GL, Ning M, Li JY, Wang X, Guo HJ, Zhang LH, Zhou L, Xu C, Yang ZH, Lu LM, Niu JY. PU.1/Spi1 exacerbates ischemia-reperfusion induced acute kidney injury via upregulating Gata2 and promoting fibroblast activation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01530-w. [PMID: 40169783 DOI: 10.1038/s41401-025-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Previous studies on acute kidney injury (AKI) have predominantly focused on renal tubular cells, while the specific role of fibroblasts has been largely neglected. Recent evidence shows that PU.1/Spi1, a transcription factor, is an important modulator of fibroblast activation, whereas pharmacological and genetic silencing of PU.1/Spi1 disrupts the fibrotic network and reprograms activated fibroblasts into quiescent fibroblasts. In this study we investigated whether and how PU.1/Spi1 regulated renal fibroblast activation during AKI. An AKI model was established in male mice by clamping bilateral renal arteries for 30 min. Mice were sacrificed and blood and kidney samples were collected 48 h after the surgery. We showed that the expression level of PU.1/Spi1 was significantly upregulated in ischemia/reperfusion (I/R)-induced AKI and PU.1/Spi1 was specifically localized in fibroblasts. Meanwhile, we observed that a massive activation of fibroblasts occurred at the early stage of AKI. PU.1/Spi1 knockout significantly attenuated the activation of fibroblasts along with the decreased release of inflammatory factors and tubular injury. Bioinformatic analysis revealed that GATA binding protein 2 (Gata2), an evolutionarily conserved gene, might be a downstream target gene of PU.1/Spi1. In primary cultured mouse kidney fibroblasts subjected to hypoxia/reoxygenation (H/R), the expression levels of PU.1/Spi1, Gata2 and α-SMA were significantly upregulated. Activated fibroblasts exhibited elevated proliferative capacity, evidenced by upregulated proliferating cell nuclear antigen (PCNA) and cell cycle proteins such as cyclin B1 and cyclin D3. The secretion of inflammatory factors was increased in the activated fibroblasts. Conditioned medium from H/R-treated fibroblasts induced tubular cell injury and increased apoptosis. Using chromatin immunoprecipitation and promoter-luciferase assays, we demonstrated that PU.1/Spi1 was able to bind to the promoter region of Gata2 and enhanced its transcription. Our results show that interstitial fibroblasts are activated at the early stage of I/R-induced AKI and involved in renal injury. Upregulated PU.1/Spi1 stimulates fibroblast activation by upregulating its downstream gene Gata2. Inhibiting the activation of fibroblasts may have a beneficial effect on AKI.
Collapse
Affiliation(s)
- Chen Zong
- Department of Nephrology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Guo-Li Xu
- Department of Nephrology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ming Ning
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing-Yao Li
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xin Wang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201103, China
| | - Heng-Jiang Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li-Hong Zhang
- Department of Nephrology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhen-Hao Yang
- Department of Nephrology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jian-Ying Niu
- Department of Nephrology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Center of Community-based Health Research, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
9
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
10
|
Chen Y, Xue C. Cross-talk of renal cells through WNT signal transduction in the development of fibrotic kidneys. Front Cell Dev Biol 2025; 12:1517181. [PMID: 40012992 PMCID: PMC11860889 DOI: 10.3389/fcell.2024.1517181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition that can lead to chronic renal failure (CRF), affecting 8%-16% of adults globally and imposing a significant burden on healthcare systems. Renal fibrosis is a key pathological hallmark of CKD progression and is linked to poor prognosis. Multiple signaling pathways, including WNT/β-catenin.Aberrant activation of WNT/β-catenin is implicated in renal fibrosis. The roles of renal macrophages and fibroblasts are pivotal in fibrosis progression and prognosis.
Collapse
Affiliation(s)
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Cai H, Shen J, Peng W, Zhang X, Wen T. Identification of SOX9-related prognostic DEGs and a prediction model for hepatitis C-induced early-stage fibrosis. Gene 2025; 937:149133. [PMID: 39622395 DOI: 10.1016/j.gene.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection induces liver inflammation, activating hepatic stellate cells (HSC) and advancing fibrosis. Studies have indicated that SOX9 overexpression is closely linked to HSC activation. The study aims to identify genes associated with SOX9 and search for potential targets for detecting and treating liver fibrosis. METHOD The dataset GSE15654, containing 216 biopsy samples from HCV-induced early-stage cirrhosis patients, was obtained from the GEO database. Prognostic genes were identified through differential gene analysis, LASSO, and Cox regression analyses. CIBERSORT analysis quantified infiltration levels across 22 immune cell types. Constructing a prognostic prediction model using screened genes and conducting preliminary validation using qRT PCR and RNA sequencing techniques. RESULTS Elevated SOX9 expression correlates with unfavorable outcomes in patients with early-stage liver fibrosis induced by HCV. We identified nine SOX9-related prognostic DEGs in our study. ADAMTS2, ARHGEF5, CCT8, ERG, LBH, FRMD6, INMT, and RASGRF2 were considered risk factors in the disease progression, while DHRS4 was considered a protective factor. SOX9 expression showed a positive correlation with mast cell infiltration, whereas ARHGEF5 and FRMD6 expressions were positively associated with M0 macrophage infiltration. Our combined model surpasses the commonly used APRI and FIB4 indicators in predicting patient prognosis. The testing of clinical samples also preliminarily validated our research results. CONCLUSION The prognostic model based on nine SOX9-related DEGs provides an effective tool for forecasting the progression and outcomes of liver fibrosis. This study introduces a new strategy for advancing liver fibrosis prediction and treatment.
Collapse
Affiliation(s)
- Haozheng Cai
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Junyi Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Xiaoyun Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Tianfu Wen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China.
| |
Collapse
|
12
|
Li Y, Xing Y, Liu N, Liu B, Wang Z. SOX9: a key transcriptional regulator in organ fibrosis. Front Pharmacol 2025; 16:1507282. [PMID: 39974732 PMCID: PMC11835943 DOI: 10.3389/fphar.2025.1507282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The SOX9 gene locus is not only extensive but also intricate, and it could promote fibrosis in different organs or tissues, including cardiac fibrosis, liver fibrosis, kidney fibrosis, pulmonary fibrosis, as well as other organ fibrosis. Many disorders are associated with the process of fibrosis; moreover, fibrosis is a common symptom of chronic inflammatory diseases, characterized by the accumulation of excessive components in the extracellular matrix through different signaling pathways. The advanced stage of the fibrotic process leads to organ dysfunction and, ultimately, death. In this review, we first give an overview of the original structure and functions of SOX9. Second, we will discuss the role of SOX9 in fibrosis in various organs or tissues. Third, we describe and reveal the possibility of SOX9 as an antifibrotic treatment target. Finally, we will focus on the application of novel technologies for SOX9 and the subsequent investigation of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Hoenig MP, Brooks CR, Hoorn EJ, Hall AM. Biology of the proximal tubule in body homeostasis and kidney disease. Nephrol Dial Transplant 2025; 40:234-243. [PMID: 39066502 PMCID: PMC11852287 DOI: 10.1093/ndt/gfae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 07/28/2024] Open
Abstract
The proximal tubule (PT) is known as the workhorse of the kidney, for both the range and magnitude of the functions that it performs. It is not only responsible for reabsorbing most solutes and proteins filtered by glomeruli, but also for secreting non-filtered substances including drugs and uremic toxins. The PT therefore plays a pivotal role in kidney physiology and body homeostasis. Moreover, it is the major site of damage in acute kidney injury and nephrotoxicity. In this review, we will provide an introduction to the cell biology of the PT and explore how it is adapted to the execution of a myriad of different functions and how these can differ between males and females. We will then discuss how the PT regulates phosphate, glucose and acid-base balance, and the consequences of alterations in PT function for bone and cardiovascular health. Finally, we explore why the PT is vulnerable to ischemic and toxic insults, and how acute injury in the PT can lead to maladaptive repair, chronic damage and kidney fibrosis. In summary, we will demonstrate that knowledge of the basic cell biology of the PT is critical for understanding kidney disease phenotypes and their associated systemic complications, and for developing new therapeutic strategies to prevent these.
Collapse
Affiliation(s)
- Melanie P Hoenig
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Craig R Brooks
- Department of Medicine at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Switzerland. Zurich Kidney Center, University of Zurich, Zürich, Switzerland
| |
Collapse
|
14
|
Lamas S, Ruiz-Ortega M. Insights into the mechanisms of fibrosis and progressive kidney injury. Nat Rev Nephrol 2025; 21:79-80. [PMID: 39753691 DOI: 10.1038/s41581-024-00922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
15
|
Janosevic D, De Luca T, Eadon MT. The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:7-22. [PMID: 39332674 PMCID: PMC11686451 DOI: 10.1016/j.ajpath.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has led to major advances in our understanding of proximal tubule subtypes in health and disease. The proximal tubule serves essential functions in overall homeostasis, but pathologic or physiological perturbations can affect its transcriptomic signature and corresponding tasks. These alterations in proximal tubular cells are often described within a scRNA-seq atlas as cell states, which are pathophysiological subclassifications based on molecular and morphologic changes in a cell's response to that injury compared with its native state. This review describes the major cell states defined in the Kidney Precision Medicine Project's scRNA-seq atlas. It then identifies the overlap between the Kidney Precision Medicine Project and other seminal works that may use different nomenclature or cluster proximal tubule cells at different resolutions to define cell state subtypes. The goal is for the reader to understand the key transcriptomic markers of important cellular injury and regeneration processes across this highly dynamic and evolving field.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
16
|
Asghari M, Sabo AR, Barwinska D, Ferreira RM, Ferkowicz M, Bowen WS, Cheng YH, Gisch DL, Gulbronson C, Phillips CL, Kelly KJ, Sutton TA, Williams JC, Vazquez M, O'Toole J, Palevsky P, Rosas SE, Waikar SS, Kiryluk K, Parikh C, Hodgins J, Sarder P, De Boer IH, Himmelfarb J, Kretzler M, Jain S, Eadon MT, Winfree S, El-Achkar TM, Dagher PC. Integration of spatial multiplexed protein imaging and transcriptomics in the human kidney tracks the regenerative potential timeline of proximal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625544. [PMID: 39677736 PMCID: PMC11642746 DOI: 10.1101/2024.11.26.625544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury. The persistence of such a state is associated with failed repair. Here, we introduce a novel analytical pipeline applied to highly multiplexed spatial protein imaging to characterize proximal tubular subpopulations and neighborhoods in reference and disease human kidney tissue. The results were validated and extended through integration with spatial and single cell transcriptomics. We demonstrate that, in reference tissue, a large proportion of S1 and S2 proximal tubular epithelial cells express THY1, a mesenchymal stromal and stem cell marker that regulates differentiation. Kidney disease is associated with loss of THY1 and transition towards expression of PROM1, another stem cell marker shown recently to be linked to failed repair. We demonstrate that the trajectory of proximal tubular cells to THY1 expression is clearly distinct from that of PROM1, and that a state with PROM1 expression is associated with niches of inflammation. Our data support a model in which the interplay between THY1 and PROM1 expression in proximal tubules associates with their regenerative potential and marks the timeline of disease progression.
Collapse
|
17
|
Noel S, Kapoor R, Rabb H. New approaches to acute kidney injury. Clin Kidney J 2024; 17:65-81. [PMID: 39583139 PMCID: PMC11581771 DOI: 10.1093/ckj/sfae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 11/26/2024] Open
Abstract
Acute kidney injury (AKI) is a common and serious clinical syndrome that involves complex interplay between different cellular, molecular, metabolic and immunologic mechanisms. Elucidating these pathophysiologic mechanisms is crucial to identify novel biomarkers and therapies. Recent innovative methodologies and the advancement of existing technologies has accelerated our understanding of AKI and led to unexpected new therapeutic candidates. The aim of this review is to introduce and update the reader about recent developments applying novel technologies in omics, imaging, nanomedicine and artificial intelligence to AKI research, plus to provide examples where this can be translated to improve patient care.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Radhika Kapoor
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Li Y, Zhang J, Qiu X, Zhang Y, Wu J, Bi Q, Sun Z, Wang W. Diverse regulated cell death patterns and immune traits in kidney allograft with fibrosis: a prediction of renal allograft failure based on machine learning, single-nucleus RNA sequencing and molecular docking. Ren Fail 2024; 46:2435487. [PMID: 39632251 PMCID: PMC11619039 DOI: 10.1080/0886022x.2024.2435487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/02/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives: Post-transplant allograft fibrosis remains a challenge in prolonging allograft survival. Regulated cell death has been widely implicated in various kidney diseases, including renal fibrosis. However, the role of different regulated cell death (RCD) pathways in post-transplant allograft fibrosis remains unclear. Methods and Results: Microarray transcriptome profiling and single-nuclei sequencing data of post-transplant fibrotic and normal grafts were obtained and used to identify RCD-related differentially expressed genes. The enrichment activity of nine RCD modalities in tissue and cells was examined using single-sample gene set enrichment analysis, and their relations with immune infiltration in renal allograft samples were also assessed. Parenchymal and non-parenchymal cells displayed heterogeneity in RCD activation. Additionally, cell-cell communication analysis was also conducted in fibrotic samples. Subsequently, weighted gene co-expression network analysis and seven machine learning algorithms were employed to identify RCD-related hub genes for renal fibrosis. A 9-gene signature, termed RCD risk score (RCDI), was constructed using the least absolute shrinkage and selection operator and multivariate Cox regression algorithms. This signature showed robust accuracy in predicting 1-, 2-, and 3-year allograft survival status (area under the curve for 1-, 2-, and 3-year were 0.900, 0.877, 0.858, respectively). Immune infiltration analysis showed a strong correlation with RCDI and the nine model genes. Finally, molecular docking simulation suggested rapamycin, tacrolimus and mycophenolate mofetil exhibit strong interactions with core RCD-related receptors. Conclusions: In summary, this study explored the activation of nine RCD pathways and their relationships with immune traits, identified potential RCD-related hub genes associated with renal fibrosis, and highlighted potential therapeutic targets for renal allograft fibrosis.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xuemeng Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yifei Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Tai Y, Liu Z, Wang Y, Zhang X, Li R, Yu J, Chen Y, Zhao L, Li J, Bai X, Kong D, Midgley AC. Enhanced glomerular transfection by BMP7 gene nanocarriers inhibits CKD and promotes SOX9-dependent tubule regeneration. NANO TODAY 2024; 59:102545. [DOI: 10.1016/j.nantod.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
20
|
Humphreys BD. Sox9 flips the switch between regeneration and fibrosis. Kidney Int 2024; 106:781-783. [PMID: 39009187 DOI: 10.1016/j.kint.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Chen S, Liu Y, Chen X, Tao H, Piao Y, Huang H, Han Z, Han Z, Chen X, Li Z. Combined lineage tracing and scRNA-seq reveal the activation of Sox9 + cells in renal regeneration with PGE 2 treatment. Cell Prolif 2024; 57:e13679. [PMID: 38801100 PMCID: PMC11533080 DOI: 10.1111/cpr.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Uncovering mechanisms of endogenous regeneration and repair through resident stem cell activation will allow us to develop specific therapies for injuries and diseases by targeting resident stem cell lineages. Sox9+ stem cells have been reported to play an essential role in acute kidney injury (AKI). However, a complete view of the Sox9+ lineage was not well investigated to accurately elucidate the functional end state and the choice of cell fate during tissue repair after AKI. To identify the mechanisms of fate determination of Sox9+ stem cells, we set up an AKI model with prostaglandin E2 (PGE2) treatment in a Sox9 lineage tracing mouse model. Single-cell RNA sequencing (scRNA-seq) was performed to analyse the transcriptomic profile of the Sox9+ lineage. Our results revealed that PGE2 could activate renal Sox9+ cells and promote the differentiation of Sox9+ cells into renal proximal tubular epithelial cells and inhibit the development of fibrosis. Furthermore, single-cell transcriptome analysis demonstrated that PGE2 could regulate the restoration of lipid metabolism homeostasis in proximal tubular epithelial cells by participating in communication with different cell types. Our results highlight the prospects for the activation of endogenous renal Sox9+ stem cells with PGE2 for the regenerative therapy of AKI.
Collapse
Affiliation(s)
- Shang Chen
- Nankai University School of MedicineTianjinChina
- The Key Laboratory of Bioactive Materials, Ministry of EducationNankai UniversityTianjinChina
| | - Yue Liu
- Nankai University School of MedicineTianjinChina
| | - Xiaoniao Chen
- Department of OphthalmologyThe Third Medical Center of Chinese PLA General HospitalBeijingChina
- National Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingChina
| | - Hongyan Tao
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Yongjun Piao
- Nankai University School of MedicineTianjinChina
| | - Haoyan Huang
- Nankai University School of MedicineTianjinChina
| | - Zhibo Han
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell ProductsAmCellGene Co., Ltd.TianjinChina
| | - Zhong‐Chao Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell ProductsAmCellGene Co., Ltd.TianjinChina
| | - Xiang‐Mei Chen
- National Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingChina
| | - Zongjin Li
- Nankai University School of MedicineTianjinChina
- The Key Laboratory of Bioactive Materials, Ministry of EducationNankai UniversityTianjinChina
- National Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingChina
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology ObstetricsNankai University Affiliated Hospital of Obstetrics and GynecologyTianjinChina
- Henan Key Laboratory of Cardiac Remodeling and TransplantationZhengzhou No. 7 People's HospitalZhengzhouChina
| |
Collapse
|
22
|
Rius Rigau A, Liang M, Devakumar V, Neelagar R, Matei AE, Györfi AH, Bergmann C, Filla T, Fedorchenko V, Schett G, Distler JHW, Li YN. Imaging mass cytometry-based characterisation of fibroblast subsets and their cellular niches in systemic sclerosis. Ann Rheum Dis 2024:ard-2024-226336. [PMID: 39442983 DOI: 10.1136/ard-2024-226336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Transcriptomic data demonstrated that fibroblasts are heterogeneous with functionally diverse subpopulations. Although fibroblasts are key effector cells of fibrotic diseases such as systemic sclerosis (SSc), they have not yet been characterised spatially at the cellular level. Here, we aimed to investigate fibroblast subpopulations using imaging mass cytometry (IMC) as a proteomic-based, spatially resolved omics approach. METHODS We applied IMC to deconvolute the heterogeneity of 49 969 cells including 6501 fibroblasts at the single-cell level, to analyse their spatial distribution and to characterise their cellular niches in skin sections of patients with SSc and controls in situ. RESULTS We identified 13 different subpopulations of fibroblasts in SSc and control skin, the proportion increases in five fibroblast subpopulations (myofibroblasts, FAPhigh, S1PR+, Thy1+;ADAM12high;PU.1high and ADAM12+;GLI1+ fibroblasts) and decreases in three subpopulations (TFAMhigh, PI16+;FAP+ and Thy1+;ADAM12low fibroblasts). Several fibroblast subpopulations demonstrated spatial enrichment and altered cellular interactions in SSc. The proportion of S1PR+-fibroblast positively correlated with more extensive skin fibrosis, whereas high numbers of PI16+;FAP--fibroblasts were associated with milder skin fibrosis. The frequency of aberrant cellular interaction between S1PR+ and ADAM12+;GLI1+-fibroblasts also positively associated with the extent of skin fibrosis in SSc. CONCLUSION Using IMC, we demonstrated profound changes in composition and localisation of the majority of fibroblast subpopulations in SSc skin. These findings may provide a rationale for specific targeting of deregulated fibroblast subpopulations in SSc. Quantification of S1PR+-fibroblast and PI16+;FAP--fibroblasts may offer potential for patient stratification according to severity of skin fibrosis.
Collapse
Affiliation(s)
- Aleix Rius Rigau
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Minrui Liang
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Huashan Hospital Fudan University, Shanghai, China
| | - Veda Devakumar
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Ranjana Neelagar
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Alexandru-Emil Matei
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Andrea-Hermina Györfi
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Tim Filla
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Vladyslav Fedorchenko
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Erlangen, Bayern, Germany
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Yi-Nan Li
- Department of Rheumatology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
- Hiller Research Center, University Hospital of Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| |
Collapse
|
23
|
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward OM, Outeda P, Cheng T, Mahjoub MR, Watnick TJ, Humphreys BD. Multiomics profiling of mouse polycystic kidney disease progression at a single-cell resolution. Proc Natl Acad Sci U S A 2024; 121:e2410830121. [PMID: 39405347 PMCID: PMC11513963 DOI: 10.1073/pnas.2410830121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to kidney failure. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single-nucleus multimodal atlas of an orthologous mouse PKD model at early, mid, and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalog differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single-nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Tao Cheng
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Moe R. Mahjoub
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Terry J. Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO63110
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO63110
| |
Collapse
|
24
|
Kortekaas RK, Geillinger-Kästle KE, Fuentes-Mateos R, Schönleber A, van der Koog L, Elferink RAB, Al-Alyan N, Burgess JK, Gosens R. The soluble factor milieu in idiopathic pulmonary fibrosis dysregulates epithelial differentiation. FASEB J 2024; 38:e70077. [PMID: 39370849 DOI: 10.1096/fj.202302405rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
In idiopathic pulmonary fibrosis (IPF), epithelial abnormalities are present including bronchiolization and alveolar cell dysfunction. We hypothesized that the IPF microenvironment disrupts normal epithelial growth and differentiation. We mimicked the soluble factors within an IPF microenvironment using an IPF cocktail (IPFc), composed of nine factors which are increased in IPF lungs (CCL2, IL-1β, IL-4, IL-8, IL-13, IL-33, TGF-β, TNFα, and TSLP). Using IPFc, we asked whether the soluble factor milieu in IPF affects epithelial growth and differentiation and how IPFc compares to TGF-β alone. Epithelial growth and differentiation were studied using mouse lung organoids (primary Epcam+ epithelial cells co-cultured with CCL206 fibroblasts). Organoids exposed to IPFc and TGF-β were re-sorted into epithelial and fibroblast fractions and subjected to RNA sequencing. IPFc did not affect the number of organoids formed. However, pro-surfactant protein C expression was decreased. On these parameters, TGF-β alone had similar effects. However, RNA sequencing of re-sorted organoids revealed that IPFc and TGF-β had distinct effects on both epithelial cells and fibroblasts. IPFc upregulated goblet cell markers, whereas these were inhibited by TGF-β. Although both IPFc and TGF-β increased extracellular matrix gene expression, only TGF-β increased myofibroblast markers. VEGF-C and Wnt signaling were among the most differentially regulated signaling pathways by IPFc versus TGF-β. Interestingly, Wnt pathway activation rescued Sftpc downregulation induced by IPFc. In conclusion, IPFc alters epithelial differentiation in a way that is distinct from TGF-β. Alterations in Wnt signaling contribute to these effects. IPFc may be a more comprehensive representation of the soluble factor microenvironment in IPF.
Collapse
Affiliation(s)
- Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kerstin E Geillinger-Kästle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rocío Fuentes-Mateos
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anita Schönleber
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Luke van der Koog
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robin A B Elferink
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nakaa Al-Alyan
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
25
|
|
26
|
Cai XT, Jia M, Heigl T, Shamir ER, Wong AK, Hall BM, Arlantico A, Hung J, Menon HG, Darmanis S, Brightbill HD, Garfield DA, Rock JR. IL-4-induced SOX9 confers lineage plasticity to aged adult lung stem cells. Cell Rep 2024; 43:114569. [PMID: 39088319 DOI: 10.1016/j.celrep.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs). We show that IL4Ra signaling in macrophages promotes regeneration of the alveolar epithelium after bleomycin-induced lung injury. Using organoids and mouse models, we show that IL-4 directly acts on a subset of ATIIs to induce the expression of the transcription factor SOX9 and reprograms them toward a progenitor-like state with both airway and alveolar lineage potential. In the contexts of aging and bleomycin-induced lung injury, this leads to aberrant epithelial cell differentiation and bronchiolization, consistent with cellular and histological changes observed in interstitial lung disease.
Collapse
Affiliation(s)
- Xiaoyu T Cai
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA
| | - Tobias Heigl
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eliah R Shamir
- Department of Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Aaron K Wong
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben M Hall
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeffrey Hung
- Department of Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hari G Menon
- Department of Next Generation Sequencing and Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Spyros Darmanis
- Department of Next Generation Sequencing and Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David A Garfield
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason R Rock
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
28
|
Faivre A, Bugarski M, Rinaldi A, Sakhi IB, Verissimo T, Legouis D, Rutkowski JM, Correia S, Kaminska M, Dalga D, Malpetti D, Cippa PE, de Seigneux S, Hall AM. Spatiotemporal Landscape of Kidney Tubular Responses to Glomerular Proteinuria. J Am Soc Nephrol 2024; 35:854-869. [PMID: 38652545 PMCID: PMC11230716 DOI: 10.1681/asn.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Key Points Glomerular proteinuria induces large-scale changes in gene expression along the nephron. Increased protein uptake in the proximal tubule results in axial remodeling and injury. Increased protein delivery to the distal tubule causes dedifferentiation of the epithelium. Background Large increases in glomerular protein filtration induce major changes in body homeostasis and are associated with a higher risk of kidney functional decline and cardiovascular disease. We investigated how elevated protein exposure modifies the landscape of tubular function along the entire nephron, to understand the cellular changes that mediate these important clinical phenomena. Methods We conducted single-nucleus RNA sequencing, functional intravital imaging, and antibody staining to spatially map transport processes along the mouse kidney tubule. We then delineated how these were altered in a transgenic mouse model of inducible glomerular proteinuria (POD-ATTAC) at 7 and 28 days. Results Glomerular proteinuria activated large-scale and pleiotropic changes in gene expression in all major nephron sections. Extension of protein uptake from early (S1) to later (S2) parts of the proximal tubule initially triggered dramatic expansion of a hybrid S1/2 population, followed by injury and failed repair, with the cumulative effect of loss of canonical S2 functions. Proteinuria also induced acute injury in S3. Meanwhile, overflow of luminal proteins to the distal tubule caused transcriptional convergence between specialized regions and generalized dedifferentiation. Conclusions Proteinuria modulated cell signaling in tubular epithelia and caused distinct patterns of remodeling and injury in a segment-specific manner. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_05_01_ASN0000000000000357.mp3
Collapse
Affiliation(s)
- Anna Faivre
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Imene B. Sakhi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Verissimo
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | | | - Sara Correia
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Monika Kaminska
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Delal Dalga
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Pietro E. Cippa
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Zurich Kidney Center, Zurich, Switzerland
| |
Collapse
|
29
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward OM, Outeda P, Cheng T, Mahjoub MR, Watnick TJ, Humphreys BD. Multi-omics profiling of mouse polycystic kidney disease progression at a single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595830. [PMID: 38854144 PMCID: PMC11160654 DOI: 10.1101/2024.05.27.595830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes. We catalogue differentially expressed genes and activated epigenetic regions in each cell type during PKD progression, characterizing cell-type-specific responses to Pkd1 deletion. We describe heterogeneous, atypical collecting duct cells as well as proximal tubular cells that constitute cyst epithelia in PKD. The transcriptional regulation of the cyst lining cell marker GPRC5A is conserved between mouse and human PKD cystic epithelia, suggesting shared gene regulatory pathways. Our single nucleus multiomic analysis of mouse PKD provides a foundation to understand the earliest changes molecular deregulation in a mouse model of PKD at a single-cell resolution.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Moe R. Mahjoub
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Terry J. Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
31
|
Bugg D, Davis J. Sox9-coordinated cellular neighborhoods generate fibrosis. Cell Stem Cell 2024; 31:589-590. [PMID: 38701754 DOI: 10.1016/j.stem.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Poorly regenerative organs deposit scar tissue to mend damage. Aggarwal et al. establish that transient Sox9 activity is necessary for early proximal tubule epithelial regeneration, while Trogisch et al. and Aggarwal et al. show that persistent Sox9 activity in epithelial and endothelial cells activates fibroblasts creating fibrotic microdomains in multiple organs.
Collapse
Affiliation(s)
- Darrian Bugg
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Davis
- Department of Lab Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Wang M. Switching off SOX9 for epithelial recovery after AKI. Nat Rev Nephrol 2024; 20:271. [PMID: 38532003 DOI: 10.1038/s41581-024-00830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
|
33
|
Baumann K. A SOX9 switch from regeneration to fibrosis. Nat Rev Mol Cell Biol 2024; 25:250. [PMID: 38459133 DOI: 10.1038/s41580-024-00720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
|