1
|
Szabó KF, Banachowicz P, Powała A, Lunic D, Ardoiz IF, Gryko D. Photochemical C3-amination of pyridines via Zincke imine intermediates. Nat Commun 2025; 16:5072. [PMID: 40450014 DOI: 10.1038/s41467-025-59809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 05/02/2025] [Indexed: 06/03/2025] Open
Abstract
Selective skeletal and peripheral editing of the pyridine moiety has broadly expanded the chemical space. While C-H functionalization at C2 and C4 positions are enabled by the inherent reactivity of this heteroarene, selective derivatization at the C3 position has long posed a significant challenge. Recently, based on a dearomatization-rearomatization sequence, involving Zincke imine intermediates, selective halogenation (-Br, -Cl, and -I) and isotopic labelling were accomplished. Here, we report a mild and regioselective method for C3-amination that relies on the photochemical reaction of Zincke imine with an amidyl radical generated from N-aminopyridinium salts. Mechanistic and theoretical studies indicate that radical intermediates are involved and explain the C3 regioselectivity of the reaction.
Collapse
Affiliation(s)
| | - Piotr Banachowicz
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Powała
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Danijela Lunic
- Departamento de Química, Instituto de Química de la Universidad de La Rioja, Universidad de La Rioja, Logroño, Spain
| | - Ignacio Funes Ardoiz
- Departamento de Química, Instituto de Química de la Universidad de La Rioja, Universidad de La Rioja, Logroño, Spain.
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Woo J, Zeqiri T, Christian AH, Ryan MC, Levin MD. Carbon-Atom Scavengers Enable Divergent, Selective Carbon Deletion of Azaarenes. J Am Chem Soc 2025. [PMID: 40425518 DOI: 10.1021/jacs.5c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Divergent synthesis is a powerful strategy that provides simultaneous access to multiple derivatives of a given substrate. However, the emerging developments in skeletal editing have largely delivered methods that lack this potential for diversification. Herein, we report the serendipitous discovery of reagent-controlled selective deletion of C3 or C2 carbon atoms of quinolines, affording indoles. An initial observation that an impurity in commercial samples of DBU promoted cyclization of a benzoxazepine-derived imidate led to the identification of indoline and aminoethanol as C3- and C2-selective carbon-atom scavengers, respectively. These two methods successfully convert a broad scope of quinolines and related azaarenes to the corresponding indoles and azaindoles, enabling divergent carbon deletion. In-depth mechanistic studies support the HFIP-promoted ring opening of 3,1-benzoxazepines to amidine intermediates as a rate-determining step, while providing insights into the selectivity afforded by indoline. These methods and their associated mechanisms offer a blueprint for the rational design of reagent-controlled, divergent skeletal edits.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Tergitë Zeqiri
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alec H Christian
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Michael C Ryan
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Ton NNH, Mai BK, Fallon T, Nguyen TV. Rapid Access to Conjugated Z,Z,Z-Trienes. Angew Chem Int Ed Engl 2025; 64:e202502713. [PMID: 40127016 DOI: 10.1002/anie.202502713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Intercepting reactions have recently emerged as an innovative approach in organic synthesis, allowing chemists to harness reactive intermediates to access structures and functionalities that conventional methods cannot easily achieve. By deliberately manipulating reaction pathways, this strategy provides a unique avenue to explore unusual reactivities and complex molecular architectures. In this work, we have developed a new protocol for the nucleophile-intercepted Beckmann fragmentation reaction (NuBFr). Employing tropone oxime tosylate - a simple and readily accessible precursor - and a diverse set of nucleophiles generated in situ from alcohols, phenols, thiols and alkynes with strong bases, we successfully synthesized a library of novel conjugated Z,Z,Z-trienecarbonitrile derivatives. This method facilitates rapid access to the conjugated Z,Z,Z-triene motif, a structural feature rarely encountered in synthetic chemistry. Our computational studies indicate that the NuBFr reaction likely proceeds through the formation of a bicylic azirine intermediate. The resulting Z,Z,Z-trienecarbonitriles could undergo an unprecedented thermally induced 8π/6π/4π electrocyclization cascade sequence to produce trisubstituted olefins. This sequence underscores the fundamental value of these motifs in pushing the boundaries of unusual reactivities in organic synthesis.
Collapse
Affiliation(s)
- Nhan Nu Hong Ton
- School of Chemistry, University of New South Wales, Anzac Parade, Kensington, Sydney, NSW, 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Thomas Fallon
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Anzac Parade, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Hart MA, Uhlenbruck BJH, Levy JN, McNally A. 3-Selective Pyridine Fluorination via Zincke Imine Intermediates. J Am Chem Soc 2025. [PMID: 40393466 DOI: 10.1021/jacs.5c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Fluorine substitution is a widely used approach to improve the properties of drugs bearing aromatic rings and has spawned numerous new methods for C-F bond formation. Reactions employing C-H bond precursors are particularly valuable, but pyridine-applicable variants are rare, especially at the C3-position. We developed an approach using ring-opened Zincke imines that undergo regioselective C-F bond formation with electrophilic fluorination reagents, resulting in C3-fluoropyridines after ring closure. This process can accommodate a wide range of pyridine substitution patterns, tolerates various appended functional groups, and is viable for the late-stage fluorination of pyridine-containing drugs.
Collapse
Affiliation(s)
- Marie A Hart
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Benjamin J H Uhlenbruck
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey N Levy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Zhang H, Pan M, Qin S, Zheng Z, Xu H, Ning L, Zhang S, Jia S, Wang X, Su Z. A fully sustainable, flexible, and degradable lignocellulose-based composite film enabled by a bio-based polyimine vitrimer. Int J Biol Macromol 2025; 307:141946. [PMID: 40074105 DOI: 10.1016/j.ijbiomac.2025.141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Traditionally unsustainable and nondegradable fossil-based plastics have resulted in serious environment pollution problem. Renewable and biodegradable lignocellulose biomass is a promising raw martial for developing environmentally friendly plastic alternatives. However, lignocellulose biomass itself is non-thermoplastic crosslinking networks consisting of cellulose, lignin, and hemicellulose, resulting in a huge challenge to thermoform its into plastic alternatives. Vitrimers which own dynamic network exchange character can enable polymer materials excellent thermo-processability and recyclability. Herein, a thermoforming strategy of lignocellulose biomass was successfully developed by integrating wood powders (WPs) including natural wood powder (NWP), oxidized wood powder (OWP), and aminated wood powder (AWP) into the dynamic networks of a bio-based polyimine vitrimer (Bio-PI). The resulting WPs/Bio-PI mixtures can be easily processed into a fully sustainable lignocellulose-based composite film (LCF) by hot-pressing. The obtained LCF shows good flexibility and strength with the highest tensile strain, toughness, and tensile strength of 61 %, 365 MJ m-3, and 9 MPa, respectively. The LCF also exhibits heat-triggered re-shaping capability, ultralow water absorption ratio (<1 %), high water stability, and excellent resistance to dilute acid/alkali solutions. Moreover, the LCF can be completely chemical-degraded because of the reversible crosslinking performance of Bio-PI. Such LCF represents an environmentally friendly plastic alternative.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingrui Pan
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shizhen Qin
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zuli Zheng
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiyan Xu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Ning
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaobo Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanshan Jia
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Li W, Chen Y, Yuan R, Jia X, Yao Y, Zhang L. Water-Stable 2-Pyridylboron Reagents: Pd-Catalyzed 2-Pyridylation Reaction of Aryl Halides. Angew Chem Int Ed Engl 2025; 64:e202500315. [PMID: 39971719 DOI: 10.1002/anie.202500315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
The stability of 2-pyridylation reagents is a long-standing issue in cross-coupling chemistry due to hydrolysis. However, as the use of pyridine-based pharmaceuticals continues to increase, there is a high demand for stable and reactive 2-pyridylation reagents. Herein, a general strategy to prepare water-stable 2-pyridylboron reagents has been developed. The application of the water-stable 2-pyridylboron reagents in a neutral Suzuki-Miyaura coupling with a halide scavenger enables an efficient 2-pyridylation reaction of aryl halides.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Yu Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Ruyi Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Xuhao Jia
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| | - Li Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, 215123, Suzhou, P. R. China
| |
Collapse
|
7
|
Zhang J, Spreckelmeyer N, Lammert J, Wiethoff MA, Milner MJ, Mück-Lichtenfeld C, Studer A. Photocatalytic Hydrogenation of Quinolines to Form 1,2,3,4-Tetrahdyroquinolines Using Water as the Hydrogen Atom Donor. Angew Chem Int Ed Engl 2025:e202502864. [PMID: 40223604 DOI: 10.1002/anie.202502864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
The design of a sequential process combining hydrogenation and a subsequent stereomutation is an attractive strategy for the stereoselective reduction of cyclic disubstituted π-systems to access the thermodynamically more stable trans isomer, which would be the minor compound considering a kinetically controlled cis hydrogenation process. Herein, we demonstrate stereoselective photocatalytic phosphine-mediated quinoline reductions with water as the hydrogen atom source under mild conditions to afford the corresponding 1,2,3,4-tetrahydroquinolines with complete selectivity towards reduction of the heteroaromatic part. The method shows broad functional group tolerance and provides access to trans-2,3-disubstituted tetrahydroquinolines with moderate to excellent diastereoselectivity. These trans isomers are not readily obtained using established methods, as transition-metal-catalyzed regioselective quinoline hydrogenations provide the corresponding cis-2,3-disubstituted isomers with high selectivity. Mechanistic studies reveal that the hydrogenation of the 2,3-disubstituted quinolines proceeds through a cascade process comprising an initial cis selective photocatalytic hydrogenation of the heteroarene core of the quinoline, followed by a trans selective photoisomerization.
Collapse
Affiliation(s)
- Jingjing Zhang
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Nico Spreckelmeyer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | | | | | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
8
|
Hsu H, Kang S, Chen C, Sk MR, Thomas AA. Functionalization of Pyridines at the C4 Position via Metalation and Capture. Angew Chem Int Ed Engl 2025; 64:e202424172. [PMID: 39752240 PMCID: PMC11933531 DOI: 10.1002/anie.202424172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 01/18/2025]
Abstract
The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups. In addition, after transmetalation to zinc chloride a simple and efficient Negishi cross-coupling protocol was formulated for a variety of aromatic and heteroaromatic halides. The robustness of this protocol was demonstrated through the late-stage installation of 4-pyridyl fragments into a variety of complex active pharmaceutical ingredients including loratadine and prochlorperazine. Furthermore, through rapid injection NMR investigations, we are able to directly observe the evolution of anionic intermediates and determined that two distinct mechanistic pathways lead to the observed site selectivity: (1) the C4-H within 2,6-disubstituted pyridines could be removed directly and (2) the C4 selectivity of unsubstituted pyridine originates from the intermolecular exchange of metalation sites via a thermodynamic pathway.
Collapse
Affiliation(s)
- Han‐Hsiang Hsu
- Department of ChemistryTexas A&M UniversityPO Box 30012College StationTX 77842-30012
| | - Seokmin Kang
- Department of ChemistryTexas A&M UniversityPO Box 30012College StationTX 77842-30012
| | - Cheng‐Chun Chen
- Department of ChemistryTexas A&M UniversityPO Box 30012College StationTX 77842-30012
| | - Md Raja Sk
- Department of ChemistryTexas A&M UniversityPO Box 30012College StationTX 77842-30012
| | - Andy A. Thomas
- Department of ChemistryTexas A&M UniversityPO Box 30012College StationTX 77842-30012
| |
Collapse
|
9
|
Wu FP, Tyler JL, Glorius F. Diversity-Generating Skeletal Editing Transformations. Acc Chem Res 2025; 58:893-906. [PMID: 40042370 DOI: 10.1021/acs.accounts.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusSkeletal editing, as a synthetic tool, offers the unique potential to selectively and efficiently modify the core skeleton of a target molecule at a late-stage. The main benefit of such transformations is the rapid exploration of the chemical space around lead compounds without necessitating a de novo synthesis for each new molecule. However, many skeletal editing transformations are inherently restricted to generating a single product from a single starting compound, limiting the potential for diversification, a concept central to expediting structure-activity relationship (SAR) investigations. In this Account, we describe our efforts to develop novel skeletal editing transformations in which a modification to the central motif of a molecule is performed simultaneously with the incorporation of additional functionality that can be easily varied through a judicious choice of the reagents. Specifically, we successfully developed an α-iodonium diazo-based carbynyl radical equivalent reagent that, under photoredox conditions, could facilitate the ring-expansion of indene scaffolds while enabling the insertion of over ten different functionalized carbon atoms into the corresponding naphthalene products. This concept was later extended to the design of an atomic carbon equivalent reagent that could promote mild and selective Ciamician-Dennstedt-type indole ring-expansion reactions, while simultaneously installing an oxime ester handle that could undergo further functionalization. Furthermore, we highlight recent work from our group on multiple-atom insertion reactions, namely, the development of a photocatalyzed De Mayo reaction for the ring-expansion of cyclic ketones and a photocatalyzed dearomative ring-expansion of thiophenes via small-ring insertion. In both of these cases, multiple products can be potentially accessed from a single starting material upon variation of the insertion reagent. The diversity-generating skeletal editing strategy could also be applied to single-atom transmutation, as demonstrated by the development of a nitrogen-to-functionalized carbon atom transmutation reaction to convert pyridine to benzene rings. Here, the desired transformation was achieved via a sequence of pyridine ring-opening, Horner-Wadsworth-Emmons (HWE) olefination, and ring-closure, with a judicious choice of the HWE reagent allowing the installation of a wide variety of versatile functional groups. Finally, an energy transfer-mediated quinoline ring-contraction is discussed, specifically with reference to the ways in which it does and does not fit the criteria of a skeletal editing reaction. Although formal atom deletion transformations are typically restricted to single products from each discrete substrate, this [2 + 2] cycloaddition/rearrangement cascade also involves the incorporation of an alkene into the molecule and introduces a point of variation that can be exploited for diversity generation. We hope to not only highlight the transformations reported herein but also inspire further research into this synthetic strategy to access new classes of skeletal editing transformations that, through rapid diversity generation, provide the potential to expedite SAR investigations.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Jasper L Tyler
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Zhang L, Zhou FY, Jiao L. N-Boryl Pyridyl Anion Chemistry. Acc Chem Res 2025; 58:1023-1035. [PMID: 40017027 DOI: 10.1021/acs.accounts.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
ConspectusPyridine is a crucial heterocyclic compound in organic chemistry. Typically, the pyridine motif behaves as an N-nucleophile and an electron-deficient aromatic ring. Transforming the pyridine ring into an electron-rich system that exhibits reactivity contrary to classical expectations could unveil new opportunities in pyridine chemistry. This Account describes an approach to the umpolung reactivity of the pyridine ring through the formation of an unprecedented N-boryl pyridyl anion (N-BPA) intermediate that enables new catalysis and transformations.In 2017, we discovered that 4-phenylpyridine acts as an efficient catalyst for the borylation of iodo- and bromoarenes using diboron(4) compounds. Mechanistic studies revealed that the in situ formation of an N-BPA intermediate in the pyridine/diboron(4)/methoxide reaction system is a pivotal step in this transformation. Further investigations showed that N-BPA exhibits dual reactivities as both a strong electron donor and a potent nucleophile. This unique reactivity profile has unveiled novel pathways for redox catalysis, pyridine derivatizations, and umpolung transformations.Based on the electron-donor characteristic of the N-boryl pyridyl anion, we have developed a redox catalytic system mediated by a pyridine catalyst. In the pyridine/diboron(4)/base reaction system, the in situ formation of N-BPA followed by single electron transfer (SET) to a substrate with regeneration of the pyridine molecule establishes a redox catalytic cycle. This approach enables the single-electron reduction of a variety of substrates employing 4-phenylpyridine as a catalyst and diboron(4) as the electron source. Upon visible-light excitation, this intermediate transitions into its excited state, exhibiting significantly enhanced reductivity. This enables the establishment of a modular photoredox system consisting of various pyridine/diboron(4)/base combinations that allow for fine-tuning of its redox property. Using this strategy, we performed a series of challenging single-electron reduction reactions, including the single -electron reduction of nonactivated chloro- and fluoroarenes, and Birch reduction of arenes.The nucleophilic character of the N-boryl pyridyl anion was effectively harnessed to facilitate pyridine derivatization and umpolung transformations. By directly quenching the in situ-generated N-BPA with a proton source, we developed a practical approach to N-H-1,4-dihydropyridines (DHPs). Bimolecular nucleophilic substitution reaction between N-BPA and an alkyl bromide produced a 4-alkyl-1,4-DHP, which subsequently releases an alkyl radical under photoredox conditions. This process enabled a catalytic transformation of alkyl bromides into alkyl radicals. Employing 4-trifluoromethylpyridine in this chemistry, the resulting N-BPA intermediate undergoes elimination of fluoride to yield a 4-pyridyldifluoromethyl nucleophile, which then reacts with electrophiles to realize a defluorinative functionalization reaction to forge pyridyldifluoromethyl compounds. Alternatively, when 4-perfluoroalkylthiopyridine was employed, a similar elimination process occurred to form a perfluoroalkyl anion, demonstrating a novel nucleophilic perfluoroalkylation reagent that offers distinct advantages over traditional reagents.The reactivities of the N-boryl pyridyl anion described in this Account provide new insights into pyridine chemistry. We anticipate that these findings will inspire further exploration of novel reactivities and mechanisms in pyridine and related heterocyclic chemistry.
Collapse
Affiliation(s)
- Li Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei-Yu Zhou
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Bhattacharya D, Studer A. meta-Hydroxylation of Pyridines, Quinolines, and Isoquinolines Using Dearomatized Intermediates. Angew Chem Int Ed Engl 2025; 64:e202423512. [PMID: 39921441 DOI: 10.1002/anie.202423512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/10/2025]
Abstract
The functionalization of C-H bonds in heterocycles holds considerable importance in chemical synthesis and drug discovery. Recently, the regioselective introduction of various functionalities at the meta-position of azines, utilizing readily accessible dearomatized intermediates, has emerged as a highly attractive approach. Along these lines, the meta-hydroxylation of azines is an appealing but challenging transformation due to the inherent electronic nature of these heterocycles. Herein, we report a meta-selective hydroxylation of pyridines, quinolines and isoquinolines through easily accessible oxazinoaza-arene intermediates. The nucleophilic C3-position of these dienamine-type intermediates engages in highly regioselective hydroxylation upon treatment with electrophilic peroxides.
Collapse
Affiliation(s)
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
12
|
Qi L, Chen Z, Aïssa C, Xiao J. Reductive Zincke Reaction: Opening of Pyridinium Rings to δ-Amino Ketones via Transfer Hydrogenation. Chemistry 2025; 31:e202404043. [PMID: 39714881 DOI: 10.1002/chem.202404043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
The Zincke reaction and Birch reduction have been one of the few reactions that allow for ring opening of pyridines ever since the discovery of pyridine more than a century ago. This paper presents a new addition to the list of pyridine ring-opening reactions, reductive Zincke reaction, which affords saturated δ-amino ketones. Under the catalysis of a simple rhodium complex, pyridinium salts with diverse substituents are reduced with formic acid, ring-opened with water, transaminated with a secondary amine and further reduced to afford a wide range of δ-amino ketones, including those in which the alkane chain of the ketones is selectively deuterated or fluorinated. The applicability of the reaction is exemplified by the synthesis of drug analogues and late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Leiming Qi
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Zhenyu Chen
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Christophe Aïssa
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
13
|
Tan J, Liu J, Zhang X. Unraveling the Mechanism and Influence of Auxiliary Ligands on the Isomerization of Neutral [P,O]-Chelated Nickel Complexes for Olefin Polymerization. J Org Chem 2025; 90:2052-2061. [PMID: 39874148 PMCID: PMC11811995 DOI: 10.1021/acs.joc.4c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities. Herein, we explore the isomerization mechanisms of two phosphine-phenoxide-ligated catalysts using density functional theory (DFT) studies. We found that out of dissociative, tetrahedral, and associative mechanisms, the associative mechanism is the likeliest, with a pendant methoxy oxygen atom from the ligand to fulfill the fifth coordination site on nickel before Berry pseudorotation. The effect of varying auxiliary ligands on the activation barrier heights was also investigated and found that electron-releasing alkyl groups on substituted pyridine ligands have diminished electronic influence on pseudorotational barriers, but if present at the ortho-positions, will elevate the barriers due to larger steric influences. The electron-withdrawing groups on the ligand result in weaker ligand binding and lower pseudorotational barriers. These insights into the mechanisms of cis-trans isomerization and auxiliary ligand effects may offer valuable guidance for optimizing catalyst performance in copolymerization processes by lowering the barrier of isomerization by fine-tuning the steric and electronic influences of auxiliary ligands and enhancing overall copolymerization efficiency.
Collapse
Affiliation(s)
- Jeremy Tan
- Department
of Chemistry, National University of Singapore,
4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Jingyi Liu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xinglong Zhang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute
of High Performance Computing, Agency for Science, Technology and
Research (ASTAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| |
Collapse
|
14
|
Yao Z, Tang Z, Zhao D. Triflic Anhydride-Mediated Friedel-Crafts Arylation of Quinazolin-4(3H)-ones. Chem Asian J 2025; 20:e202401285. [PMID: 39600234 DOI: 10.1002/asia.202401285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Since the initial report, the Friedel-Crafts reaction has become a powerful tool to functionalize arenes. Nevertheless, the use of nitrogen heterocycles as electrophiles in Friedel-Crafts reactions has been less explored. Here, we show a Friedel-Crafts-like reaction of electron-rich arenes with quinazolin-4(3H)-ones, enabling late-stage C2-H arylation of quinazolin-4(3H)-ones via triflic anhydride (Tf2O) activation. A series of substrates can be efficiently coupled under mild reaction conditions, affording C(sp3)-C(sp2) coupling product 2-aryl dihydroquinazolinones that can be further converted into the corresponding quinazolinone in the presence of base. This methodology offers efficient access to 2-aryl quinazolin-4(3H)-ones and exhibits good functional group compatibility and site selectivity. Mechanistic investigations reveal the formation of highly electrophilic iminium intermediates upon Tf2O activation of quinazolin-4(3H)-ones, which serve as the key reactive species, enabling the Friedel-Crafts reaction to proceed efficiently.
Collapse
Affiliation(s)
- Zhenying Yao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Mohite SB, Mirza YK, Bera PS, Nadigar S, Yugendhar S, Karpoormath R, Bera M. Advances in Pyridine C-H Functionalizations: Beyond C2 Selectivity. Chemistry 2025; 31:e202403032. [PMID: 39604069 DOI: 10.1002/chem.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The pyridine core is a crucial component in numerous FDA-approved drugs and Environmental Protection Agency (EPA) regulated agrochemicals. It also plays a significant role in ligands for transition metals, alkaloids, catalysts, and various organic materials with diverse properties, making it one of the most important structural frameworks. However, despite its significance, direct and selective functionalization of pyridine is still relatively underdeveloped due to its electron-deficient nature and the strong coordinating ability of nitrogen. Among the variety of synthetic transformation, direct functionalization of C-H bond is straightforward and atom economical approach and it's advantageous for late-stage functionalization of pyridine containing drugs. In recent years, innovative strategies for regioselective C-H functionalization of pyridines and azines have emerged, offering numerous benefits such as high regioselectivity, mild conditions, and enabling transformations that were challenging with traditional methods. This review emphasizes the latest advancements in meta and para-C-H functionalization of pyridines through various approaches, including pyridine phosphonium salts, photocatalytic methods, temporary de-aromatization, Minisci-type reactions, and transition metal-catalyzed C-H activation techniques. We discuss the advantages and limitations of these current methods and aim to inspire further progress in this significant field.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Partha Sarathi Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Siddaram Nadigar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Soorni Yugendhar
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Rajsekhar Karpoormath
- Department: Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Department: Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| |
Collapse
|
16
|
Xu L, Wang X, Yang D, Yang X, Wang D. Direct C3-H Alkylation and Alkenylation of Quinolines with Enones. Angew Chem Int Ed Engl 2025; 64:e202416451. [PMID: 39297203 DOI: 10.1002/anie.202416451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/01/2024]
Abstract
Conversion of quinoline C-H bonds into C-C bonds is essential for obtaining the enormous array of derivatives required for pharmaceutical and agrochemical development. Despite over a century of synthetic efforts, direct alkylation and alkenylation at C3-H positions in a wide array of quinoline precursors remain predominantly challenging and elusive. This report outlines the first successful quinoline C3-H alkylation and alkenylation reactions, exhibiting exceptional regio- and stereoselectivity, all achieved under redox-neutral and transition-metal-free conditions. The method involves a three-step, one-pot or two-pot sequence, including 1,4-dearomative addition, functionalization at C3, and elimination or transalkylation to produce 3-alkylated/alkenylated quinolines. The presence of a carbonyl group in these products allows for further synthetic manipulations, enabling the production of cyanides, amides, amines, and simple alkyl derivatives.
Collapse
Affiliation(s)
- Liqing Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Xu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Dezhi Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Xiaolong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Dong Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| |
Collapse
|
17
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Dong X, Shao Y, Liu Z, Huang X, Xue XS, Chen Y. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions. Angew Chem Int Ed Engl 2024; 63:e202410297. [PMID: 39031447 DOI: 10.1002/anie.202410297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Metal-free synthesis of heterocycles is highly sought after in the pharmaceutical industry and has garnered widespread attention due to eliminating the need to remove trace metal catalysts from the reaction. We report a radical 6-endo addition method for pyridine synthesis from cyclopropylamides and alkynes under metal-free conditions. Various terminal and substituted alkynes are inserted as C2 units into cyclopropylamides to synthesize versatile pyridines with 57 examples. Mechanistic investigations and computational studies indicate the unprecedented 6-endo-trig addition of vinyl radicals to the imine nitrogen atom rather than the conventional 5-exo-trig addition to the imine carbon atom, in which the hypervalent iodine(III) plays a critical role. This reaction easily scales up with excellent functional group compatibility and suits the late-stage pyridine installation on complex molecules.
Collapse
Affiliation(s)
- Xiaojuan Dong
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xia Huang
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
19
|
Cai CY, Chen SJ, Merchant RR, Kanda Y, Qin T. C3 Selective Hydroxylation of Pyridines via Photochemical Valence Isomerization of Pyridine N-Oxides. J Am Chem Soc 2024; 146:24257-24264. [PMID: 39172734 DOI: 10.1021/jacs.4c10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine N-oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.
Collapse
Affiliation(s)
- Chen-Yan Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yuzuru Kanda
- Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
20
|
Wang Y, Bi C, Kawamata Y, Grant LN, Samp L, Richardson PF, Zhang S, Harper KC, Palkowitz MD, Vasilopoulos A, Collins MR, Oderinde MS, Tyrol CC, Chen D, LaChapelle EA, Bailey JB, Qiao JX, Baran PS. Discovery of N-X anomeric amides as electrophilic halogenation reagents. Nat Chem 2024; 16:1539-1545. [PMID: 38769366 PMCID: PMC11457727 DOI: 10.1038/s41557-024-01539-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Cheng Bi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Lauren N Grant
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Lacey Samp
- Chemical Research and Development, Pfizer Inc., Groton, CT, USA
| | - Paul F Richardson
- Oncology Medicinal Chemistry Department, Pfizer Medicine Design, San Diego, CA, USA
| | - Shasha Zhang
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Kaid C Harper
- AbbVie Process Research and Development, North Chicago, IL, USA
| | | | | | - Michael R Collins
- Oncology Medicinal Chemistry Department, Pfizer Medicine Design, San Diego, CA, USA
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research and Early Development, Princeton, NJ, USA
| | | | - Doris Chen
- Oncology Medicinal Chemistry Department, Pfizer Medicine Design, San Diego, CA, USA
| | | | - Jake B Bailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer X Qiao
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, MA, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
21
|
Li S, Tang J, Shi Y, Yan M, Fu Y, Su Z, Xu J, Xue W, Zheng X, Ge Y, Li R, Chen H, Fu H. C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat Commun 2024; 15:7420. [PMID: 39198410 PMCID: PMC11358504 DOI: 10.1038/s41467-024-51452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yonglin Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Meixin Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
22
|
Qin S, Yang M, Xu M, Peng ZH, Cai J, Wang S, Gao H, Zhou Z, Hashmi ASK, Yi W, Zeng Z. Electrochemical meta-C-H sulfonylation of pyridines with nucleophilic sulfinates. Nat Commun 2024; 15:7428. [PMID: 39198391 PMCID: PMC11358150 DOI: 10.1038/s41467-024-50644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the indispensable significance and utilities of meta-substituted pyridines in medicinal, chemical as well as materials science, a direct meta-selective C-H functionalization of pyridines is of paramount importance, but such reactions remain limited and highly challenging. In general, established methods for meta C-H functionalization of pyridines rely on the utilization of tailored electrophilic reagents to realize the intrinsic polarity match. Herein, we report a complementary electrochemical methodology; diverse nucleophilic sulfinates allow meta-sulfonylation of pyridines through a redox-neutral dearomatization-rearomatization strategy by a tandem dearomative cycloaddition/hydrogen-evolution electrooxidative C-H sulfonation of the resulting oxazino-pyridines/acid-promoted rearomatization sequence. Besides, several salient features, including exclusive regiocontrol, remarkable substrate/functional group compatibility, scale-up potential, and facile late-stage modification, have been demonstrated, which further contributes to the practicality and adaptability of this approach.
Collapse
Affiliation(s)
- Shi Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingkai Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingyao Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi-Huan Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Jiating Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
23
|
Wu FP, Lenz M, Suresh A, Gogoi AR, Tyler JL, Daniliuc CG, Gutierrez O, Glorius F. Nitrogen-to-functionalized carbon atom transmutation of pyridine. Chem Sci 2024; 15:d4sc04413d. [PMID: 39246332 PMCID: PMC11372446 DOI: 10.1039/d4sc04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
24
|
Shi Q, Huang X, Yang R, Liu WH. Unified ionic and radical C-4 alkylation and arylation of pyridines. Chem Sci 2024; 15:12442-12450. [PMID: 39118600 PMCID: PMC11304543 DOI: 10.1039/d4sc03739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
C-H Functionalization of pyridines is an efficient strategy to access pyridine derivatives occurring in pharmaceuticals, agrochemicals, and materials. Nucleophilic additions to pyridiniums via both ionic and radical species have proven particularly useful. However, these reactions suffer from poor regioselectivity. By identifying an enzyme-mimic pocket-type urea activation reagent, we report a general platform for pyridine C-4 functionalization. Both ionic and radical nucleophiles can be incorporated to achieve the alkylation and arylation. Notably, the highly regioselective C-4 radical arylation is disclosed for the first time. The broad scope of nucleophiles and pyridines renders this platform applicable to the late-stage functionalization of drug-like molecules and the preparation of complex biologically important molecules.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Xiaofeng Huang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Ruizhi Yang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
25
|
Tang J, Li S, Fu Y, Su Z, Xu J, Xue W, Zheng X, Li R, Chen H, Fu H. Radical meta-C-H Halogenation of Azines via N-Benzyl Activation Strategy. Org Lett 2024; 26:5899-5904. [PMID: 38984739 DOI: 10.1021/acs.orglett.4c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Regioselective halogenation of six-membered N-heteroarenes is crucial for precise functional derivatization. We present a meta-selective halogenation method for pyridines, quinolines, and isoquinolines via electrophilic halogen radical addition utilizing an N-benzyl activation strategy. This method achieves C3- and C5-dihalogenation in pyridines, C3- and C6-dihalogenation in quinolines, and C3-monohalogenation in isoquinolines. The feasibility and potential applications of this method were validated through scale-up reactions and the bromination of quinoline derivatives with biomolecular fragments.
Collapse
Affiliation(s)
- Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
26
|
Feng M, Norlöff M, Guichard B, Kealey S, D'Anfray T, Thuéry P, Taran F, Gee A, Feuillastre S, Audisio D. Pyridine-based strategies towards nitrogen isotope exchange and multiple isotope incorporation. Nat Commun 2024; 15:6063. [PMID: 39025881 PMCID: PMC11258231 DOI: 10.1038/s41467-024-50139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Isotopic labeling is at the core of health and life science applications such as nuclear imaging, metabolomics and plays a central role in drug development. The rapid access to isotopically labeled organic molecules is a sine qua non condition to support these societally vital areas of research. Based on a rationally driven approach, this study presents an innovative solution to access labeled pyridines by a nitrogen isotope exchange reaction based on a Zincke activation strategy. The technology conceptualizes an opportunity in the field of isotope labeling. 15N-labeling of pyridines and other relevant heterocycles such as pyrimidines and isoquinolines showcases on a large set of derivatives, including pharmaceuticals. Finally, we explore a nitrogen-to-carbon exchange strategy in order to access 13C-labeled phenyl derivatives and deuterium labeling of mono-substituted benzene from pyridine-2H5. These results open alternative avenues for multiple isotope labeling on aromatic cores.
Collapse
Affiliation(s)
- Minghao Feng
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Maylis Norlöff
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Benoit Guichard
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Steven Kealey
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Timothée D'Anfray
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antony Gee
- King's College London, School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Rentería-Gómez Á, Gutierrez O. Atom-swap chemistry speeds synthesis of compounds for drug discovery. Nature 2024; 631:30-31. [PMID: 38961157 DOI: 10.1038/d41586-024-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
28
|
Uhlenbruck BJH, Josephitis CM, de Lescure L, Paton RS, McNally A. A deconstruction-reconstruction strategy for pyrimidine diversification. Nature 2024; 631:87-93. [PMID: 38697196 PMCID: PMC11421208 DOI: 10.1038/s41586-024-07474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Structure-activity relationship (SAR) studies are fundamental to drug and agrochemical development, yet only a few synthetic strategies apply to the nitrogen heteroaromatics frequently encountered in small molecule candidates1-3. Here we present an alternative approach in which we convert pyrimidine-containing compounds into various other nitrogen heteroaromatics. Transforming pyrimidines into their corresponding N-arylpyrimidinium salts enables cleavage into a three-carbon iminoenamine building block, used for various heterocycle-forming reactions. This deconstruction-reconstruction sequence diversifies the initial pyrimidine core and enables access to various heterocycles, such as azoles4. In effect, this approach allows heterocycle formation on complex molecules, resulting in analogues that would be challenging to obtain by other methods. We anticipate that this deconstruction-reconstruction strategy will extend to other heterocycle classes.
Collapse
Affiliation(s)
| | | | - Louis de Lescure
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
29
|
Yi S, Lee JH, Cho H, Vaithegi K, Yi D, Noh S, Park SB. Unveiled reactivity of masked diformylmethane with enamines forming resonance-assisted hydrogen bonding leads to di-meta-substituted pyridines. Commun Chem 2024; 7:146. [PMID: 38942965 PMCID: PMC11213866 DOI: 10.1038/s42004-024-01228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Pyridine, an essential structure in drug development, shows a wide array of bioactivities according to its substitution patterns. Among the bioactive pyridines, meta-substituted pyridines suffer from limited synthetic approaches despite their significance. In this study, we present a condensation-based synthetic method enabling the facile incorporation of biologically relevant functional groups at the meta position of pyridine. This methodology unveiled the concealed reactivity of 3-formyl(aza)indoles as diformylmethane analogs for synthesizing dissymmetric di-meta-substituted pyridines without ortho and para substitutions. Furthermore, we uncovered resonance-assisted hydrogen bonding (RAHB) as the requirement for the in situ generation of enamines, the key intermediates of this transformation. Successful development of the designed methodology linked to wide applications-core remodeling of natural products, drug-natural product conjugation, late-stage functionalization of drug molecules, and synthesis of the regioisomeric CZC24832. Furthermore, we discovered anti-inflammatory agents through the functional evaluation of synthesized bi-heteroaryl analogs, signifying the utility of this methodology.
Collapse
Affiliation(s)
- Sihyeong Yi
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Ji Hyae Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hana Cho
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, Korea
| | - Kannan Vaithegi
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Dawon Yi
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, Korea
| | - Sijun Noh
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, Korea.
| |
Collapse
|
30
|
Guo SM, Xu P, Studer A. Meta-Selective Copper-Catalyzed C-H Arylation of Pyridines and Isoquinolines through Dearomatized Intermediates. Angew Chem Int Ed Engl 2024; 63:e202405385. [PMID: 38634294 DOI: 10.1002/anie.202405385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
C(sp2)-H functionalization offers an efficient strategy for the synthesis of various elaborated N-containing heteroarenes. Along these lines, oxazino pyridines that can be readily prepared from pyridines, have been introduced as powerful substrates in radical- and ionic-mediated meta-C-H functionalization. However, the regioselective meta-C-H arylation of pyridines remains a great challenge. Herein, a copper-catalyzed meta-selective C-H arylation of pyridines and isoquinolines through bench-stable dearomatized intermediates is reported. Electrophilic aryl-Cu(III) species, generated from readily accessible aryl I(III) reagents, enable the efficient meta-arylation of a broad range of pyridines and isoquinolines. The method also allows the meta-selective alkenylation of these heteroarenes using the corresponding alkenyl I(III)-reagents. Late-stage arylation of drug-derived pyridines and larger-scale experiments demonstrate the potential of this synthetic methodology.
Collapse
Affiliation(s)
- Shu-Min Guo
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Pengwei Xu
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
31
|
Falcone NA, He S, Hoskin JF, Mangat S, Sorensen EJ. N-Oxide-to-Carbon Transmutations of Azaarene N-Oxides. Org Lett 2024; 26:4280-4285. [PMID: 38739528 DOI: 10.1021/acs.orglett.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactions that change the identity of an atom within a ring system are emerging as valuable tools for the site-selective editing of molecular structures. Herein, we describe the expansion of an underdeveloped transformation that directly converts azaarene-derived N-oxides to all-carbon arenes. This ring transmutation exhibits good functional group tolerance and replaces the N-oxide moiety with either unsubstituted, substituted, or isotopically labeled carbon atoms in a single laboratory operation.
Collapse
Affiliation(s)
- Nicholas A Falcone
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sam He
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John F Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sandeep Mangat
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Xu P, Wang Z, Guo SM, Studer A. Introduction of the difluoromethyl group at the meta- or para-position of pyridines through regioselectivity switch. Nat Commun 2024; 15:4121. [PMID: 38750008 PMCID: PMC11096164 DOI: 10.1038/s41467-024-48383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Difluoromethyl pyridines have gained significant attention in medicinal and agricultural chemistry. The direct C-H-difluoromethylation of pyridines represents a highly efficient economic way to access these azines. However, the direct meta-difluoromethylation of pyridines has remained elusive and methods for site-switchable regioselective meta- and para-difluoromethylation are unknown. Here, we demonstrate the meta-C-H-difluoromethylation of pyridines through a radical process by using oxazino pyridine intermediates, which are easily accessed from pyridines. The selectivity can be readily switched to para by in situ transformation of the oxazino pyridines to pyridinium salts upon acid treatment. The preparation of various meta- and para-difluoromethylated pyridines through this approach is presented. The mild conditions used also allow for the late-stage meta- or para-difluoromethylation of pyridine containing drugs. Sequential double functionalization of pyridines is presented, which further underlines the value of this work.
Collapse
Affiliation(s)
- Pengwei Xu
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Shu-Min Guo
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
33
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
34
|
Zahara AJ, Haines BE, Wilkerson-Hill SM. Programmed Heterocycle Synthesis Using Halomucononitriles as Pyridinimine Precursors. Org Lett 2024; 26:2976-2981. [PMID: 38557087 DOI: 10.1021/acs.orglett.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein we report a method to convert primary amines, ubiquitous motifs found in pharmaceutical libraries, to either imidazo[1,2-a]pyridines or 7-alkyl azaindoles in two steps from known compounds. Using halomucononitrile reagents, we can directly access 5-bromo-6-imino-1-alkyl-1,6-dihydropyridine-2-carbonitriles (pyridinimines) in a single step from primary amines (25-93% yield) through the cyclization of transient aminomucononitrile intermediates. We then demonstrate that these compounds can be readily converted to 7-alkylazaindoles using Sonogashira cross-coupling conditions (13 examples, up to 91% yield). Under oxidative conditions, the pyridinimines serve as directing groups for C-H functionalization reactions to afford imidazo[1,2-a]pyridines. We also studied the mechanism of the cyclization event using DFT calculations and propose that this takes place via sequential base-mediated E/Z isomerization and cyclization steps.
Collapse
Affiliation(s)
- Adam J Zahara
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
35
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
36
|
Carson MC, Liu CR, Kozlowski MC. Synthesis of Phenol-Pyridinium Salts Enabled by Tandem Electron Donor-Acceptor Complexation and Iridium Photocatalysis. J Org Chem 2024; 89:3419-3429. [PMID: 38365194 PMCID: PMC11197922 DOI: 10.1021/acs.joc.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Herein, we describe a dual photocatalytic system to synthesize phenol-pyridinium salts using visible light. Utilizing both electron donor-acceptor (EDA) complex and iridium(III) photocatalytic cycles, the C-N cross-coupling of unprotected phenols and pyridines proceeds in the presence of oxygen to furnish pyridinium salts. Photocatalytic generation of phenoxyl radical cations also enabled a nucleophilic aromatic substitution (SNAr) of a fluorophenol with an electron-poor pyridine. Spectroscopic experiments were conducted to probe the mechanism and reaction selectivity. The unique reactivity of these phenol-pyridinium salts were displayed in several derivatization reactions, providing rapid access to a diverse chemical space.
Collapse
Affiliation(s)
- Matthew C. Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cindy R. Liu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
37
|
Wang H, Greaney MF. Regiodivergent Arylation of Pyridines via Zincke Intermediates. Angew Chem Int Ed Engl 2024; 63:e202315418. [PMID: 37985419 DOI: 10.1002/anie.202315418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
An arylation protocol for pyridines is described, via the ring-opened Zincke intermediate. Treatment of pyridines with triflic anhydride and a secondary amine produces an azahexatriene species, which undergoes regioselective Pd-catalyzed arylation at the putative C4 position. Recyclization then provides the pyridine products. Alternatively, metal-free arylation with a diaryliodonium salt is selective for the pyridine meta-position, affording a regiodivergent approach to pyridine biaryls from a common intermediate.
Collapse
Affiliation(s)
- Haiwen Wang
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
38
|
Bartholomew GL, Kraus SL, Karas LJ, Carpaneto F, Bennett R, Sigman MS, Yeung CS, Sarpong R. 14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing. J Am Chem Soc 2024; 146:2950-2958. [PMID: 38286797 PMCID: PMC11646074 DOI: 10.1021/jacs.3c11515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for 14N → 15N isotopic exchange for several aromatic nitrogen heterocycles. This nitrogen isotope transmutation occurs through activation of the heteroaromatic substrate by triflylation of a nitrogen atom, followed by a ring-opening/ring-closure sequence mediated by 15N-aspartate to effect the isotopic exchange of the nitrogen atom. Key to the success of this transformation is the formation of an isolable 15N-succinyl intermediate, which undergoes elimination to give the isotopically labeled heterocycle. These transformations occur under mild conditions in high chemical and isotopic yields.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Samantha L Kraus
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Filippo Carpaneto
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Raffeal Bennett
- Discovery Analytical Research, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Abstract
A practical method for the synthesis of 15N-labeled azines with a high degree of isotopic enrichment is described. Activation of azine heterocycles with an electron-deficient arene allows for the facile substitution of the nitrogen atom with a specifically designed 15N-labeled reagent that undergoes a canonical ANRORC-type mechanism. A wide range of azines can be converted to their corresponding 15N isotopologs using this method, and it also allows for dearomative access to reduced heterocyclic congeners. A short dearomative formal synthesis of 15N-solifenacin is accomplished as well to demonstrate a practical application of this method for generating labeled pharmaceuticals.
Collapse
Affiliation(s)
- Zachary A Tolchin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Joel M Smith
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
40
|
Nguyen HMH, Thomas DC, Hart MA, Steenback KR, Levy JN, McNally A. Synthesis of 15N-Pyridines and Higher Mass Isotopologs via Zincke Imine Intermediates. J Am Chem Soc 2024; 146:2944-2949. [PMID: 38227776 PMCID: PMC11446173 DOI: 10.1021/jacs.3c12445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Methods to incorporate stable radioisotopes are integral to pharmaceutical and agrochemical development. However, despite the prevalence of pyridines in candidate compounds, methods to incorporate 15N atoms within their structures are limited. Here, we present a general approach to pyridine 15N-labeling that proceeds via ring-opening to NTf-Zincke imines and then ring-closure with commercially available 15NH4Cl salts. This process functions on a range of substituted pyridines, from simple building block-type compounds to late-stage labeling of complex pharmaceuticals, and 15N-incorporation is >95% in most cases. The reactivity of the Zincke imine intermediates also enables deuteration of the pyridine C3- and C5-positions, resulting in higher mass isotopologs required for LCMS analysis of biological fluids during drug development.
Collapse
Affiliation(s)
- Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David C Thomas
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Marie A Hart
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kaila R Steenback
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey N Levy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
41
|
Selingo JD, Greenwood JW, Andrews MK, Patel C, Neel AJ, Pio B, Shevlin M, Phillips EM, Maddess ML, McNally A. A General Strategy for N-(Hetero)arylpiperidine Synthesis Using Zincke Imine Intermediates. J Am Chem Soc 2024; 146:936-945. [PMID: 38153812 DOI: 10.1021/jacs.3c11504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Methods to synthesize diverse collections of substituted piperidines are valuable due to the prevalence of this heterocycle in pharmaceutical compounds. Here, we present a general strategy to access N-(hetero)arylpiperidines using a pyridine ring-opening and ring-closing approach via Zincke imine intermediates. This process generates pyridinium salts from a wide variety of substituted pyridines and (heteroaryl)anilines; hydrogenation reactions and nucleophilic additions then access the N-(hetero)arylpiperidine derivatives. We successfully applied high-throughput experimentation (HTE) using pharmaceutically relevant pyridines and (heteroaryl)anilines as inputs and developed a one-pot process using anilines as nucleophiles in the pyridinium salt-forming processes. This strategy is viable for generating piperidine libraries and applications such as the convergent coupling of complex fragments.
Collapse
Affiliation(s)
- Jake D Selingo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacob W Greenwood
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mary Katherine Andrews
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chirag Patel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J Neel
- Department of Process Research and Development, Merck & Company, Incorporated, Boston, Massachusetts 02115, United States
| | - Barbara Pio
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew L Maddess
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
42
|
Hu M, Ding H, DeSnoo W, Tantillo DJ, Nairoukh Z. The Construction of Highly Substituted Piperidines via Dearomative Functionalization Reaction. Angew Chem Int Ed Engl 2023; 62:e202315108. [PMID: 37860947 DOI: 10.1002/anie.202315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Nitrogen heterocycles play a vital role in pharmaceuticals and natural products, with the six-membered aromatic and aliphatic architectures being commonly used. While synthetic methods for aromatic N-heterocycles are well-established, the synthesis of their aliphatic functionalized analogues, particularly piperidine derivatives, poses a significant challenge. In that regard, we propose a stepwise dearomative functionalization reaction for the construction of highly decorated piperidine derivatives with diverse functional handles. We also discuss challenges related to site-selectivity, regio- and diastereoselectivity, and provide insights into the reaction mechanism through mechanistic studies and density functional theory computations.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Hao Ding
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - William DeSnoo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
43
|
Woo J, Stein C, Christian AH, Levin MD. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 2023; 623:77-82. [PMID: 37914946 PMCID: PMC10907950 DOI: 10.1038/s41586-023-06613-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023]
Abstract
When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Colin Stein
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Mark D Levin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
Cao H, Cheng Q, Studer A. meta-Selective C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202302941. [PMID: 37013613 DOI: 10.1002/anie.202302941] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The pyridine moiety is an important core structure for a variety of drugs, agrochemicals, catalysts, and functional materials. Direct functionalization of C-H bonds in pyridines is a straightforward approach to access valuable substituted pyridines. Compared to the direct ortho- and para-functionalization, meta-selective pyridine C-H functionalization is far more challenging due to the inherent electronic properties of the pyridine entity. This review summarizes currently available methods for pyridine meta-C-H functionalization using a directing group, non-directed metalation, and temporary dearomatization strategies. Recent advances in ligand control and temporary dearomatization are highlighted. We analyze the advantages as well as limitations of current techniques and hope to inspire further developments in this important area.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
45
|
Tian JJ, Li RR, Tian GX, Wang XC. Enantioselective C3-Allylation of Pyridines via Tandem Borane and Palladium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202307697. [PMID: 37395559 DOI: 10.1002/anie.202307697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Herein, we report a one-pot method for enantioselective C-H allylation of pyridines at C3 via tandem borane and palladium catalysis. This method involves borane-catalyzed pyridine hydroboration to generate dihydropyridines, then palladium-catalyzed enantioselective allylation of the dihydropyridines with allylic esters, and finally air oxidation of the allylated dihydropyridines to afford the products. This method enables the introduction of an allylic group at C3 with excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Jun-Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Rui-Rui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gui-Xiu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
46
|
Abstract
Azines, such as pyridines, quinolines, pyrimidines, and pyridazines, are widespread components of pharmaceuticals. Their occurrence derives from a suite of physiochemical properties that match key criteria in drug design and is tunable by varying their substituents. Developments in synthetic chemistry, therefore, directly impact these efforts, and methods that can install various groups from azine C-H bonds are particularly valuable. Furthermore, there is a growing interest in late-stage functionalization (LSF) reactions that focus on advanced candidate compounds that are often complex structures with multiple heterocycles, functional groups, and reactive sites. Because of factors such as their electron-deficient nature and the effects of the Lewis basic N atom, azine C-H functionalization reactions are often distinct from their arene counterparts, and the application of these reactions in LSF contexts is difficult. However, there have been many significant advances in azine LSF reactions, and this review will describe this progress, much of which has occurred over the past decade. It is possible to categorize these reactions as radical addition processes, metal-catalyzed C-H activation reactions, and transformations occurring via dearomatized intermediates. Substantial variation in reaction design within each category indicates both the rich reactivity of these heterocycles and the creativity of the approaches involved.
Collapse
Affiliation(s)
- Celena M Josephitis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hillary M H Nguyen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
47
|
Islam MB, Islam MI, Nath N, Emran TB, Rahman MR, Sharma R, Matin MM. Recent Advances in Pyridine Scaffold: Focus on Chemistry, Synthesis, and Antibacterial Activities. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9967591. [PMID: 37250749 PMCID: PMC10212683 DOI: 10.1155/2023/9967591] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant (MDR) pathogens have created a fatal problem for human health and antimicrobial treatment. Among the currently available antibiotics, many are inactive against MDR pathogens. In this context, heterocyclic compounds/drugs play a vital role. Thus, it is very much essential to explore new research to combat the issue. Of the available nitrogen-bearing heterocyclic compounds/drugs, pyridine derivatives are of special interest due to their solubility. Encouragingly, some of the newly synthesized pyridine compounds/drugs are found to inhibit multidrug-resistant S. aureus (MRSA). Pyridine scaffold bearing poor basicity generally improves water solubility in pharmaceutically potential molecules and has led to the discovery of numerous broad-spectrum therapeutic agents. Keeping these in mind, we have reviewed the chemistry, recent synthetic techniques, and bacterial preventative activity of pyridine derivatives since 2015. This will facilitate the development of pyridine-based novel antibiotic/drug design in the near future as a versatile scaffold with limited side effects for the next-generation therapeutics.
Collapse
Affiliation(s)
- Md. Badrul Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Md. Inshaful Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan 94300, Malaysia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| |
Collapse
|
48
|
Qin Q, Cheng Z, Jiao N. Recent Applications of Trifluoromethanesulfonic Anhydride in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202215008. [PMID: 36541579 DOI: 10.1002/anie.202215008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Trifluoromethanesulfonic anhydride has been widely used in synthetic organic chemistry, not only for the conversion of various oxygen-containing compounds to the triflates, but also for the electrophilic activation and further conversion of amides, sulfoxides, and phosphorus oxides. In recent years, the utilization of Tf2 O as an activator for nitrogen-containing heterocycles, nitriles and nitro groups has become a promising tool for the development of new valuable methods with considerable success. In addition, Tf2 O has been used as an efficient radical trifluoromethylation and trifluoromethylthiolation reagent due to the contained SO2 CF3 fragment, and significant progress has been made in this area. This review summarizes the recent progress in the applications of Tf2 O in the above two aspects, and aims to illustrate the role and potential application of this reagent in organic synthesis.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
49
|
Chakraborty S, Biju AT. Directing Group-Free Regioselective meta-C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202300049. [PMID: 36829265 DOI: 10.1002/anie.202300049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
The pyridine core is among the most common motifs found in pharmaceuticals and agrochemicals. Consequently, the C-H functionalization of pyridine is a prized reaction, as it can help access a broad spectrum of valuable chemicals. However, the intrinsic electronic properties of pyridines hinder their meta-C-H functionalization, requiring drastic conditions affecting functional group compatibility. A synthetic manoeuvre to overcome this challenge involves the temporary conversion of pyridines into electron-rich intermediates and subsequent regioselective electrophilic functionalization. This was recently accomplished by a ring-opening ring-closing sequence via Zincke imine intermediates by McNally and co-workers, and a dearomatization-rearomatization sequence via oxazino-pyridine intermediates by the Studer group. The mildness and simplicity of these protocols enable them to work with complex molecular setups for synthesizing natural products and bioactive molecules.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science Bangalore, C.V. Raman Avenue, Bengaluru, 560 012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore, C.V. Raman Avenue, Bengaluru, 560 012, India
| |
Collapse
|
50
|
Zhang M, Zhou Q, Luo H, Tang ZL, Xu X, Wang XC. C3-Cyanation of Pyridines: Constraints on Electrophiles and Determinants of Regioselectivity. Angew Chem Int Ed Engl 2023; 62:e202216894. [PMID: 36517651 DOI: 10.1002/anie.202216894] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Methods for C-H cyanation of pyridines are rare. Here, we report a method for C3-selective cyanation of pyridines by a tandem process with the reaction of an in situ generated dihydropyridine with a cyano electrophile as the key step. The method is suitable for late-stage functionalization of pyridine drugs. The low reduction potential of the electrophile and effective transfer of the nitrile group were found to be essential for the success of this method. We studied the reaction mechanism in detail by means of control experiments and theoretical calculations and found that a combination of electronic and steric factors determined the regioselectivity of reactions involving C2-substituted pyridines.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qingyang Zhou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Heng Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zi-Lu Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiufang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|