1
|
Lu Y, Deng H, Zhang L, Wang Y, Zhang S. Shape-Selective Molecular Separations Enabled by Rigid and Interconnected Confinements Engineered in Conjugated Microporous Polymer Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416266. [PMID: 40245263 DOI: 10.1002/advs.202416266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/01/2025] [Indexed: 04/19/2025]
Abstract
Separating molecules with similar sizes but different shapes is essential yet challenging. Here, conjugated microporous polymer (CMP) membranes with narrowly distributed network pores are prepared by diffusion-modulated electropolymerization. This approach precisely controls the monomer diffusion and coupling processes, regulating the crosslinking degree to prevent broad aggregate pores and microporous defects. By altering carbazole-based backbones, pore size and pore connectivity are adjusted. The rigid and interconnected confinements restrict molecular rotation and vibration, enforcing consistent shapes and orientations. This enables the separation of solute molecules (≈1000 g mol-1) with linear and bulky shapes, achieving separation factors of up to 134. When pore size is reduced to angstrom scale (≈5 Å), molecular shape significantly influences organic liquid transport. The CMP membranes demonstrate all-liquid phase separation of linear/branched alkane isomers (<100 g mol-1), enriching hexane to 63.35 mole% from equimolar isomer mixture and achieving permeance orders of magnitude higher than those of state-of-the-art membranes.
Collapse
Affiliation(s)
- Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Energy and Environment, Southeast University, No. 2 Sipailou, Nanjing, 210096, P. R. China
- Cambridge Centre for Advanced Research in Energy Efficiency in Singapore, 1 Create Way, Singapore, 138602, Singapore
| | - Hao Deng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liling Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Yong Wang
- School of Energy and Environment, Southeast University, No. 2 Sipailou, Nanjing, 210096, P. R. China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Cambridge Centre for Advanced Research in Energy Efficiency in Singapore, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
2
|
Shi X, Li H, Chen T, Ren J, Zhao W, Patra BC, Kang C, Zhang Z, Zhao D. Precise Separation of Complex Ultrafine Molecules through Solvating Two-Dimensional Covalent Organic Framework Membranes. Angew Chem Int Ed Engl 2025; 64:e202421661. [PMID: 39623892 DOI: 10.1002/anie.202421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Isoporous nanomaterials, with their proven potential for accurate molecular sieving, are of substantial interest in propelling sustainable membrane techniques. Covalent organic frameworks (COFs) are prominent due to their customizable isopores and chemistry. Still, the discrepancy in experimental and theoretical structures poses a challenge to developing COF membranes for molecular separations. Here, we report high-selectivity sieving of complex ultrafine molecules through solvating pore-to-pore-aligned two-dimensional COF membranes. Our structurally oriented membrane shows reversible interlayer expansion with intralayer shift in response to solvent exposure. This dynamic deformation induced by solvents leads to a reduction in the aperture of the membrane's sieving pores, which correlates with the number of COF layers. The resultant membranes yield largely improved molecular selectivity to discriminate binary and trinary complex mixtures, exceeding the conventional COF membranes. The membrane's robustness against solvents and physical aging permits extremely stable microporosity and reliable operation for over 3000 h. This exceptional performance positions our membrane as an alternative to enriching and purifying value-added chemicals, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Bidhan Chandra Patra
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
3
|
Sondhi H, Chen M, Nijboer MP, Nijmeijer A, Roozeboom F, Bechelany M, Kovalgin A, Luiten-Olieman M. Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers. MEMBRANES 2025; 15:86. [PMID: 40137038 PMCID: PMC11943934 DOI: 10.3390/membranes15030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater streams, ceramic nanofiltration (NF) membranes with reproducible sub-nanometre pore sizes are required. To achieve this, the emerging technique of molecular layer deposition (MLD) is employed to develop ceramic NF membranes, and its efficiency and versatility make it a powerful tool for preparing uniform nanoscale high-porosity membranes. Our work, which involved vapor-phase titanium tetrachloride as a precursor and ethylene glycol as a co-reactant, followed by calcination in air at 350 °C, resulted in NF membranes with pore sizes (radii) around ~0.8 ± 0.1 nm and a demineralized water permeability of 13 ± 1 L·m-2·h-1·bar-1.The high-water flux with >90% rejection of polyethylene glycol molecules with a molecular size larger than 380 ± 6 Dalton indicates the efficiency of the MLD technique in membrane functionalization and size-selective separation processes, and its potential for industrial applications.
Collapse
Affiliation(s)
- Harpreet Sondhi
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Mingliang Chen
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Michiel Pieter Nijboer
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Arian Nijmeijer
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Fred Roozeboom
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), École Nationale Supérieure de Chimie de Montpellier, Centre National de la Recherche Scientifique, Place Eugène Bataillon, UMR-5635 Université Montpellier, 34095 Montpellier, France;
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Alexey Kovalgin
- Integrated Devices and Systems, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Mieke Luiten-Olieman
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| |
Collapse
|
4
|
Qin J, Li J, Yang G, Chu K, Zhang L, Xu F, Chen Y, Zhang Y, Fan W, Hofkens J, Li B, Zhu Y, Wu H, Tan SC, Lai F, Liu T. A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification. SMALL METHODS 2025; 9:e2400880. [PMID: 39449204 DOI: 10.1002/smtd.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe3O4), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe3O4 nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.
Collapse
Affiliation(s)
- Jingjing Qin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiahao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Guozheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaibin Chu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Leiqian Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fangping Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, 201306, P. R. China
| | - Wei Fan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bo Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
5
|
Xu LH, Zhang Q, Li SH, Chen FX, Zhao ZP. Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410067. [PMID: 39887893 DOI: 10.1002/smll.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
6
|
Hu L, Lee WI, Chen K, Roy S, Fung K, Kisslinger K, Deng E, Ding Y, Ajayan PM, Nam CY, Lin H. Atomically Fine-Tuning Organic-Inorganic Carbon Molecular Sieve Membranes for Hydrogen Production. ACS NANO 2025; 19:4663-4671. [PMID: 39831883 DOI: 10.1021/acsnano.4c15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Polymeric membranes with great processability are attractive for the H2/CO2 separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H2 from CO2. Herein, we demonstrate a scalable way of carbonizing polybenzimidazole (PBI) at low temperatures, followed by vapor phase infiltration (VPI) to atomically narrow ultramicropores throughout the films, forming hybrid organic-inorganic carbon molecular sieves (CMSs). One VPI cycle (100 s) for the PBI carbonized at 500 °C remarkably increases H2/CO2 selectivity from 9.6 to 83 at 100 °C, surpassing Robeson's upper bound. The CMS demonstrates a stable H2/CO2 separation performance when challenged with simulated syngas streams and can be fabricated into thin-film composite membranes, outperforming state-of-the-art membranes. The scalable approach can be ubiquitous to molecularly fine-tune ultramicropores of leading polymeric membranes to further improve their size-sieving ability and thus separation efficiency.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Won-Il Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kai Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kieran Fung
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Shen J, Aljarb A, Cai Y, Liu X, Min J, Wang Y, Wang Q, Zhang C, Chen C, Hakami M, Fu JH, Zhang H, Li G, Wang X, Chen Z, Li J, Dong X, Shih K, Huang KW, Tung V, Shi G, Pinnau I, Li LJ, Han Y. Engineering grain boundaries in monolayer molybdenum disulfide for efficient water-ion separation. Science 2025; 387:776-782. [PMID: 39946476 DOI: 10.1126/science.ado7489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Two-dimensional (2D) materials have long been considered as ideal platforms for developing separation membranes. However, it is difficult to generate uniform subnanometer pores over large areas on 2D materials. We report that the well-defined eight-membered ring (8-MR) pores, typically formed at the boundaries of two antiparallel grains of monolayer molybdenum disulfide (MoS2), can serve as molecular sieves for efficient water-ion separation. The density of grain boundaries and, consequently, the number of 8-MR pores can be tuned by regulating the grain size. Optimized MoS2 membranes outperformed the state-of-the-art membranes in forward osmosis tests by demonstrating both ultrahigh water/sodium chloride selectivity and exceptional water permeance. Creating precise pore structures on atomically thin films through grain boundary engineering presents a promising route for producing membranes suitable for various applications.
Collapse
Affiliation(s)
- Jie Shen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| | - Areej Aljarb
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yichen Cai
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, Shanghai University, Shanghai, China
| | - Jiacheng Min
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
- Department of Civil Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Yingge Wang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chenhui Zhang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Cailing Chen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariam Hakami
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jui-Han Fu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Guanxing Li
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xiaoqian Wang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhuo Chen
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiaqiang Li
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xinglong Dong
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Catalyst Center of Excellence (CCoE), Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Kaimin Shih
- Department of Civil Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Kuo-Wei Huang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vincent Tung
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, Taiwan
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, Shanghai University, Shanghai, China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ingo Pinnau
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Yang H, Zhang H, Kang C, Ji C, Shi D, Zhao D. Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving. SCIENCE ADVANCES 2024; 10:eads0260. [PMID: 39693424 DOI: 10.1126/sciadv.ads0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Membrane-based nanofiltration has the potential to revolutionize the large-scale treatment of organic solvents in various applications. However, the widely used commercial membranes suffer from low permeability, narrow structural tunability, and limited chemical resistance. Here, we report a strategy for fabricating covalent organic framework (COF) membranes with solvent-responsive structural flexibility. The interlayer shifting of these COF membranes in polar organic solvents results in sub-nanopores with high selectivity. High rejection rates (>99%), high permeance (>15 kilogram meter-2 hour-1 bar-1), and excellent organic solvent resistance of these smart COF membranes are achieved for a diverse array of nanofiltration applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Haoyuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chunqing Ji
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
9
|
Zhang JC, Lv TR, Yin MJ, Ji YL, Jin CG, Chen BH, An QF. PEDOT:PSS Nanoparticle Membranes for Organic Solvent Nanofiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405285. [PMID: 39420752 DOI: 10.1002/smll.202405285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Recycling of valuable solutes and recovery of organic solvents via organic solvent nanofiltration (OSN) are important for sustainable development. However, the trade-off between solvent permeability and solute rejection hampers the application of OSN membranes. To address this issue, the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) nanoparticle membrane with hierarchical pores is constructed for OSN via vacuum filtration. The small pores (the free volume of the polymer chain) charge for the solute rejection (high rejection efficiency for low molecule weight solute) and allow solvent passing while the large pores (the void between two PEDOT:PSS nanoparticles) promote the solvent transport. Owing to the lack of connectivity among the large pores, the fabricated PEDOT:PSS nanoparticle membrane enhanced solvent permeance while maintaining a high solute rejection efficiency. The optimized PEDOT:PSS membrane affords a MeOH permeance of 7.2 L m-2 h-1 bar-1 with over 90% rejection of organic dyes, food additives, and photocatalysts. Moreover, the rigidity of PEDOT endows the membrane with distinctive stability under high-pressure conditions. The membrane is used to recycle the valuable catalysts in a methanol solution for 150 h, maintaining good separation performance. Considering its high separation performance and stability, the proposed PEDOT:PSS membrane has great potential for industrial applications.
Collapse
Affiliation(s)
- Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yan-Li Ji
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cheng-Gang Jin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Bo-Hao Chen
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
10
|
Yang M, Yao N, Li X, Yu J, Zhang S, Ding B. Dual-Asymmetric Janus Membranes Based on Two-Dimensional Nanowebs with Superspreading Surface for High-Performance Desalination. ACS NANO 2024. [PMID: 39558489 DOI: 10.1021/acsnano.4c11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Distillation membranes with hydrophobic surfaces and defined pores are considered a promising solution for seawater desalination. Most existing distillation membranes exhibit three-dimensional (3D) stacking bulk structures, where the zigzag water-repellent channels often lead to limited permeability and high energy costs. Here, we created two-dimensional nanowebs directly from the polymer/sol solution to construct dual-asymmetric Janus membranes. By tailoring the phase separation rate, the polymer phase evolved into continuous hydrophilic webs in situ weld on the microporous hydrophobic layer. The webs possess true-nanoscale architectures (internal fiber diameter of ∼20 nm, pore size of ∼140 nm) with enhanced roughness, serving as a superspreading surface to reach a water contact angle of 0° in 1.7 s. Benefiting from the architecture and wettability dual asymmetries, the obtained Janus membrane shows high-efficiency desalination performance (salt rejection >99%, flux of 11 kg m-2 h-1, and energy efficiency of 79%) with a thickness of 6.7 μm. Such a fascinating nanofibrous web-based Janus membrane may inspire the design of advanced liquid separation materials.
Collapse
Affiliation(s)
- Ming Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ni Yao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoxi Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
11
|
Zhang W, Luo J, Ling H, Huang L, Xue S. Carbon-Doped TiO 2 Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl 4 Vapor. MEMBRANES 2024; 14:233. [PMID: 39590619 PMCID: PMC11596831 DOI: 10.3390/membranes14110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO2 nanofilm was synthesized via a vapor-liquid interfacial reaction on a flat-sheet α-Al2O3 ceramic support. This process involves the reaction of glycerol, an organic precursor with a structure featuring 1,2-diol and 1,3-diol groups, with TiCl4 vapor to form organometallic hybrid films. Subsequent calcination in air at 250 °C transforms these hybrid films into carbon-doped titanium oxide nanofilms. The unique structure of glycerol plays a crucial role in determining the properties of the resulting nanopores, which exhibit high solvent permeance and effective solute rejection. The synthesized carbon-doped TiO2 nanofiltration membranes demonstrated impressive performance, achieving a pure methanol permeability as high as 90.9 L·m-2·h -1·bar-1. Moreover, these membranes exhibited a rejection rate of 93.2% for Congo Red in a methanol solution, underscoring their efficacy in separating solutes from solvents. The rigidity of the nanopores within these nanofilms, when supported on ceramic materials, confers high chemical stability even in the presence of polar solvents. This robustness makes the carbon-doped TiO2 nanofilms suitable for applications in the purification and recovery of organic solvents.
Collapse
Affiliation(s)
| | - Jiangzhou Luo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China; (W.Z.); (H.L.); (L.H.)
| | | | | | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China; (W.Z.); (H.L.); (L.H.)
| |
Collapse
|
12
|
Nagendraprasad G, Anki Reddy K, Karan S, Das C. Nonpreferential Solvent Transport through an Intrinsic Cyclodextrin Pore in a Polyester Film. J Phys Chem B 2024; 128:8578-8591. [PMID: 39186170 DOI: 10.1021/acs.jpcb.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We performed equilibrium molecular dynamics simulations to study the transport of water and hexane solvents through cyclodextrin(CD)-based membranes (α-/β-/γ-CD/TMC). Although it is known that water and hexane can permeate through the macrocyclic cavity, surprisingly, when it is present in the CD-based membrane (α-/β-/γ-CD/TMC), these solvents are not permeating through the CD cavity. Interactions between membrane functional group atoms with the water and hexane suggest that these solvents primarily permeate through the polar aggregate pores formed via ester-linkage rather than the CD cavity. Our observation reveals that both solvents can permeate through the membrane; however, the hexane flux was one order of magnitude lower than water flux. Our study suggests that further work is needed to confirm the functional significance of the macrocyclic cavity in solvent permeation and the existence of Janus pathways.
Collapse
Affiliation(s)
- Gunolla Nagendraprasad
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Chindepalle, Andhra Pradesh 517619, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Chandan Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Cao L, Chen C, An S, Xu T, Liu X, Li Z, Chen IC, Miao J, Li G, Han Y, Lai Z. Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving. J Am Chem Soc 2024; 146:21989-21998. [PMID: 39058766 DOI: 10.1021/jacs.4c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m-2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.
Collapse
Affiliation(s)
- Li Cao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Shuhao An
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ting Xu
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhen Li
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Miao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Du J, Yao A, Sun Q, Liu L, Song Z, He W, Wang C, Dou P, Guan J, Liu J. Ultrafast Interfacial Self-Assembly toward Bioderived Polyester COF Membranes with Microstructure Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405744. [PMID: 38861297 DOI: 10.1002/adma.202405744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The precise manipulation of the microstructure (pore size, free volume distribution, and connectivity of the free-volume elements), thickness, and mechanical characteristics of membranes holds paramount significance in facilitating the effective utilization of self-standing membranes. In this contribution, the synthesis of two innovative ester-linked covalent-organic framework (COF) membranes is first reported, which are generated through the selection of plant-derived ellagic acid and quercetin phenolic monomers in conjunction with terephthaloyl chloride as a building block. The optimization of the microstructure of these two COF membranes is systematically achieved through the application of three different interfacial electric field systems: electric neutrality, positive electricity, and negative electricity. It is observed that the positively charged system facilitates a record increase in the rate of membrane formation, resulting in a denser membrane with a uniform pore size and enhanced flexibility. In addition, a correlation is identified wherein an increase in the alkyl chain length of the surfactants leads to a more uniform pore size and a decrease in the molecular weight cutoff of the COF membrane. The resulting COF membrane exhibits an unprecedented combination of high water permeance, superior sieving capability, robust mechanical strength, chemical robustness for promising membrane-based separation science and technology.
Collapse
Affiliation(s)
- Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ayan Yao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Linghao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ziye Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengming Wang
- Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Pengjia Dou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Yu J, Marchesi D'Alvise T, Harley I, Krysztofik A, Lieberwirth I, Pula P, Majewski PW, Graczykowski B, Hunger J, Landfester K, Kuan SL, Shi R, Synatschke CV, Weil T. Ion and Molecular Sieving With Ultrathin Polydopamine Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401137. [PMID: 38742799 DOI: 10.1002/adma.202401137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Indexed: 05/16/2024]
Abstract
In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.
Collapse
Affiliation(s)
- Jiyao Yu
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tommaso Marchesi D'Alvise
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Iain Harley
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Ingo Lieberwirth
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Johannes Hunger
- Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Rachel Shi
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
16
|
Yin C, Liu L, Zhang Z, Du Y, Wang Y. Photo-Induced Geometry and Polarity Gradients in Covalent Organic Frameworks Enabling Fast and Durable Molecular Separations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309329. [PMID: 38221705 DOI: 10.1002/smll.202309329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Azobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported. Such functional variations afford reduced interfacial transfer resistance and enhanced solvent-philic pore channels, thus creating a fast solvent transport pathway without compromising selectivity. Moreover, the membrane sets up a densely covered defense layer to prevent foulant adhesion and the accumulation of cake layer, contributing to enhanced antifouling resistance to organic foulants, and a high recovery rate of solvent permeance. More importantly, the solvent permeance displays a negligible decline throughout the long-term filtration for over 40 days. This work reports the geometry and polarity gradients in COF channels induced by the conformation change of branched azobenzene groups and demonstrates the strong capability of this conformation change in realizing fast and durable molecular separations.
Collapse
Affiliation(s)
- Congcong Yin
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Lin Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Ya Du
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| |
Collapse
|
17
|
Li J, Peng H, Liu K, Zhao Q. Polyester Nanofiltration Membranes for Efficient Cations Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309406. [PMID: 37907065 DOI: 10.1002/adma.202309406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Polyester nanofiltration membranes highlight beneficial chlorine resistance, but their loose structures and negative charge result in poor cations retention precluding advanced use in cations separation. This work designs a new monomer (TET) containing "hydroxyl-ammonium" entities that confer dense structures and positive charge to polyester nanofiltration membranes. The TET monomer undergoes efficient interfacial polymerization with the trimesoyl chloride (TMC) monomer, and the resultant TET-TMC membranes feature one of the lowest molecular weight cut-offs (389 Da) and the highest zeta potential (4 mv, pH: 7) among all polyester nanofiltration membranes. The MgCl2 rejection of the TET-TMC membrane is 95.5%, significantly higher than state-of-the-art polyester nanofiltration membranes (<50%). The Li+ /Mg2+ separation performance of TET-TMC membrane is on par with cutting-edge polyamide membranes, while additionally, the membrane is stable against NaClO though polyamide membranes readily degrade. Thus the TET-TMC is the first polyester nanofiltration membrane for efficient cations separation.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kuankuan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|