1
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Salvati A, Diomaiuti A, Locci F, Gravino M, Gramegna G, Ilyas M, Benedetti M, Costantini S, De Caroli M, Castel B, Jones JDG, Cervone F, Pontiggia D, De Lorenzo G. Berberine bridge enzyme-like oxidases orchestrate homeostasis and signaling of oligogalacturonides in defense and upon mechanical damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70150. [PMID: 40220003 PMCID: PMC11992967 DOI: 10.1111/tpj.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Plant immunity is triggered by endogenous elicitors known as damage-associated molecular patterns (DAMPs). Oligogalacturonides (OGs) are DAMPs released from the cell wall (CW) demethylated homogalacturonan during microbial colonization, mechanical or pest-provoked mechanical damage, and physiological CW remodeling. Berberine bridge enzyme-like (BBE-l) proteins named OG oxidases (OGOXs) oxidize and inactivate OGs to avoid deleterious growth-affecting hyper-immunity and possible cell death. Using OGOX1 over-expressing lines and ogox1/2 double mutants, we show that these enzymes determine the levels of active OGs vs. inactive oxidized products (ox-OGs). The ogox1/2-deficient plants have elevated levels of OGs, while plants overexpressing OGOX1 accumulate ox-OGs. The balance between OGs and ox-OGs affects disease resistance against Pseudomonas syringae pv. tomato, Pectobacterium carotovorum, and Botrytis cinerea depending on the microbial capacity to respond to OGs and metabolize ox-OGs. Gene expression upon plant infiltration with OGs reveals that OGOXs orchestrate OG signaling in defense as well as upon mechanical damage, pointing to these enzymes as apoplastic players in immunity and tissue repair.
Collapse
Affiliation(s)
- Ascenzo Salvati
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Alessandra Diomaiuti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Federica Locci
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Plant–Microbe InteractionsMax‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | - Matteo Gravino
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Giovanna Gramegna
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Environmental biologySapienza University of RomeRome00185Italy
| | - Muhammad Ilyas
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Manuel Benedetti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'Aquila67100Italy
| | - Sara Costantini
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Institute of Nanotechnology, National Research Council (CNR‐NANOTEC)Campus EcotekneLecce73100Italy
| | - Monica De Caroli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoCampus EcotekneLecce73100Italy
- NBFC National Biodiversity Future CenterPalermo90133Italy
| | - Baptiste Castel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
- Present address:
Laboratoire de Recherche en Sciences Vegetales (LRSV)Université de Toulouse, CNRS, UPS24 chemin de Borde Rouge, Auzeville, BP42617Castanet Tolosan31326France
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
| | - Felice Cervone
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| |
Collapse
|
3
|
Pascual S, Rodríguez-Álvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Over Time Changes in the Transcriptomic Profiles of Tomato Plants with or Without Mi-1 Gene During Their Incompatible or Compatible Interactions with the Whitefly Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2025; 14:1054. [PMID: 40219123 PMCID: PMC11990454 DOI: 10.3390/plants14071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Understanding the resistance mechanisms of plants against pests contributes to the sustainable deployment of plant resistance in Integrated Pest Management (IPM) programmes. The Mi-1 gene in tomato is the only one described with the capacity to provide resistance to different types of harmful organisms such as plant parasitic nematodes and pest insects, including the whitefly Bemisia tabaci MED (Mediterranean species). In this work, gene expression in the interaction of B. tabaci with susceptible tomato plants lacking the Mi-1 gene (cv. Moneymaker, compatible interaction), and with resistant plants carrying the Mi-1 gene (cv. Motelle, incompatible interaction) was studied using the oligonucleotide microarray technique. Both interactions were studied 2 and 12 days post infestation (dpi) of plants with adult insects. At 2 dpi, 159 overexpressed and 189 repressed transcripts were detected in the incompatible interaction, while these figures were 32 and 47 in the compatible one. Transcriptional reprogramming was more intense at 12 dpi but, as at 2 dpi, the number of transcripts overexpressed and repressed was higher in the incompatible (595 and 437, respectively) than in the compatible (71 and 52, respectively) interaction. According to the Mapman classification, these transcripts corresponded mainly to genes in the protein and RNA categories, some of which are involved in the defence response (signalling, respiratory burst, regulation of transcription, PRs, HSPs, cell wall or hormone signalling). These results provide a wealth of information about possible genes related to the resistance provided by the Mi-1 gene to B. tabaci, and whose role deserves further investigation.
Collapse
Affiliation(s)
- Susana Pascual
- Entomology Group, Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Spanish National Research Council (CSIC), Ctra. Coruña km 7, 28040 Madrid, Spain
| | - Clara I. Rodríguez-Álvarez
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain; (C.I.R.-Á.); (G.N.)
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, 28049 Madrid, Spain; (I.L.-V.); (J.M.F.-Z.)
| | - José M. Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, 28049 Madrid, Spain; (I.L.-V.); (J.M.F.-Z.)
| | - Gloria Nombela
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain; (C.I.R.-Á.); (G.N.)
| |
Collapse
|
4
|
Degli Esposti C, Guerrisi L, Peruzzi G, Giulietti S, Pontiggia D. Cell wall bricks of defence: the case study of oligogalacturonides. FRONTIERS IN PLANT SCIENCE 2025; 16:1552926. [PMID: 40201780 PMCID: PMC11975879 DOI: 10.3389/fpls.2025.1552926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The plant cell wall (CW) is more than a structural barrier; it serves as the first line of defence against pathogens and environmental stresses. During pathogen attacks or physical damage, fragments of the CW, known as CW-derived Damage-Associated Molecular Patterns (CW-DAMPs), are released. These molecular signals play a critical role in activating the plant's immune responses. Among CW-DAMPs, oligogalacturonides (OGs), fragments derived from the breakdown of pectin, are some of the most well-studied. This review highlights recent advances in understanding the functional and signalling roles of OGs, beginning with their formation through enzymatic CW degradation during pathogen invasion or mechanical injury. We discuss how OGs perception triggers intracellular signalling pathways that enhance plant defence and regulate interactions with microbes. Given that excessive OG levels can negatively impact growth and development, we also examine the regulatory mechanisms plants use to fine-tune their responses, avoiding immune overactivation or hyper- immunity. As natural immune modulators, OGs (and more generally CW-DAMPs), offer a promising, sustainable alternative to chemical pesticides by enhancing crop resilience without harming the environment. By strengthening plant defences and supporting eco-friendly agricultural practices, OGs hold great potential for advancing resilient and sustainable farming systems.
Collapse
Affiliation(s)
- Chiara Degli Esposti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Laura Guerrisi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giulia Peruzzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sarah Giulietti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural Heritage, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Zhao Q, Zhang L, Han W, Wang Z, Wu J. Integrated Transcriptome and Metabolome Analysis Elucidates the Defense Mechanisms of Pumpkin Against Gummy Stem Blight. Int J Mol Sci 2025; 26:2586. [PMID: 40141230 PMCID: PMC11941995 DOI: 10.3390/ijms26062586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Gummy stem blight (GSB) is a pervasive disease that causes considerable economic losses in cucurbit crops and poses a significant threat to pumpkin production. However, the molecular interaction mechanisms between pumpkin and the pathogen remain largely unexplored. In our previous research, we isolated and identified Stagonosporopsis cucurbitacearum (Sc) as the primary causative agent of pumpkin stem blight in Northeast China. Through whole-genome analysis, we identified several pathogenic genes associated with Sc infection in pumpkins. In this study, we performed a comprehensive comparative transcriptomic and metabolomic analysis of unvaccinated and Sc-inoculated pumpkins. We observed distinct differences in gene expression profiles, with these genes being significantly enriched in pathways related to plant-pathogen interactions, phytohormone signal transduction, and metabolic processes, including phenylpropanoid biosynthesis. Joint analysis revealed that the phenylpropanoid biosynthesis pathway was activated in Sc-infected pumpkins. Notably, two metabolites involved in the phenylpropanoid and flavonoid biosynthesis pathways, p-coumaric acid and quercetin, exhibited significant upregulation, suggesting their potential roles in conferring resistance to GSB. These findings enhance our understanding of the molecular mechanisms underlying the defense response against GSB infection in pumpkins and may provide valuable insights for developing strategies to control GSB disease.
Collapse
Affiliation(s)
- Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Liyan Zhang
- Forestry College, Inner Mongolia Agricultural University, Huhhot 010011, China;
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| | - Ziyu Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| |
Collapse
|
6
|
Ma X, Zhang Z, Deng R, Liu N, Jiang H, Kang Z, Liu J. Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:380-392. [PMID: 39725864 DOI: 10.1021/acs.jafc.4c10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection. However, the functions and molecular mechanisms of the CWDEs from Pst remain unclear. In this study, we identified a secreted xylanase, named PstXyn1, with the GH10 domain. PstXyn1 was significantly up-regulated at the early infection stage of Pst. The signal peptide of PstXyn1 was confirmed to be functional. The purified PstXyn1 showed detectable xylanase activity. In addition, we found that PstXyn1-silenced wheat plants exhibited broad-spectrum resistance against multiple Pst pathotypes. Colloidal gold labeling and transcriptome sequencing analyses revealed that PstXyn1 contributed to xylan degradation in host cell walls and suppressed the expression of defense-related genes. Conclusively, our results indicate that PstXyn1 is secreted as an important virulence factor to overcome host cell wall barriers and compromise immune responses for fungal invasion, providing potential targets for improving wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaowei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoqiong Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nian Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Li Y, Lou H, Fu H, Su H, Hao C, Luo J, Cai N, Jin Y, Han J, Deng Z, Cao Y, Ma X. Identifying the role of cellulase gene CsCEL20 upon the infection of Xanthomonas citri subsp. citri in citrus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:10. [PMID: 39781329 PMCID: PMC11704107 DOI: 10.1007/s11032-024-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Citrus canker is a devastating disease caused by Xanthomonas citri subsp. citri (Xcc), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene CsLOB1, resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to Xcc remains elusive. This study identified CsCEL20 as a target gene positively regulated by CsLOB1. Cell expansion and cell wall degradation were observed in sweet orange leaves after Xcc infection. A total of 69 cellulase genes were retrieved within the Citrus sinensis genome, comprising 40 endoglucanase genes and 29 glucosidase genes. Transcriptomic analysis revealed that expression levels of CsCEL8, CsCEL9, CsCEL20, and CsCEL26 were induced by Xcc invasion in sweet orange leaves, but not in the resistant genotype Citron C-05. Among them, CsCEL20 exhibited the highest expression level, with an over 430-fold increase following Xcc infection. Additionally, RT-qPCR analysis confirmed that CsCEL20 expression was induced in susceptible genotypes (Sweet orange, Danna citron, Lemon) upon Xcc invasion, but not in resistant genotypes (Citron C-05, Aiguo citron, American citron). A Single-Nucleotide Polymorphism (SNP) at -423 bp was identified in the CEL20 promoters and exhibits a difference between eight susceptible citrus genotypes and three resistant ones. Moreover, CsCEL20 expression was upregulated in CsLOB1-overexpression transgenic lines compared to the wild type. Dual-luciferase reporter assays indicated that CsLOB1 can target the -505 bp to -168 bp region of CsCEL20 promoter to trans-activate its expression. These findings suggest that CsCEL20 may function as a candidate gene for citrus canker development and may be a promising target for biotechnological breeding of Xcc-resistant citrus genotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01531-3.
Collapse
Affiliation(s)
- Yi Li
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Huijie Lou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Hongyan Fu
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Hanying Su
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Chenxing Hao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Jianming Luo
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Nan Cai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Yan Jin
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Jian Han
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Ziniu Deng
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- Nanling Institute of Citrus Industry, Chenzhou, 423000 China
| | - Yunlin Cao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| | - Xianfeng Ma
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
- National Center for Citrus Improvement-Changsha, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
8
|
Herold L, Ordon J, Hua C, Kohorn BD, Nürnberger T, DeFalco TA, Zipfel C. Arabidopsis WALL-ASSOCIATED KINASES are not required for oligogalacturonide-induced signaling and immunity. THE PLANT CELL 2024; 37:koae317. [PMID: 39665686 DOI: 10.1093/plcell/koae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Carbohydrate-based cell wall signaling impacts plant growth, development, and stress responses; however, how cell wall signals are perceived and transduced remains poorly understood. Several cell wall breakdown products have been described as typical damage-associated molecular patterns that activate plant immunity, including pectin-derived oligogalacturonides (OGs). Receptor kinases of the WALL-ASSOCIATED KINASE (WAK) family bind pectin and OGs and were previously proposed as OG receptors. However, unambiguous genetic evidence for the role of WAKs in OG responses is lacking. Here, we investigated the role of Arabidopsis (Arabidopsis thaliana) WAKs in OG perception using a clustered regularly interspaced short palindromic repeats mutant in which all 5 WAK genes were deleted. Using a combination of immune assays for early and late pattern-triggered immunity, we show that WAKs are dispensable for OG-induced signaling and immunity, indicating that they are not bona fide OG receptors.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Jana Ordon
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Chenlei Hua
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Bruce D Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
Fuertes-Rabanal M, Largo-Gosens A, Fischer A, Munzert KS, Carrasco-López C, Sánchez-Vallet A, Engelsdorf T, Mélida H. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7337-7350. [PMID: 39225413 PMCID: PMC11630039 DOI: 10.1093/jxb/erae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Alicia Fischer
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kristina S Munzert
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Timo Engelsdorf
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
10
|
Sun G, Xia Y, Li K, Zhu Q, Ding F, Gu H, Zhang Z, Li X, Mi X, Chen J, Yao R, Zhang S, Ouyang H, Chen X, Liu T, Jiang H, Zhao Y, Qiu M, Ye W, Duan K, Ma Z, Dong S, Yin H, Wang Y, Wang Y. Dual activation of soybean resistance against Phytophthora sojae by pectin lyase and degraded pectin oligosaccharides. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2746-2760. [PMID: 39549112 DOI: 10.1007/s11427-024-2724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 11/18/2024]
Abstract
Phytophthora pathogens secrete numerous apoplastic effectors to manipulate host immunity. Herein, we identified a polysaccharide lyase 1 protein, PsPL1, which acts as an essential virulence factor of P. sojae infection in soybean. However, the overexpression of PsPL1 in P. sojae reduced infection and triggered enhanced immune responses in soybean. PsPL1 exhibited pectin lyase activity and degraded plant pectin to generate pectin oligosaccharides (POSs) with a polymerization degree of 3-14, exhibiting different levels of acetylation and methylation modifications. PsPL1 and the degraded pectin products triggered immune responses in soybean and different Solanaceous plants. The PsPL1-triggered immune responses required RSPL1, a membrane-localized leucine-rich repeat receptor-like protein, which is essential for Phytophthora resistance. Conversely, the PsPL1-degraded product-triggered immune responses depended on the membrane-localized lysin motif receptor-like kinase CERK1. This study reveals that the pectin lyase exhibits a dual immunogenic role during P. sojae infection, which activates plant resistance through different immune receptors and provides novel insights into the function of pectin lyase in host-pathogen interactions.
Collapse
Affiliation(s)
- Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Ding
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinrui Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Mi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoting Yao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Mooney BC, van der Hoorn RAL. Novel structural insights at the extracellular plant-pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102629. [PMID: 39299144 DOI: 10.1016/j.pbi.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant pathogens represent a critical threat to global agriculture and food security, particularly under the pressures of climate change and reduced agrochemical use. Most plant pathogens initially colonize the extracellular space or apoplast and understanding the host-pathogen interactions that occur here is vital for engineering sustainable disease resistance in crops. Structural biology has played important roles in elucidating molecular mechanisms underpinning plant-pathogen interactions but only few studies have reported structures of extracellular complexes. This article highlights these resolved extracellular complexes by describing the insights gained from the solved structures of complexes consisting of CERK1-chitin, FLS2-flg22-BAK1, RXEG1-XEG1-BAK1 and PGIP2-FpPG. Finally, we discuss the potential of AI-based structure prediction platforms like AlphaFold as an alternative hypothesis generator to rapidly advance our molecular understanding of plant pathology and develop novel strategies to increase crop resilience against disease.
Collapse
|
12
|
Yuan J, Li Q, Li X, Su C. AI-based protein engineering: A novel strategy for enhancing broad-spectrum plant resistance. MOLECULAR PLANT 2024; 17:1648-1650. [PMID: 39370650 DOI: 10.1016/j.molp.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Jinhong Yuan
- College of Life Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Li
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China; Hubei Hongshan Labortory, Wuhan 430070, China.
| | - Chao Su
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China; Hubei Hongshan Labortory, Wuhan 430070, China.
| |
Collapse
|
13
|
Gao Y, Wei Y, Chen Y, Jiang S, Ye J, Xu F, Jin P, Ding P, Shao X. PpWRKY33 positively regulates PpPGIP1 to enhance defense against Monilinia fructicola in peach fruit. Int J Biol Macromol 2024; 279:135350. [PMID: 39242007 DOI: 10.1016/j.ijbiomac.2024.135350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In plant-pathogen interactions, numerous pathogens secrete polygalacturonase (PG) to degrade plants cell walls, whereas plants produce PG-inhibiting protein (PGIP) that specifically binds to pathogen-derived PG to inhibit its activity and resist pathogen infection. In the present study, we dshowed that PpPGIP1 was significantly upregulated in peaches after Monilinia fructicola infection, and the prokaryotic expression of the PpPGIP1 protein inhibited M. fructicola by mitigating its PG activity. Transient overexpression of PpPGIP1 in peaches significantly enhanced their resistance to M. fructicola. PpPGIP1 promoter had several W-box the defense elements that can bind to WRKY transcription factors. Transcriptome analysis identified 20 differentially expressed WRKY genes, including the classic disease resistance gene WRKY33. PpWRKY33 is significantly upregulated in M. fructicola infected peaches. PpWRKY33 is localized in the nucleus and can bind to the W-box in the PpPGIP1 promoter to transcriptional activate the expression of PpPGIP1. Transient overexpression PpWRKY33 upregulated PpPGIP1 expression in peaches, and silencing PpWRKY33 decreased the PpPGIP1 expression. These results indicated that PpPGIP1 positively regulates fungal disease resistance in peaches and is transcriptionally activated by PpWRKY33. These findings reveal the disease resistant role of PpPGIP1 in peaches, and provide new insights into its transcriptional regulation.
Collapse
Affiliation(s)
- Yinli Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jianfen Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Phebe Ding
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
14
|
Greco M, Kouzounis D, Fuertes-Rabanal M, Gentile M, Agresti S, Schols HA, Mélida H, Lionetti V. Upcycling olive pomace into pectic elicitors for plant immunity and disease protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109213. [PMID: 39442419 DOI: 10.1016/j.plaphy.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Olive oil production generates substantial quantities of pomace, which are often disposed of in soil, leading to adverse effects on agriculture and the environment. Furthermore, climate change exacerbates plant diseases and promotes the use of toxic phytochemicals in agriculture. However, olive mill wastes can have high potential as reusable and valuable bioresources. Using diluted ethanol, an environmentally friendly solvent, we extracted a fraction containing short and long oligogalacturonides, short arabino-oligosaccharides and polysaccharides. The obtained extract elicited key features of plant innate immunity in Arabidopsis seedlings, including the phosphorylation of mitogen-activated protein kinases MPK3 and MPK6 and the upregulation of defence genes such as CYP81F2, WRKY33, WRKY53, and FRK1. Notably, pretreatment of adult Arabidopsis and tomato plants with the olive pomace extract primed defence responses and enhanced their resistance to the phytopathogens Botrytis cinerea and Pseudomonas syringae. Our results highlight the opportunity to upcycle the two-phase olive pomace collected at the late stage of olive oil campaign, in low-cost and sustainable glycan elicitors, contributing to reducing the use of chemically synthesized pesticides.
Collapse
Affiliation(s)
- Marco Greco
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | | | - Savino Agresti
- Agrolio s.r.l., S.P. 231 KM 55+120, 70031, Andria, Puglia, Italy
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy; CIABC, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
15
|
Li Y, Wang Y, Yan S, Li Y, Gao X, Yu J, Chen S, Li P, Gu Q. Nisin A elevates adenosine to achieve anti-inflammatory activity. Food Funct 2024; 15:10490-10503. [PMID: 39352047 DOI: 10.1039/d4fo01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Inflammation is a ubiquitous physiological status that exists during the occurrence, development and prognosis of numerous diseases. Clinical anti-inflammatory drugs mainly include antibiotics, antivirals, non-steroids and corticosteroids, and the treatments are often accompanied by side effects, including nausea, abdominal pain, allergy, nerve injury and organ dysfunction. Current studies have focused on continuously exploring efficient anti-inflammatory natural components with high biosafety, while nisin, a natural bioactive anti-microbial peptide produced by Lactococcus, has been reported to have anti-inflammatory activity via its superior anti-bacterial abilities. Several recent studies have focused on the potent direct anti-inflammation of nisin, whereas its effects and the corresponding mechanism still remain unclear. The cellular and Caenorhabditis elegans (C. elegans) models were constructed in this study to evaluate the anti-inflammatory effects of nisin A both in vitro and in vivo, while the inflammatory mechanism was further uncovered based on omics analysis. This study reveals the direct anti-inflammatory activity of nisin A and elucidates the regulatory actions of nisin A on adenosine, followed by alteration of the sphingolipid signaling pathway and purine metabolism, enhancing the deep understanding of nisin A with its anti-inflammatory capacity, providing new ideas for future nisin A-based anti-inflammatory strategies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Jiabin Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shuxin Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Zhang Y, Liu Y, Gan Z, Du W, Ai X, Zhu W, Wang H, Wang F, Gong L, He H. Transcriptomic and sugar metabolic analysis reveals molecular mechanisms of peach gummosis in response to Neofusicoccum parvum infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1478055. [PMID: 39464283 PMCID: PMC11503026 DOI: 10.3389/fpls.2024.1478055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Peach gummosis, a devastating disease caused by Neofusicoccum parvum, significantly shortens peach tree lifespan and reduces the yield of peach trees. Despite its impact, the molecular mechanism underlying this disease remains largely unexplored. In this study, we used RNA-seq, sugar metabolism measurements, and an integrated transcriptional and metabolomic analysis to uncover the molecular events driving peach gummosis. Our results revealed that N. parvum infection drastically altered the transcripts of cell wall degradation-related genes, the log2Fold change in the transcript level of Prupe.1G088900 encoding xyloglucan endotransglycosylase decreased 2.6-fold, while Prupe.6G075100 encoding expansin increased by 2.58-fold at 12 hpi under N. parvum stress. Additionally, sugar content analysis revealed an increase in maltose, sucrose, L-rhamnose, and inositol levels in the early stages of infection, while D-galactose, D-glucose, D-fructose consistently declined as gummosis progressed. Key genes related to cell wall degradation and starch degradation, as well as UDP-sugar biosynthesis, were significantly upregulated in response to N. parvum. These findings suggest that N. parvum manipulates cell wall degradation and UDP-sugar-related genes to invade peach shoot cells, ultimately triggering gum secretion. Furthermore, weighted gene co-expression network analysis (WGCNA) identified two transcription factors, ERF027 and bZIP9, as central regulators in the downregulated and upregulated modules, respectively. Overall, this study enhances our understanding of the physiological and molecular responses of peach trees to N. parvum infection and provide valuable insights into the mechanisms of peach defense against biotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Linzhong Gong
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Huaping He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
17
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
18
|
McClelland AJ, Ma W. Zig, Zag, and 'Zyme: leveraging structural biology to engineer disease resistance. ABIOTECH 2024; 5:403-407. [PMID: 39279864 PMCID: PMC11399530 DOI: 10.1007/s42994-024-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 09/18/2024]
Abstract
Dynamic host-pathogen interactions determine whether disease will occur. Pathogen effector proteins are central players in such disease development. On one hand, they improve susceptibility by manipulating host targets; on the other hand, they can trigger immunity after recognition by host immune receptors. A major research direction in the study of molecular plant pathology is to understand effector-host interactions, which has informed the development and breeding of crops with enhanced disease resistance. Recent breakthroughs on experiment- and artificial intelligence-based structure analyses significantly accelerate the development of this research area. Importantly, the detailed molecular insight of effector-host interactions enables precise engineering to mitigate disease. Here, we highlight a recent study by Xiao et al., who describe the structure of an effector-receptor complex that consists of a fungal effector, with polygalacturonase (PG) activity, and a plant-derived polygalacturonase-inhibiting protein (PGIP). PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides (OGs) as a virulence mechanism; however, PGIPs directly bind to PGs and alter their enzymatic activity. When in a complex with PGIPs, PGs produce OG polymers with longer chains that can trigger immunity. Xiao et al. demonstrate that a PGIP creates a new active site tunnel, together with a PG, which favors the production of long-chain OGs. In this way, the PGIP essentially acts as both a PG receptor and enzymatic manipulator, converting virulence to defense activation. Taking a step forward, the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production, likely enabling further improved disease resistance. This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity. It also demonstrates how fundamental knowledge, obtained through structural analyses, can be employed to guide the design of proteins with desired functions in agriculture.
Collapse
Affiliation(s)
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
19
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Qin Z, Yan C, Yang K, Wang Q, Wang Z, Gou C, Feng H, Jin Q, Dai X, Maitikadir Z, Hao H, Wang L. Genome-wide identification of walnut (Juglans regia) PME gene family members and expression analysis during infection with Cryptosphaeria pullmanensis pathogens. Genomics 2024; 116:110860. [PMID: 38776985 DOI: 10.1016/j.ygeno.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Walnuts exhibit a higher resistance to diseases, though they are not completely immune. This study focuses on the Pectin methylesterase (PME) gene family to investigate whether it is involved in disease resistance in walnuts. These 21 genes are distributed across 12 chromosomes, with four pairs demonstrating homology. Variations in conserved motifs and gene structures suggest diverse functions within the gene family. Phylogenetic and collinear gene pairs of the PME family indicate that the gene family has evolved in a relatively stable way. The cis-acting elements and gene ontology enrichment of these genes, underscores their potential role in bolstering walnuts' defense mechanisms. Transcriptomic analyses were conducted under conditions of Cryptosphaeria pullmanensis infestation and verified by RT-qPCR. The results showed that certain JrPME family genes were activated in response, leading to the hypothesis that some members may confer resistance to the disease.
Collapse
Affiliation(s)
- Ze Qin
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Chengcai Yan
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Kaiying Yang
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Qinpeng Wang
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Zhe Wang
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Changqing Gou
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Hongzu Feng
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Qiming Jin
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Xianxing Dai
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Zulihumar Maitikadir
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China
| | - Haiting Hao
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China.
| | - Lan Wang
- Scientific Observing and Experimental Station of Crop Pests in Alar, Ministry of Agriculture/ Key Laboratory of Integrated Pest Management (IPM) of Xinjiang Production and Construction Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
21
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
22
|
Thynne E, Kobe B. Mixed-organism enzyme in plant defense. Science 2024; 383:707-708. [PMID: 38359137 DOI: 10.1126/science.adn8306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Plants commandeer a pathogen's virulence factor to bolster immunity.
Collapse
Affiliation(s)
- Elisha Thynne
- Botanical Institute, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Molecular Biology, Plön, Germany
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences , The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|