1
|
Wang H, Wang T, He Z, Wen C, Huang L, Wang M. Deciphering the Role of Innate Lymphoid Cells Group 3 in the Gut Microenvironment: A Narrative Review of Their Novel Contributions to Autoimmune Disease Pathogenesis. J Inflamm Res 2025; 18:5741-5757. [PMID: 40322535 PMCID: PMC12048713 DOI: 10.2147/jir.s512652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Type 3 Innate lymphoid cells (ILC3s) play a crucial role in intestinal immune function by serving as an innate effector that contributes to early-life defense against pathogens and helps protect the intestines from bacterial infections. ILC3s exert their immune function through cytokine secretion, patrolling actions and the generation of memory ILC3s that aid in repairing epithelial tissue and preserving mucosal barrier integrity. Moreover, dysregulation of ILC3s function has been implicated in the pathogenesis and progression of autoimmune diseases. This comprehensive review aims to explore the interactions between gut microbes, gut microbial metabolites, and diet in relation to ILC3s within the context of the gut microenvironment. Furthermore, the gut microenvironment has the potential to influence distant extra-intestinal sites through immunomodulation, thereby modifying their risk of inflammation. The gut has emerged as a significant focus of autoimmune disease research in recent years. However, the relationship between gut ILC3s and autoimmune diseases remains poorly understood. This paper aims to examine the potential association between ILC3s and autoimmune diseases.
Collapse
Affiliation(s)
- Hongli Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Tengyue Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Zhixing He
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chengping Wen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Lin Huang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Mingzhu Wang
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
2
|
Saini A, Hopkins LS, Serna VA, McCullen MVD, Selner NG, Bhattarai B, Fachi JL, Glynn R, Hayer KE, Bassing CH, Colonna M, Oltz EM. Cell type-specific enhancers regulate IL-22 expression in innate and adaptive lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646834. [PMID: 40291691 PMCID: PMC12026504 DOI: 10.1101/2025.04.02.646834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
IL-22, a signature cytokine of type 3 lymphoid cells, mediates epithelial homeostasis and protective pathogen responses in barrier tissues, while its deregulated expression drives chronic inflammation associated with colitis and psoriasis. Despite its therapeutic value, little is known about regulatory elements for IL-22 expression. We identify two conserved enhancers, E22-1 and E22-2, which differentially regulate Il22 in type 3 lymphoid subsets. These enhancers are required for steady-state expression of gut antimicrobial peptides, protection from C. rodentium infection, and development of IL-22-mediated psoriasis. E22-1 resembles many known enhancers, functioning in both Th-ILC counterparts. However, E22-2 is only required for IL-22 expression in ILC3s. Its ILC3 restriction relies on multiple Runx3 sites, combined with the lack of a functional RORγt motif, which is present in E22-1. Thus, although responding to similar stimuli, type 3 lymphoid cells use distinct cis-elements for IL-22 expression, with E22-2 likely serving as a homeostatic enhancer in barrier tissues.
Collapse
|
3
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Lv Y, Ma X, Liu Q, Long Z, Li S, Tan Z, Wang D, Xing X, Chen L, Chen W, Wang Q, Wei Q, Hou M, Xiao Y. c-Jun targets miR-451a to regulate HQ-induced inhibition of erythroid differentiation via the BATF/SETD5/ARHGEF3 axis. Toxicology 2024; 505:153843. [PMID: 38801936 DOI: 10.1016/j.tox.2024.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 μM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.
Collapse
Affiliation(s)
- Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoju Ma
- Department of Hospital Acquired Infection Control and Public Health Management, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 517108, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengjun Hou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Liu Q, Tabrez S, Niekamp P, Kim CH. Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow. Cell Rep 2024; 43:114200. [PMID: 38717905 PMCID: PMC11264331 DOI: 10.1016/j.celrep.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Patrick Niekamp
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Li C, Zhao J, Kang B, Li S, Tang J, Dong D, Chen Y. Identification and validation of STAT4 as a prognostic biomarker in acute myeloid leukemia. Biosci Rep 2024; 44:BSR20231720. [PMID: 38294290 PMCID: PMC10861362 DOI: 10.1042/bsr20231720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024] Open
Abstract
Acute myelogenous leukemia (AML) is a common malignancy and is supposed to have the ability to escape host immune surveillance. The present study aimed to identify key genes in AML that may affect tumor immunity and to provide prognosis biomarkers of AML. The Cancer Genome Atlas (TCGA) dataset was screened for transcription factors (TFs) involved in immunity and influencing survival, combining Gene Expression Omnibus (GEO) data to validate the impact on patient survival. A prognostic signature was established using four transcription factors, and these genes play an important role in the immune system, with higher regulatory T cell (Treg) scores in high-risk patients compared with the low-risk group. Analysis of individual genes showed that STAT4 and Treg are closely related, which may be due to STAT4 transcribing related genes that affect immunity. STAT4 expression was positively correlated with the proportion of abnormal cells and promoted AML recurrence as verified by AML clinical patient samples. In addition, silencing of STAT4 significantly slowed down the proliferation capacity of HL60 cells. In conclusion, these findings suggest that STAT4 may be a potential biomarker for AML prognosis. As a key gene affecting the prognosis of AML patients, STAT4 has the potential to be a candidate diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingyu Kang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingya Tang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Hu X, Cao D, Zhou Z, Wang Z, Zeng J, Hong WX. Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy. Cell Oncol (Dordr) 2024; 47:97-112. [PMID: 37615858 PMCID: PMC10899424 DOI: 10.1007/s13402-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
PURPOSE Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML. METHODS In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis. RESULTS Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells. CONCLUSION Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.
Collapse
Affiliation(s)
- Xuqiao Hu
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenru Zhou
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Zhaoyang Wang
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Jieying Zeng
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
| |
Collapse
|
8
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Xu G(B, Pan YX, Mei W, Chen H. Single-Cell RNA Sequencing (scRNA-seq) Identifies L1CAM as a Key Mediator between Epithelial Tuft Cell and Innate Lymphoid Cell in the Colon of Hnrnp I Knockout Mice. Biomedicines 2023; 11:2734. [PMID: 37893107 PMCID: PMC10604312 DOI: 10.3390/biomedicines11102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Guanying (Bianca) Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
11
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
12
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cell Plasticity in Mucosal Infections. Microorganisms 2023; 11:461. [PMID: 36838426 PMCID: PMC9967737 DOI: 10.3390/microorganisms11020461] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Mucosal tissue homeostasis is a dynamic process that involves multiple mechanisms including regulation of innate lymphoid cells (ILCs). ILCs are mostly tissue-resident cells which are critical for tissue homeostasis and immune response against pathogens. ILCs can sense environmental changes and rapidly respond by producing effector cytokines to limit pathogen spread and initiate tissue recovery. However, dysregulation of ILCs can also lead to immunopathology. Accumulating evidence suggests that ILCs are dynamic population that can change their phenotype and functions under rapidly changing tissue microenvironment. However, the significance of ILC plasticity in response to pathogens remains poorly understood. Therefore, in this review, we discuss recent advances in understanding the mechanisms regulating ILC plasticity in response to intestinal, respiratory and genital tract pathogens. Key transcription factors and lineage-guiding cytokines regulate this plasticity. Additionally, we discuss the emerging data on the role of tissue microenvironment, gut microbiota, and hypoxia in ILC plasticity in response to mucosal pathogens. The identification of new pathways and molecular mechanisms that control functions and plasticity of ILCs could uncover more specific and effective therapeutic targets for infectious and autoimmune diseases where ILCs become dysregulated.
Collapse
Affiliation(s)
| | | | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Liu Q, Lee JH, Kang HM, Kim CH. Identification of the niche and mobilization mechanism for tissue-protective multipotential bone marrow ILC progenitors. SCIENCE ADVANCES 2022; 8:eabq1551. [PMID: 36417511 PMCID: PMC9683709 DOI: 10.1126/sciadv.abq1551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Innate lymphoid cells (ILCs) play crucial roles in maintenance and defense of peripheral tissues but would undergo natural and inflammation-induced attrition over time. A potential solution to counteract the peripheral ILC attrition would be regulated mobilization of bone marrow (BM) ILC progenitors. The major multipotential ILC progenitors (ILCPs) are divided into two subsets in distinct niches of the BM. Sinusoid ILCPs emigrate from the BM to circulate the peripheral blood. In contrast, parenchyma ILCPs are more likely in cell cycling and less likely to emigrate BM. The mobilization of BM ILCPs is internally and externally controlled by the coordinated expression of the BM retention receptors (Itg-α4 and CXCR4) and the emigration receptors sphingosine-1-phosphate (S1P) receptors. The expression of the BM retention and emigration receptors is developmentally regulated in the steady state and by the inflammasome-derived IL-18. Upon infusion, sinusoid ILCPs can effectively restore peripheral ILC insufficiency and tissue integrity during inflammatory responses.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Huo X, Guo T, Wang K, Yao B, Li D, Li H, Chen W, Wang L, Wu Z. Methylation-based reclassification and risk stratification of skull-base chordomas. Front Oncol 2022; 12:960005. [PMID: 36439461 PMCID: PMC9691996 DOI: 10.3389/fonc.2022.960005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Skull-base chordomas are rare malignant bone cancers originating from the remnant of the notochord. Survival is variable, and clinical or molecular factors cannot reliably predict their outcomes. This study therefore identified epigenetic subtypes that defined new chordoma epigenetic profiles and their corresponding characteristics. METHODS Methylation profiles of 46 chordoma-resected neoplasms between 2008 and 2014, along with clinical information, were collected. K-means consensus clustering and principal component analysis were used to identify and validate the clusters. Single-sample gene set enrichment analysis, methylCIBERSORT algorithm, and copy number analysis were used to identify the characteristics of the clusters. RESULTS Unsupervised clustering analysis confirmed two clusters with a progression-free survival difference. Gene set enrichment analysis indicated that the early and late estrogen response pathways and the hypoxia pathway were activated whereas the inflammatory and interferon gamma responses were suppressed. Forty-six potential therapeutic targets corresponding to differentially methylated sites were identified from chordoma patients. Subgroups with a worse outcome were characterized by low immune cell infiltration, higher tumor purity, and higher stemness indices. Moreover, copy number amplifications mostly occurred in cluster 1 tumors and the high-risk group. Additionally, the presence of a CCNE1 deletion was exclusively found in the group of chordoma patients with better outcome, whereas RB1 and CDKN2A/2B deletions were mainly found in the group of chordoma patients with worse outcome. CONCLUSIONS Chordoma prognostic epigenetic subtypes were identified, and their corresponding characteristics were found to be variable.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Tengxian Guo
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Bohan Yao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Wei Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Wu X, Khatun A, Kasmani MY, Chen Y, Zheng S, Atkinson S, Nguyen C, Burns R, Taparowsky EJ, Salzman NH, Hand TW, Cui W. Group 3 innate lymphoid cells require BATF to regulate gut homeostasis in mice. J Exp Med 2022; 219:e20211861. [PMID: 36048018 PMCID: PMC9440727 DOI: 10.1084/jem.20211861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 12/22/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are crucial for the maintenance of host-microbiota homeostasis in gastrointestinal mucosal tissues. The mechanisms that maintain lineage identity of intestinal ILC3s and ILC3-mediated orchestration of microbiota and mucosal T cell immunity are elusive. Here, we identified BATF as a gatekeeper of ILC3 homeostasis in the gut. Depletion of BATF in ILC3s resulted in excessive interferon-γ production, dysbiosis, aberrant T cell immune responses, and spontaneous inflammatory bowel disease (IBD), which was considerably ameliorated by the removal of adaptive immunity, interferon-γ blockade, or antibiotic treatment. Mechanistically, BATF directly binds to the cis-regulatory elements of type 1 effector genes, restrains their chromatin accessibility, and inhibits their expression. Conversely, BATF promotes chromatin accessibility of genes involved in MHCII antigen processing and presentation pathways, which in turn directly promotes the transition of precursor ILC3s to MHCII+ ILC3s. Collectively, our findings reveal that BATF is a key transcription factor for maintaining ILC3 stability and coordinating ILC3-mediated control of intestinal homeostasis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Moujtaba Y. Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Samantha Atkinson
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Christine Nguyen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Elizabeth J. Taparowsky
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Nita H. Salzman
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy W. Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
16
|
Liu N, He J, Fan D, Gu Y, Wang J, Li H, Zhu X, Du Y, Tian Y, Liu B, Fan Z. Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription. Nat Commun 2022; 13:4711. [PMID: 35953472 PMCID: PMC9372085 DOI: 10.1038/s41467-022-32322-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) exert important roles in host defense, tissue repair and inflammatory diseases. However, how ILC lineage specification is regulated remains largely elusive. Here we identify that circular RNA circTmem241 is highly expressed in group III innate lymphoid cells (ILC3s) and their progenitor cells. CircTmem241 deficiency impairs ILC3 commitment and attenuates anti-bacterial immunity. Mechanistically, circTmem241 interacts with Nono protein to recruit histone methyltransferase Ash1l onto Elk3 promoter in ILC progenitor cells (ILCPs). Ash1l-mediated histone modifications on Elk3 promoter enhance chromatin accessibility to initiate Elk3 transcription. Of note, circTmem241-/-, Nono-/- and Ash1l-/- ILCPs display impaired ILC3 differentiation, while Elk3 overexpression rescues ILC3 commitment ability. Finally, circTmem241-/-Elk3-/- mice show lower numbers of ILC3s and are more susceptible to bacterial infection. We reveal that the circTmem241-Nono-Ash1l-Elk3 axis is required for the ILCP differentiation into ILC3P and ILC3 maturation, which is important to manipulate this axis for ILC development on treatment of infectious diseases.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiacheng He
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Gu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyi Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Benyu Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
19
|
Lujan RA, Vrba SM, Hickman HD. Antiviral Activities of Group I Innate Lymphoid Cells. J Mol Biol 2021; 434:167266. [PMID: 34562465 PMCID: PMC8938296 DOI: 10.1016/j.jmb.2021.167266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Even before the adaptive immune response initiates, a potent group of innate antiviral cells responds to a wide range of viruses to limit replication and virus-induced pathology. Belonging to a broader family of recently discovered innate lymphoid cells (ILCs), antiviral group I ILCs are composed of conventional natural killer cells (cNK) and tissue-resident ILCs (ILC1s) that can be distinguished based on their location as well as by the expression of key cell surface markers and transcription factors. Functionally, blood-borne cNK cells recirculate throughout the body and are recruited into the tissue at sites of viral infection where they can recognize and lyse virus-infected cells. In contrast, ILC1s are poised in uninfected barrier tissues and respond not through lysis but with the production of antiviral cytokines. From their frontline tissue locations, ILC1s can even induce an antiviral state in uninfected tissue to preempt viral replication. Mounting evidence also suggests that ILC1s may have enhanced secondary responses to viral infection. In this review, we discuss recent findings demonstrating that ILC1s provide several critical layers of innate antiviral immunity and the mechanisms (when known) underlying protection.
Collapse
Affiliation(s)
- Ramon A Lujan
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sophia M Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|