1
|
Nicita S, Weaver JC, Ishii H, Forman J. A framework for handweaving robotic textiles with liquid crystal elastomer fibers. Sci Rep 2025; 15:16883. [PMID: 40374803 DOI: 10.1038/s41598-025-97835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
Textile production methods present a rich set of strategies for developing materials with both form and function encoded at the fiber scale. Beyond simply acting as a static flexible barrier, the ability to incorporate environmentally responsible materials into fabric architectures significantly expands the textile design space by adding on-demand and programmable 3D structural morphing. To this end, liquid crystal elastomers (LCEs) are a promising candidate for enabling these reversible actuation behaviors in fabric-based constructs. Drawing on traditional textile manufacturing techniques and through a detailed exploration of the vast woven textile design space, we have demonstrated programmable and reversible curling, puffing, and in-plane shrinkage behaviors by embedding the functionality of LCE fibers into single and multi-layered woven structures. Predictable shifts in fabric structure directly influence the mechanical properties and the resulting form factor of the actuated textiles, which can in turn be effectively leveraged for the generation of multi-functional devices, enabling new directions for the engineering of flexible stimuli-responsive materials.
Collapse
Affiliation(s)
- Sarah Nicita
- Tangible Media Group, MIT Media Lab, Cambridge, MA, USA
| | - James C Weaver
- Harvard's Wyss Institute for Biologically Inspired Engineering, MIT Department of Civil and Environmental Engineering, Cambridge, MA, USA
| | - Hiroshi Ishii
- Tangible Media Group, MIT Media Lab, Cambridge, MA, USA.
| | - Jack Forman
- Tangible Media Group, MIT Media Lab, Cambridge, MA, USA
| |
Collapse
|
2
|
Liu T, Liu Y, Zeng R, Gan B, Zhang M, Li H, Qu S, Zhou H. A bioinspired multimotion modality underwater microrobot. SCIENCE ADVANCES 2025; 11:eadu2527. [PMID: 40333964 PMCID: PMC12057673 DOI: 10.1126/sciadv.adu2527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Exploring narrow underwater environments presents notable challenges due to the need for flexible movement and robust transition between different motion modalities. Inspired by the pteropod, a small aquatic organism known for its ability to change direction by adjusting the attack angle of its wings, we developed a biomimetic robotic platform called RoboPteropod. This micro-underwater robot, equipped with flexible flapping wings that mimic the propulsive mechanisms of the pteropod, reaches a float velocity of 1.88 body height per second and a forward velocity of 1.2 body length per second, while maintaining a power consumption of merely 580 milliwatts. The ability to dynamically adjust the attack angle of the wings enables smooth transition among various modes (float, move straight, yaw, and pitch) of underwater locomotion, allowing for agile, three-dimensional maneuvering in complex aquatic environments. RoboPteropod offers meaningful potential for detailed exploration of confined and otherwise inaccessible underwater spaces.
Collapse
Affiliation(s)
- Taishan Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yide Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Rongbao Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Bian Gan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Meng Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Hua Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Haofei Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
3
|
Ghosh S, Koley S, Maiti M, Maji PK. Recyclable and Self-Healing Polyurethane Vitrimers via Dynamic Bonding with In-Situ Polymerized PHPMA. Chem Asian J 2025; 20:e202401174. [PMID: 39977589 DOI: 10.1002/asia.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
The development of lightweight, durable, and recyclable polymer materials with self-healing properties remains a significant challenge in materials science, particularly for applications requiring extended service life and sustainability. This study addresses these challenges by introducing a novel thermoplastic polyurethane (PU)-based vitrimer system, synthesized via in situ polymerization using hydroxypropyl methacrylate (HPMA)-hydroxyl precursor and Tin(II) 2-ethylhexanoate (Sn(Oct)2)-catalyst. Unlike conventional vitrimer systems, this approach leverages dynamic bond exchange reactions without the formation of new covalent bonds, ensuring efficient stress relaxation and recyclability. Notably, the PU-PHPMA-73-Sn(Oct)2 composition exhibited superior mechanical properties and maintained its performance after three recycling cycles, highlighting its durability and circular potential. Stress relaxation studies further confirmed the temperature-dependent bond exchange kinetics, with activation energies of 122.8±8.1 kJ/mol and 21.6±2.4 kJ/mol for different compositions, correlating with the hydroxyl content. The vitrimer also demonstrated an 88.5 % self-healing efficiency, showcasing its ability to autonomously repair damage and extend material lifespan. This lightweight, self-healing, thermally stable, and recyclable vitrimer system presents significant advancements over traditional PU-based materials, with promising applications in medical devices, automotive components, adhesives, and advanced coatings, particularly where longevity and sustainability are critical.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| | - Swarnav Koley
- Department of Industrial Chemistry and Applied Chemistry, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - Madhuchhanda Maiti
- John Deere Pvt Ltd, Tower-XIV, Cyber City Hadapsar, Pune, Maharashtra, 411013, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, 247001, India
| |
Collapse
|
4
|
Zhou Y, Zhao Y, Zhao D, Guan X, Zhang K, Pi Y, Zhong J. Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics. MICROSYSTEMS & NANOENGINEERING 2025; 11:40. [PMID: 40032815 DOI: 10.1038/s41378-025-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics. Herein, we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances. The actuating layer, made of p(NIPAm-HEMA), features an open pore structure, enabling it to achieve 58% volume shrinkage in just 8 s. The customizable heater allows for efficient programmable deformation of the actuating layer. A strain-responsive hydrogel layer, with a linear response of up to 50% strain, is designed to sense the deformation process. Leveraging these actuating and sensing capabilities, we develop an integrated hydrogel muscle that can recognize lifted objects with various weights or grasped objects of different sizes. Furthermore, we demonstrate a self-crawling robot to showcase the application potential of the hydrogel muscle for soft robots working in aquatic environments. This robot, featuring a modular distributed sensing and actuating layer, can autonomously move forward under closed-loop control based on self-detected resistance signals. The strategy of modular distributed stimuli-responsive sensing and actuating materials offers unprecedented capabilities for creating smart and multifunctional soft robotics.
Collapse
Affiliation(s)
- Yexi Zhou
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yu Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Xiao Guan
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Yucong Pi
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China.
| |
Collapse
|
5
|
Zhang Z, Huang W, Zheng S, Tan J, Cheng J, Cai J, E S, Xu Z. Dual-Modal Dielectric Elastomer System for Simultaneous Energy Harvesting and Actuation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410724. [PMID: 39661701 PMCID: PMC11791972 DOI: 10.1002/advs.202410724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Dielectric elastomers (DEs) have promising capabilities for soft electromechanical systems, including those for actuation and energy generation. However, their widespread application is restricted by electromechanical instability (EMI) and the requirement for high-voltage operation. This study presents a dual-modal DE system that effectively overcomes these limitations by leveraging a dual-membrane structure. The proposed structure not only suppresses EMI through charge sharing but also enables simultaneous energy harvesting and actuation, enhancing the overall electrical performance of the system. The system demonstrated a remarkable improvement in output performance, exceeding that of traditional single-modal DE generators by up to 30%. The practicality of the system is developed by integrating it into a mechanically powered soft robot capable of locomotion and environmental monitoring using a wireless temperature sensor. This study paves the way for the development of advanced DE-based systems with enhanced stability, functionality, and potential for diverse applications in soft robotics, energy harvesting, and other areas that require coupled electromechanical capabilities.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Wenwei Huang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Shaodi Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Jianbo Tan
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Jinzhan Cheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Jiancheng Cai
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| | - Zisheng Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang ProvinceCollege of EngineeringZhejiang Normal UniversityJinhua321004P. R. China
- Jinhua Intelligent Manufacturing Research InstituteJinhua321004P. R. China
| |
Collapse
|
6
|
Qing H, Guo J, Zhu Y, Chi Y, Hong Y, Quinn D, Dong H, Yin J. Spontaneous snapping-induced jet flows for fast, maneuverable surface and underwater soft flapping swimmer. SCIENCE ADVANCES 2024; 10:eadq4222. [PMID: 39630908 PMCID: PMC11616700 DOI: 10.1126/sciadv.adq4222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Manta rays use wing-like pectoral fins for intriguing oscillatory swimming. It provides rich inspiration for designing potentially fast, efficient, and maneuverable soft swimming robots, which, however, have yet to be realized. It remains a grand challenge to combine fast speed, high efficiency, and high maneuverability in a single soft swimmer while using simple actuation and control. Here, we report leveraging spontaneous snapping stroke in the monostable flapping wing of a manta-like soft swimmer to address the challenge. The monostable wing is pneumatically actuated to instantaneously snap through to stroke down, and upon deflation, it will spontaneously stroke up by snapping back to its initial state, driven by elastic restoring force, without consuming additional energy. This largely simplifies designs, actuation, and control for achieving a record-high speed of 6.8 body length per second, high energy efficiency, and high maneuverability and collision resilience in navigating through underwater unstructured environments with obstacles by simply tuning single-input actuation frequencies.
Collapse
Affiliation(s)
- Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jiacheng Guo
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Yuanhang Zhu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, USA
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel Quinn
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Kanhere E, Calais T, Jain S, Plamootil Mathai AR, Chooi A, Stalin T, Joseph VS, Valdivia Y Alvarado P. Upgrading and extending the life cycle of soft robots with in situ free-form liquid three-dimensional printing. Sci Robot 2024; 9:eadn4542. [PMID: 39630879 DOI: 10.1126/scirobotics.adn4542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel-a type of material that can maintain its shape until sufficient stress is applied-was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high-aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot's life span. This workflow has potential to enhance the sustainable development of soft robots.
Collapse
Affiliation(s)
- Elgar Kanhere
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Théo Calais
- ICB UMR 6303 CNRS, Belfort-Montbéliard University of Technology, UTBM, Belfort, France
| | - Snehal Jain
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Aby Raj Plamootil Mathai
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Aaron Chooi
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Thileepan Stalin
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Vincent Sebastian Joseph
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Pablo Valdivia Y Alvarado
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| |
Collapse
|
8
|
Wang R, Zhang C, Zhang Y, Yang L, Tan W, Qin H, Wang F, Liu L. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle. Soft Robot 2024; 11:845-856. [PMID: 38407844 DOI: 10.1089/soro.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Soft underwater swimming robots actuated by smart materials have unique advantages in exploring the ocean, such as low noise, high flexibility, and friendly environment interaction ability. However, most of them typically exhibit limited swimming speed and flexibility due to the inherent characteristics of soft actuation materials. The actuation method and structural design of soft robots are key elements to improve their motion performance. Inspired by the muscle actuation and swimming mechanism of natural fish, a fast-swimming soft robotic fish actuated by a bionic muscle actuator made of dielectric elastomer is presented. The results show that by controlling the two independent actuating units of a biomimetic actuator, the robotic fish can not only achieve continuous C-shaped body motion similar to natural fish but also have a large bending angle (maximum unidirectional angle is about 40°) and thrust force (peak thrust is about 14 mN). In addition, the coupling relationship between the swimming speed and actuating parameters of the robotic fish is established through experiments and theoretical analysis. By optimizing the control strategy, the robotic fish can demonstrate a fast swimming speed of 76 mm/s (0.76 body length/s), which is much faster than most of the reported soft robotic fish driven by nonbiological soft materials that swim in body and/or caudal fin propulsion mode. What's more, by applying programmed voltage excitation to the actuating units of the bionic muscle, the robotic fish can be steered along specific trajectories, such as continuous turning motions and an S-shaped routine. This study is beneficial for promoting the design and development of high-performance soft underwater robots, and the adopted biomimetic mechanisms, as well as actuating methods, can be extended to other various flexible devices and soft robots.
Collapse
Affiliation(s)
- Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Yiwei Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lianchao Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hengshen Qin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
9
|
Wang D, Zhang F, Zhang S, Liu D, Li J, Chen W, Deng J, Liu Y. Miniature Modular Reconfigurable Underwater Robot Based on Synthetic Jet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406956. [PMID: 39136060 PMCID: PMC11496987 DOI: 10.1002/advs.202406956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Indexed: 10/25/2024]
Abstract
Modular reconfigurable robots exhibit prominent advantages in the reconnaissance and exploration tasks within unstructured environments for their characteristics of high adaptability and high robustness. However, due to the limitations in locomotion mechanism and integration requirements, the modular design of miniature robots in the aquatic environment encounters significant challenges. Here, a modular strategy based on the synthetic jet principle is proposed, and a modular reconfigurable robot system is developed. Specialized bottom and side jet actuators are designed with vibration motors as excitation sources, and a motion module is developed incorporating the jet actuators to realize three-dimensional agile motion. Its linear, rotational, and ascending motion speeds reach 70.7 mm s-1, 3.3 rad s-1, and 28.7 mm s-1, respectively. The module integrates the power supply, communication, and control system with a small size of 48 mm × 38 mm × 38 mm, which ensures a wireless controllable motion. Then, various configurations of the multi-module robot system are established with corresponding motion schemes, and the experiments with replaceable intermediate modules are further conducted to verify the transportation and image-capturing functions. This work demonstrates the effectiveness of synthetic jet propulsion for aquatic modular reconfigurable robot systems, and it exhibits profound potential in future underwater applications.
Collapse
Affiliation(s)
- Dehong Wang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Fanheng Zhang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Shijing Zhang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Daqing Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jing Li
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Weishan Chen
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Deng
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Yingxiang Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
10
|
Chen Y, Wu S, Guo B, Jin B, Yang H, Chen J, Wu W, Zhang L. Separating Charge Centers of Chain Segments in Dielectric Elastomer through Steric Hindrance Engineering. Macromol Rapid Commun 2024; 45:e2400295. [PMID: 38771981 DOI: 10.1002/marc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Theoretically, separating the positive and negative charge centers of the chain segments of dielectric elastomers (DEs) is a viable alternative to the conventional decoration of chain backbone with polar handles, since it can dramatically increase the dipole vector and hence the dielectric constant (ε') of the DEs while circumvent the undesired impact of the decorated polar handles on the dielectric loss (tan δ). Herein, a novel and universal method is demonstrated to achieve effective separation of the charge centers of chain segments in homogeneous DEs by steric hindrance engineering, i.e., by incorporating a series of different included angle-containing building blocks into the networks. Both experimental and simulation results have shown that the introduction of these building blocks can create a spatially fixed included angle between two adjacent chain segments, thus separating the charge center of the associated region. Accordingly, incorporating a minimal amount of these building blocks (≈5 mol%) can lead to a considerably sharp increase (≈50%) in the ε' of the DEs while maintaining an extremely low tan δ (≈0.006@1 kHz), indicating that this methodology can substantially optimize the dielectric performance of DEs based on a completely different mechanism from the established methods.
Collapse
Affiliation(s)
- Yifu Chen
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Siwu Wu
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Baochun Guo
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Binjie Jin
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Haixin Yang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jialiang Chen
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Wenjie Wu
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Liqun Zhang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
12
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
13
|
Zou J, Jing X, Li S, Feng P, Chen Y, Liu Y. MXene Crosslinked Hydrogels with Low Hysteresis Conferred by Sliding Tangle Island Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401622. [PMID: 38682610 DOI: 10.1002/smll.202401622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Single-network hydrogels are often too fragile to withstand mechanical loading, whereas double-network hydrogels typically exhibit significant hysteresis during cyclic stretching-releasing process due to the presence of a sacrificial network. Consequently, it is a considerable challenge for designing hydrogels that are both low in hysteresis and high in toughness for applications requiring dynamic mechanical loads. Herein, the study introduced a novel "sliding tangle island" strategy for creating tough and low-hysteresis hydrogels, which are prepared through in situ polymerization of highly concentrated acrylamides (AM) to form numerous entanglements within the MXene spacing without any chemical crosslinker. The MXene entangled with long polyacrylamide (PAM) chains to form tangle island that served as a relay station to transmit stress to neighboring molecular chains. This mechanism helps alleviate stress concentration and enhances energy dissipation efficiency, thereby reducing mechanical hysteresis. The resulting hydrogel exhibited exceptional properties, including high stretchability (≈900%), low hysteresis (less than 7%), high toughness (1.34 MJ m-3), and excellent sensing performance to rival the commercial hydrogel electrode. Therefore, this work sheds light on feasible design of energy dissipation structure to reduce the hysteresis of the composite hydrogels.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Shitao Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yi Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
14
|
Chen T, Yang X, Zhang B, Li J, Pan J, Wang Y. Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci Robot 2024; 9:eadl0307. [PMID: 39018371 DOI: 10.1126/scirobotics.adl0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.
Collapse
Affiliation(s)
- Tianyu Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xudong Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bojian Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Junwei Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Jie Pan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
15
|
Sheng J, Jiang S, Geng T, Huang Z, Li J, Jiang L. Ultrarobust Actuator Comprising High-Strength Carbon Fibers and Commercially Available Polycarbonate with Multi-Stimulus Responses and Programmable Deformation. Polymers (Basel) 2024; 16:1144. [PMID: 38675063 PMCID: PMC11053830 DOI: 10.3390/polym16081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymer-based actuators have gained extensive attention owing to their potential applications in aerospace, soft robotics, etc. However, poor mechanical properties, the inability of multi-stimuli response and programmable deformation, and the costly fabrication procedure have significantly hindered their practical application. Herein, these issues are overcome via a simple and scalable one-step molding method. The actuator is fabricated by hot-pressing commercial unidirectional carbon fiber/epoxy prepregs with a commodity PC membrane. Notable CTE differences between the CF and PC layers endow the bilayer actuator with fast and reliable actuation deformation. Benefiting from the high strength of CF, the actuator exhibits excellent mechanical performance. Moreover, the anisotropy of CF endows the actuator with design flexibility. Furthermore, the multifunction of CF makes the actuator capable of responding to thermal, optical, and electrical stimulation simultaneously. Based on the bilayer actuator, we successfully fabricated intelligent devices such as light-driven biomimetic flowers, intelligent grippers, and gesture-simulating apparatuses, which further validate the programmability and multi-stimuli response characteristics of this actuator. Strikingly, the prepared gripper possesses a grasping capacity approximately 31.2 times its own weight. It is thus believed that the concept presented paves the way for building next-generation robust robotics.
Collapse
Affiliation(s)
- Jie Sheng
- Henan Provincial Engineering Laboratory of Automotive Composite Materials, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.S.); (S.J.)
- Henan International Joint Laboratory of Carbon Composition Material, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengkun Jiang
- Henan Provincial Engineering Laboratory of Automotive Composite Materials, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.S.); (S.J.)
- Henan International Joint Laboratory of Carbon Composition Material, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tie Geng
- Henan Provincial Engineering Laboratory of Automotive Composite Materials, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.S.); (S.J.)
| | - Zhengqiang Huang
- Zhong Yuan Institute, Zhejiang University, Zhengzhou 451191, China;
| | - Jiquan Li
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Lin Jiang
- Henan Provincial Engineering Laboratory of Automotive Composite Materials, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (J.S.); (S.J.)
- Henan International Joint Laboratory of Carbon Composition Material, School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| |
Collapse
|
16
|
Blanc B, Zhang Z, Liu E, Zhou N, Dellatolas I, Aghvami A, Yi H, Fraden S. Active Pulsatile Gels: From a Chemical Microreactor to a Polymeric Actuator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6862-6868. [PMID: 38385757 DOI: 10.1021/acs.langmuir.3c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We report on a synthesis protocol, experimental characterization, and theoretical modeling of active pulsatile Belousov-Zhabotinsky (BZ) hydrogels. Our two-step synthesis technique allows independent optimization of the geometry, the chemical, and the mechanical properties of BZ gels. We identify the role of the surrounding medium chemistry and gel radius for the occurrence of BZ gel oscillations, quantified by the Damköhler number, which is the ratio of chemical reaction to diffusion rates. Tuning the BZ gel size to maximize its chemomechanical oscillation amplitude, we find that its oscillatory strain amplitude is limited by the time scale of gel swelling relative to the chemical oscillation period. Our experimental findings are in good agreement with a Vanag-Epstein model of BZ chemistry and a Tanaka Fillmore theory of gel swelling dynamics.
Collapse
Affiliation(s)
- Baptiste Blanc
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Eric Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Ippolyti Dellatolas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Aghvami
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Seth Fraden
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
17
|
Wang Y, Xuan H, Zhang L, Huang H, Neisiany RE, Zhang H, Gu S, Guan Q, You Z. 4D Printed Non-Euclidean-Plate Jellyfish Inspired Soft Robot in Diverse Organic Solvents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313761. [PMID: 38211632 DOI: 10.1002/adma.202313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents). However, soft robots with stable performance in diverse organic solvents are not developed yet. In the current research, a non-Euclidean-plate under-liquid soft robot inspired by jellyfish based on phototropic liquid crystal elastomers is fabricated via a 4D-programmable strategy. Specifically, the robot employs a 3D-printed non-Euclidean-plate, designed with Archimedean orientation, which undergoes autonomous deformation to release internal stress when immersed in organic solvents. With the assistance of near-infrared light illumination, the organic solvent inside the robot vaporizes and generates propulsion in the form of bubble streams. The developed NEP-Jelly-inspired soft robot can swim with a high degree of freedom in various organic solvents, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dichloromethane, and trichloromethane, which is not reported before. Besides bionic jellyfish, various aquatic invertebrate-inspired soft robots can potentially be prepared via a similar 4D-programmable strategy.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Haiyang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
18
|
Firoozan M, Baniassadi M, Baghani M, Chortos A. In silico optimization of aligned fiber electrodes for dielectric elastomer actuators. Sci Rep 2024; 14:4703. [PMID: 38409334 PMCID: PMC10897417 DOI: 10.1038/s41598-024-54931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Dielectric elastomer actuators (DEAs) exhibit fast actuation and high efficiencies, enabling applications in optics, wearable haptics, and insect-scale robotics. However, the non-uniformity and high sheet resistance of traditional soft electrodes based on nanomaterials limit the performance and operating frequency of the devices. In this work, we computationally investigate electrodes composed of arrays of stiff fiber electrodes. Aligning the fibers along one direction creates an electrode layer that exhibits zero stiffness in one direction and is predicted to possess high and uniform sheet resistance. A comprehensive parameter study of the fiber density and dielectric thickness reveals that the fiber density primary determines the electric field localization while the dielectric thickness primarily determines the unit cell stiffness. These trends identify an optimal condition for the actuation performance of the aligned electrode DEAs. This work demonstrates that deterministically designed electrodes composed of stiff materials could provide a new paradigm with the potential to surpass the performance of traditional soft planar electrodes.
Collapse
Affiliation(s)
- Mohammadreza Firoozan
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, USA.
| |
Collapse
|
19
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Li W, Wang X, Liu Z, Zou X, Shen Z, Liu D, Li L, Guo Y, Yan F. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. NATURE MATERIALS 2024; 23:131-138. [PMID: 37884671 DOI: 10.1038/s41563-023-01697-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Consecutive mechanical loading cycles cause irreversible fatigue damage and residual strain in gels, affecting their service life and application scope. Hysteresis-free hydrogels within a limited deformation range have been created by various strategies. However, large deformation and high elasticity are inherently contradictory attributes. Here we present a nanoconfined polymerization strategy for producing tough and near-zero-hysteresis gels under a large range of deformations. Gels are prepared through in situ polymerization within nanochannels of covalent organic frameworks or molecular sieves. The nanochannel confinement and strong hydrogen bonding interactions with polymer segments are crucial for achieving rapid self-reinforcement. The rigid nanostructures relieve the stress concentration at the crack tips and prevent crack propagation, enhancing the ultimate fracture strain (17,580 ± 308%), toughness (87.7 ± 2.3 MJ m-3) and crack propagation strain (5,800%) of the gels. This approach provides a general strategy for synthesizing gels that overcome the traditional trade-offs of large deformation and high elasticity.
Collapse
Affiliation(s)
- Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yu Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| |
Collapse
|
21
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
22
|
Chen E, Yang Y, Li M, Li B, Liu G, Mu W, Yin R. Bio-Mimic, Fast-Moving, and Flippable Soft Piezoelectric Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300673. [PMID: 37163730 PMCID: PMC10369280 DOI: 10.1002/advs.202300673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Cheetahs achieve high-speed movement and unique athletic gaits through the contraction and expansion of their limbs during the gallop. However, few soft robots can mimic their gaits and achieve the same speed of movement. Inspired by the motion gait of cheetahs, here the resonance of double spiral structure for amplified motion performance and environmental adaptability in a soft-bodied hopping micro-robot is exploited. The 0.058 g, 10 mm long tethered soft robot is capable of achieving a maximum motion speed of 42.8 body lengths per second (BL/s) and a maximum average turning speed of 482° s-1 . In addition, this robot can maintain high speed movement even after flipping. The soft robot's ability to move over complex terrain, climb hills, and carry heavy loads as well as temperature sensors is demonstrated. This research opens a new structural design for soft robots: a double spiral configuration that efficiently translates the deformation of soft actuators into swift motion of the robot with high environmental adaptability.
Collapse
Affiliation(s)
- Erdong Chen
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Yiduo Yang
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Mengjiao Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Binghang Li
- College of EngineeringOcean University of ChinaQingdao266100China
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| | - Guijie Liu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Weilei Mu
- College of EngineeringOcean University of ChinaQingdao266100China
| | - Rong Yin
- Textile Engineering, Chemistry and ScienceWilson College of TextilesNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
23
|
Cheng Z, Feng W, Zhang Y, Sun L, Liu Y, Chen L, Wang C. A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Water-Stable and Self-Healing Ionic Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301005. [PMID: 37027814 DOI: 10.1002/adma.202301005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Dielectric elastomer actuators (DEAs) are widely exploited for actuating soft machines and granting soft robots with capability to operate in both underwater and on-land environments is important to make them adapt to more complex situations. Here, a DEA-driven, highly robust, amphibious imperceptible soft robot (AISR) based on an all-environment stable ionic conductive material is presented. A soft, self-healable, all-environment stable ionic conductor is developed by introducing cooperative ion-dipole interactions to provide underwater stability as well as efficient suppression of ion penetration. By tuning molecular structures of the material, a 50-time device lifetime increase compared with unmodified [EMI][TFSI]-based devices and excellent underwater actuating performance is achieved. With the synthesized ionic electrode, the DEA-driven soft robot exhibits amphibious functionality to traverse hydro-terrestrial regions. When encountering damage, the robot shows good resilience and can self-heal underwater and it also exhibits imperceptibility to light, sound, and heat.
Collapse
Affiliation(s)
- Zhe Cheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenwen Feng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yucheng Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Lin Sun
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yuncong Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Lili Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Chao Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
24
|
Xu J, Dong Y, Yang J, Jiang Z, Tang L, Chen X, Cao K. The Soft Ray-Inspired Robots Actuated by Solid-Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator. Soft Robot 2023; 10:354-364. [PMID: 36318819 DOI: 10.1089/soro.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Dielectric elastomer actuators (DEAs) are widely used in robotics and artificial muscles because of their large energy densities and short response time. In this study, we developed two types of soft ray-inspired robots using solid-liquid interpenetrating silicone-based DEAs, named SIS DEAs. The optimized SIS DEA had an actuation strain of 79.8% at 20.43 kV/mm in a freestanding state, which was used as the muscle of the ray robot. To imitate the swimming behavior of the ray, the effect of the driving frequency on the velocity of the ray robot was explored. The ray robot achieved a maximum swimming rate of 5.7 mm/s when the driving frequency was ∼0.6 Hz. In addition, the steady-state and the transient simulation were carried out to reveal the mechanism of the ray robot's electro-swimming. The results revealed that the actuating deformation of the SIS DEAs caused the electro-deformation of the ray robot, and the periodical electro-deformation generated the high-speed vortex beneath the robot to push the ray robot forward. The high actuation strain in the freestanding state and the shape customizability of the SIS DEAs made it an ideal alternative to muscles for various soft robots.
Collapse
Affiliation(s)
- Jiahui Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yiling Dong
- College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Jiang Yang
- Institute of Smart Sensing and Measurement, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ziyin Jiang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Xiangrong Chen
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Fu H, Jiang Y, Lv J, Huang Y, Gai Z, Liu Y, Lee PS, Xu H, Wu D. Multilayer Dielectric Elastomer with Reconfigurable Electrodes for Artificial Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206094. [PMID: 36658692 PMCID: PMC10037966 DOI: 10.1002/advs.202206094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
High-performance multilayer dielectric elastomer actuators (DEAs) are well-positioned to overcome the insufficient output force and energy density as artificial muscles. However, due to the fabrication process, the multilayer DEAs with nonmodifiable structures often suffer from the limitation of short lifespans and scalable preparation. Herein, reusable multilayer DEAs with the detachable and reconfigurable structure are fabricated. This is achieved by realizing scalable compliant electrodes using the continuous spatial confining forced network assembly (CSNA) method and combining the vacuum lamination (VL) approach to have good attachability and detachability with the VHB dielectric elastomer. The flexible roller-based CSNA method is used to prepare the large area compliant electrodes composed of α, ω-dihydroxy polydimethylsiloxane and electrically conductive nanoparticles. The fabricated electrodes can continuously work over 10 000 cycles at 40% strained stretching and maintain smooth surfaces to construct multilayer DEAs. Moreover, owing to the detachable configuration of the DEAs, the electrodes can also be recovered and reused for building new actuators. The lower limb assistive device is demonstrated by detachable multilayer spring roll DEAs, achieving approximately 3.1 degrees of flexion and extension movement of knee models under a voltage of 7 kV. The detachable and reconfigurable multilayer DEAs shed new light on the applications of wearable assistive devices.
Collapse
Affiliation(s)
- Hongbo Fu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yong Jiang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jian Lv
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Yao Huang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zipeng Gai
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Ying Liu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore‐HUJI Alliance for Research and Enterprise (SHARE)Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE)Singapore138602Singapore
| | - Hong Xu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Daming Wu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
26
|
Li G, Shintake J, Hayashibe M. Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study. Front Robot AI 2023; 10:1102854. [PMID: 36845333 PMCID: PMC9949375 DOI: 10.3389/frobt.2023.1102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Recently, soft robotics has gained considerable attention as it promises numerous applications thanks to unique features originating from the physical compliance of the robots. Biomimetic underwater robots are a promising application in soft robotics and are expected to achieve efficient swimming comparable to the real aquatic life in nature. However, the energy efficiency of soft robots of this type has not gained much attention and has been fully investigated previously. This paper presents a comparative study to verify the effect of soft-body dynamics on energy efficiency in underwater locomotion by comparing the swimming of soft and rigid snake robots. These robots have the same motor capacity, mass, and body dimensions while maintaining the same actuation degrees of freedom. Different gait patterns are explored using a controller based on grid search and the deep reinforcement learning controller to cover the large solution space for the actuation space. The quantitative analysis of the energy consumption of these gaits indicates that the soft snake robot consumed less energy to reach the same velocity as the rigid snake robot. When the robots swim at the same average velocity of 0.024 m/s, the required power for the soft-body robot is reduced by 80.4% compared to the rigid counterpart. The present study is expected to contribute to promoting a new research direction to emphasize the energy efficiency advantage of soft-body dynamics in robot design.
Collapse
Affiliation(s)
- Guanda Li
- Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun Shintake
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Chofu, Japan
| | - Mitsuhiro Hayashibe
- Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan,*Correspondence: Mitsuhiro Hayashibe,
| |
Collapse
|
27
|
Yue Y, Wang Q, Ma Z, Wu Z, Zhang X, Li D, Shi Y, Su B. Neuron-Inspired Soft Robot Teams and Their Non-Contact Electric Signal Transmission Based on Electromagnetic Induction. Soft Robot 2023; 10:66-76. [PMID: 35483053 DOI: 10.1089/soro.2021.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transmission of electric signal among robots enables them to construct a team to behave beyond capabilities of the individuals. However, such a signal transmission is elusive so far for soft robots due to the employment of soft materials, rather than traditionally rigid electronic units. In this study, we demonstrate neuron-inspired soft robots (NISRs) with an electromagnetic induced signal transmission system. The prototype 15-cm-long NISRs can not only be moved driven by a manually moving magnet but also transmit signals to others in a noncontact type based on the electromagnetic induction through their tentacle units. Owing to the motion and special signal transmission mode, three NISRs can form diverse signal transport pathways to light up light emitting diodes in different positions. Furthermore, an alternative current (AC) signal can be generated when applying an interval loading/unloading compressive force with the velocity of 800 mm·min-1 on the head of NISR integrated a magnet and a coil (named it NISR-plus). Such an AC signal can be immediately sensed by neighboring NISRs, indicating the construction of a signal transmission network among the NISR team. Our results open perspectives to realize signal transmission of soft robots via wireless electromagnetic induction and favor the development of soft robot teams.
Collapse
Affiliation(s)
- Yamei Yue
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.,ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Dong Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Abstract
Jellyfish are among the widely distributed nature creatures that can effectively control the fluidic flow around their transparent soft body, thus achieving movements in the water and camouflage in the surrounding environments. Till now, it remains a challenge to replicate both transparent appearance and functionalities of nature jellyfish in synthetic systems due to the lack of transparent actuators. In this work, a fully transparent soft jellyfish robot is developed to possess both transparency and bio-inspired omni motions in water. This robot is driven by transparent dielectric elastomer actuators (DEAs) using hybrid silver nanowire networks and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/waterborne polyurethane as compliant electrodes. The electrode exhibits large stretchability, low stiffness, high transmittance, and excellent conductivity at large strains. Consequently, the highly transparent DEA based on this hybrid electrode, with Very-High-Bond membranes as dielectric layers and polydimethylsiloxane as top coating, can achieve a maximum area strain of 146% with only 3% hysteresis loss. Driven by this transparent DEA, the soft jellyfish robot can achieve vertical and horizontal movements in water, by mimicking the actual pulsating rhythm of an Aurelia aurita. The bio-inspired robot can serve multiple functions as an underwater soft robot. The hybrid electrodes and bio-inspired design approach are potentially useful in a variety of soft robots and flexible devices.
Collapse
Affiliation(s)
- Yuzhe Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Pengpeng Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jian Zhu
- School of Science and Engineering, Chinese University of Hong Kong at Shenzhen, Shenzhen, China.,Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| |
Collapse
|
29
|
Wang Y, Guan Q, Lei D, Esmaeely Neisiany R, Guo Y, Gu S, You Z. Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid-Air Interface. ACS NANO 2022; 16:19393-19402. [PMID: 36367434 DOI: 10.1021/acsnano.2c09066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft robotics locomotion at the liquid-air interface has become more and more important for an intelligent society. However, existing locomotion of soft robotics is limited to two dimensions. It remains a formidable challenge to realize three-dimensional locomotion (X, Y, and Z axes) at the liquid-air two-phase interface due to the unbalanced mechanical environment. Inspired by meniscus-climbing beetle larva Pyrrhalta, the mechanism of a three-phase (liquid-solid-air) contact line is here proposed to address the aforementioned challenge. A corresponding 3D printed fully soft robotics (named larvobot) based on photoresponsive liquid crystal elastomer/carbon nanotubes composites endowed repeatable programmable deformation and high degree-of-freedom locomotion. Three-dimensional locomotion at the liquid-air interface including twisting and rolling-up has been developed. The equation of motion is established by analyzing the mechanics along the solid-water surface of the larvobot. Meanwhile, ANSYS is used to calculate the stress distribution, which coincides with the speculation. Moreover, soft robotics is remotely driven by light in a precise spatiotemporal control, which provides a great advantage for applications. As an example, we demonstrate the controllable locomotion of the soft robotics inside closed tubes, which could be used for drug delivery and intelligent transportation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Dong Lei
- Department of Cardiology, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai200011, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar9617976487, Iran
| | - Yue Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 2999 North Renmin Road, Shanghai201620, P. R. China
| |
Collapse
|
30
|
Chi Y, Hong Y, Zhao Y, Li Y, Yin J. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer. SCIENCE ADVANCES 2022; 8:eadd3788. [PMID: 36399554 PMCID: PMC9674291 DOI: 10.1126/sciadv.add3788] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Natural selection has tuned many flying and swimming animals to share the same narrow design space for high power efficiency, e.g., their dimensionless Strouhal numbers St that relate flapping frequency and amplitude and forward speed fall within the range of 0.2 < St < 0.4 for peak propulsive efficiency. It is rather challenging to achieve both comparably fast-speed and high-efficient soft swimmers to marine animals due to the naturally selected narrow design space and soft body compliance. Here, bioinspired by the flapping motion in swimming animals, we report leveraging snapping instabilities for soft flapping-wing swimmers with comparable high performance to biological counterparts. The lightweight, butterfly stroke-like soft swimmer (2.8 g) demonstrates a record-high speed of 3.74 body length/s (4.8 times faster than the reported fastest flapping soft swimmer), high power efficiency (0.2 < St = 0.25 < 0.4), low energy consumption cost, and high maneuverability (a high turning speed of 157°/s).
Collapse
|
31
|
Liu J, Gao X, Jin H, Ren K, Guo J, Qiao L, Qiu C, Chen W, He Y, Dong S, Xu Z, Li F. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nat Commun 2022; 13:6567. [PMID: 36323672 PMCID: PMC9630418 DOI: 10.1038/s41467-022-34231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Piezoelectric devices based on a variety of vibration modes are widely utilized in high-tech fields to make a conversion between mechanical and electrical energies. The excitation of single or coupled vibration modes of piezoelectric devices is mainly related to the structure and property of piezoelectric materials. However, for the generally used piezoelectric materials, e.g., lead zirconate titanate ceramics, most of piezoelectric coefficients in the piezoelectric matrix are equal to zero, resulting in many piezoelectric vibration modes cannot be excited, which hinders the design of piezoelectric devices. In this work, an orderly stacked structure with piezoelectric strain units is proposed to achieve all nonzero piezoelectric coefficients, and consequently generate artificially coupled multi-vibration modes with ultrahigh strains. As an example, an orderly stacked structure with two piezoelectric strain units stator, corresponding to 31–36 coupled vibration mode, was designed and fabricated. Based on this orderly stacked structure with two piezoelectric strain units stator, we made a miniature ultrasonic motor (5 mmLength × 1.3 mmHeight × 1.06 mmWidth). Due to the ultrahigh strain of the 31–36 coupled vibration mode, the velocity per volume of the motor reached 4.66 s−1 mm−2. Furthermore, its moving resolution is around 3 nm, which is two orders higher than that of other piezoelectric motors. This work sheds a light on optimizing the performance of state-of-the-art electromechanical devices and may inspire new devices based on multi-vibration modes. Most piezoelectric coefficients in piezoelectric ceramics are zero, resulting in many piezoelectric vibration modes cannot be excited. Here, the authors propose an orderly stacked structure to achieve all nonzero piezoelectric coefficients.
Collapse
Affiliation(s)
- Jinfeng Liu
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiangyu Gao
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Haonan Jin
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Kaile Ren
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jingyu Guo
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Liao Qiao
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Chaorui Qiu
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Wei Chen
- OPPO Guangdong Mobile Communication Co., Ltd., Shenzhen, China
| | - Yuhang He
- OPPO Guangdong Mobile Communication Co., Ltd., Shenzhen, China
| | - Shuxiang Dong
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Peking University, Beijing, China ,grid.263488.30000 0001 0472 9649Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhuo Xu
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Fei Li
- grid.43169.390000 0001 0599 1243Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
32
|
Singh K, Gupta S. Controlled actuation, adhesion, and stiffness in soft robots: A review. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Ko J, Kim C, Kim D, Song Y, Lee S, Yeom B, Huh J, Han S, Kang D, Koh JS, Cho J. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci Robot 2022; 7:eabo6463. [DOI: 10.1126/scirobotics.abo6463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hydrogels have diverse chemical properties and can exhibit reversibly large mechanical deformations in response to external stimuli; these characteristics suggest that hydrogels are promising materials for soft robots. However, reported actuators based on hydrogels generally suffer from slow response speed and/or poor controllability due to intrinsic material limitations and electrode fabrication technologies. Here, we report a hydrogel actuator that operates at low voltages (<3 volts) with high performance (strain > 50%, energy density > 7 × 10
5
joules per cubic meter, and power density > 3 × 10
4
watts per cubic meter), surpassing existing hydrogel actuators and other types of electroactive soft actuators. The enhanced performance of our actuator is due to the formation of wrinkled nanomembrane electrodes that exhibit high conductivity and excellent mechanical deformation through capillary-assisted assembly of metal nanoparticles and deswelling-induced wrinkled structures. By applying an electric potential through the wrinkled nanomembrane electrodes that sandwich the hydrogel, we were able to trigger a reversible and substantial electroosmotic water flow inside a hydrogel film, which drove the controlled swelling of the hydrogel. The high energy efficiency and power density of our wrinkled nanomembrane electrode–induced actuator enabled the fabrication of an untethered insect-scale aquabot integrated with an on-board control unit demonstrating maneuverability with fast locomotion speed (1.02 body length per second), which occupies only 2% of the total mass of the robot.
Collapse
Affiliation(s)
- Jongkuk Ko
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhwan Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Dongjin Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yongkwon Song
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seokmin Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
34
|
Wang S, Sun Z, Duan S, Zhao Y, Sha X, Yu S, Zuo L. A Hydrogel-Based Self-Sensing Underwater Actuator. MICROMACHINES 2022; 13:1779. [PMID: 36296132 PMCID: PMC9611511 DOI: 10.3390/mi13101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Soft robots made of hydrogels are suited for underwater exploration due to their biocompatibility and compliancy. Yet, reaching high dexterity and actuation force for hydrogel-based actuators is challenging. Meanwhile, real-time proprioception is critical for feedback control. Moreover, sensor integration to mimic living organisms remains problematic. To address these challenges, we introduce a hydrogel actuator driven by hydraulic force with a fast response (time constant 0.83 s). The highly stretchable and conductive hydrogel (1400% strain) is molded into the PneuNet shape, and two of them are further assembled symmetrically to actuate bi-directionally. Then, we demonstrate its bionic application for underwater swimming, showing 2 cm/s (0.19 BL/s) speed. Inspired by biological neuromuscular systems' sensory motion, which unifies the sensing and actuation in a single unit, we explore the hydrogel actuator's self-sensing capacity utilizing strain-induced resistance change. The results show that the soft actuator's proprioception can monitor the undulation in real-time with a sensitivity of 0.2%/degree. Furthermore, we take a finite-element method and first-order differential equations to model the actuator's bending in response to pressure. We show that such a model can precisely predict the robot's bending response over a range of pressures. With the self-sensing actuator and the proposed model, we expect the new approach can lead to future soft robots for underwater exploration with feedback control, and the underlying mechanism of the undulation control might offer significant insights for biomimetic research.
Collapse
Affiliation(s)
- Shuyu Wang
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Zhaojia Sun
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
| | - Shuaiyang Duan
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
| | - Yuliang Zhao
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Xiaopeng Sha
- Department of Control Engineering, Northeastern University, Qinhuangdao 066001, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| | - Shifeng Yu
- Department of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Zuo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Jian X, Zou T. A Review of Locomotion, Control, and Implementation of Robot Fish. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Wang X, Lin D, Zhou Y, Jiao N, Tung S, Liu L. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS NANO 2022; 16:14895-14906. [PMID: 36067035 DOI: 10.1021/acsnano.2c05783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Superhydrophobic microrobots that can swim efficiently and rapidly on water under the action of external stimuli have attracted significant research attention for various applications. However, most studies on superhydrophobic microrobots have focused on single-stimulus driving modes, which limit the motion and functional applications of microrobots in complex aquatic environments. Therefore, multistimuli-responsive superhydrophobic microrobots that are capable of drifting rapidly on water through light, magnetic, and chemical control were developed in this study. The stability and environmental adaptability of the microrobots were systematically investigated. The microrobots achieved programmable trajectory motion on water, particularly complex motions such as circular, spiral, and helical movements under the coupled influence of chemical and magnetic fields. Importantly, the motion and control of multimicrorobots can be realized by combining control methods. Under the action of light and magnetic field, multimicrorobots could realize cooperative movement and completed the transportation of cargo. Additionally, broad multifunctional applications of the microrobots were explored in terms of oil spill recovery and solution mix. This study provides a method for the preparation and development of superhydrophobic microrobots with multistimuli-responsive characteristics.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
37
|
Effects of electrostriction on the bifurcated electro-mechanical performance of conical dielectric elastomer actuators and sensors. ROBOTICA 2022. [DOI: 10.1017/s0263574722001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Dielectric elastomers (DEs) find applications in many areas, particularly in the field of soft robotics. When modeling and simulating DE-based actuators and sensors, a substantial portion of the literature assumes the selected DE material to behave in some perfectly hyperelastic manner, and the vast majority have assumed invariant permittivity. However, studies on simple planar DEs have revealed instabilities and hastened breakdowns when a variable permittivity is allowed. This is partly due to the intertwined electromechanical properties of DEs rooted on their labyrinthine polymeric microstructures. This work focuses on studying the effects of a varying (with stretch) permittivity on the out-of-plane deformation of a circular DE, using a model derived from principles of strain-induced polymer birefringence. In addition, we utilize the Edward–Vilgis model, which attempts to account for effects related to crosslinking, and length extension, slippage, and entanglement of polymer chains. Our approach reveals the presence of “stagnation” regions in the electromechanical behavior of the DE actuator material. These stagnation regions are characterized by both electrical and mechanical critical electrostrictive coefficient ratios. Mechanically, certain values of the electrostrictive coefficient ratio predict cases where deformation does not occur in response to a change in voltage. Electrically, certain cases are predicted where changes in capacitance cannot be measured in response to changes in deformation. Thus, some combined conditions of loading and material properties could limit the effectiveness of DE membranes in either actuation or sensing. Therefore, our results reveal mechanisms that could be useful to designers of actuators and sensors and unveil an opportunity for exploring new theoretical materials with potential novel applications. Furthermore, since there are known analogous formulations between electrical and optical properties, criticality principles studied in this article could be extended to optomechanical coupling.
Collapse
|
38
|
Yu K, Feng Z, Du H, Lee KH, Li K, Zhang Y, Masri SF, Wang Q. Constructive adaptation of 3D-printable polymers in response to typically destructive aquatic environments. PNAS NEXUS 2022; 1:pgac139. [PMID: 36741439 PMCID: PMC9896903 DOI: 10.1093/pnasnexus/pgac139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment. The mechanism relies on a water-assisted additional cross-linking reaction in the polymer matrix and on the interface. As such, the typically destructive water can constructively enhance the polymer's bulk mechanical properties such as stiffness, tensile strength, and fracture toughness by factors of 746% to 790%, and the interfacial bonding by a factor of 1,000%. We show that the invented polymers can be used for soft robotics that self-strengthen matrix and self-heal cracks after training in water and water-healable packaging materials for flexible electronics. This work opens the door for the design of synthetic materials to imitate the constructive adaptation of biological systems in response to environmental stressors, for applications such as artificial muscles, soft robotics, and flexible electronics.
Collapse
Affiliation(s)
- Kunhao Yu
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhangzhengrong Feng
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Haixu Du
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyung Hoon Lee
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ketian Li
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanchu Zhang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sami F Masri
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
39
|
Effects of Bionic Bone Flexibility on the Hydrodynamics of Pectoral Fins. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Compared with traditional underwater equipment powered by propeller, the manta-ray-inspired vehicle with MPF mode (Median fin/paired fin) has the advantages of stable swimming attitude, high maneuverability, and low noise, etc. As one of the sources of advancing power when the manta-ray-inspired vehicle swims, the flexible deformation of the pectoral fin is an important factor affecting the hydrodynamic performance. In this paper, a mechanical analysis of the two-dimensional flexible pectoral fin using thin wing theory shows that the main factor affecting the hydrodynamic force of the two-dimensional flexible pectoral fin is the level of curvature of the pectoral fin chordal section. By designing a two-stage bionic skeleton at the leading and rear edges of the manta-ray-inspired vehicle, the root–tip section width of the bionic skeleton is used to characterize the level of the bionic pectoral fin’s flexibility, and a tensiometer is used to quantitatively measure the level of flexibility. The root-to-tip ratio of the cross-section was varied to obtain different levels of pectoral fin flexibility, and the hydrodynamic properties of the pectoral fins during flapping were measured using a force sensor and normalized for analysis. The experimental results show that the reduction of the flexibility of the leading edge and the increase of the flexibility of the rear edge are beneficial to the improvement of the thrust performance, and the experimental results are the same as the distribution of the skeletal flexibility in real organisms. Fitting curves of the pectoral fins’ relative flexibility and the normalized thrust/lift show that the flexibility of the pectoral fins has a significant effect on its hydrodynamic force, and a stiffer leading edge and a softer rear edge can improve the hydrodynamic characteristics of the manta-ray-inspired vehicle. Phase differences interacting with flexibility can also enhance bionic pectoral fins’ dynamic properties within 10~30 degree.
Collapse
|
40
|
Xiao M, Mao J, Kollosche M, Hwang V, Clarke DR, Manoharan VN. Voltage-tunable elastomer composites that use shape instabilities for rapid structural color changes. MATERIALS HORIZONS 2022; 9:1954-1961. [PMID: 35579252 DOI: 10.1039/d2mh00374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structurally colored materials can switch colors in response to external stimuli, which makes them potentially useful as colorimetric sensors, dynamic displays, and camouflage. However, their applications are limited by the angular dependence, slow response, and absence of synchronous control in time and space. In addition, out-of-plane deformation from shape instability easily occurs in photonic films, leading to inhomogeneous colors in photonic-crystal materials. To address these challenges, we combine structurally colored photonic glasses and dielectric elastomer actuators. We use an external voltage signal to tune color changes quickly (much less than 0.1 s). The photonic glassses produce colors with low angular dependence, so that their colors are homogeneous even when they become curved due to voltage-triggered instabilities (buckling or wrinkling). As proof of concept, we present a pixelated display in which segments can be independently and rapidly turned on and off. This wide-angle, instability-tolerant, color-changing platform could be used in next-generation soft and curved color displays, camouflage with both shape and color changes, and multifunctional sensors.
Collapse
Affiliation(s)
- Ming Xiao
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Mao
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- College of Chemical Engineering, Ningxia University, Yinchuan City, 750021, China
| | - Matthias Kollosche
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Victoria Hwang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - David R Clarke
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
41
|
Kendre SV, Whiteside L, Fan TY, Tracz JA, Teran GT, Underwood TC, Sayed ME, Jiang HJ, Stokes AA, Preston DJ, Whitesides GM, Nemitz MP. The Soft Compiler: A Web-Based Tool for the Design of Modular Pneumatic Circuits for Soft Robots. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3159858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Liu H, Tian H, Li X, Chen X, Zhang K, Shi H, Wang C, Shao J. Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low-melting point alloy. SCIENCE ADVANCES 2022; 8:eabn5722. [PMID: 35584225 PMCID: PMC9116885 DOI: 10.1126/sciadv.abn5722] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 05/19/2023]
Abstract
An artificial muscle capable of shape programmability, deformation-locking capacity without needing continuous external energy, and self-sensing capability is highly desirable yet challenging in applications of reconfigurable antenna, deployable space structures, etc. Inspired by coupled behavior of the muscles, bones, and nerve system of mammals, a multifunctional artificial muscle based on polydopamine-coated liquid crystal elastomer (LCE) and low-melting point alloy (LMPA) in the form of a concentric tube/rod is proposed. Thereinto, the outer LCE is used for reversible contraction and recovery (i.e., muscle function); the inner LMPA in the resolidification state is adopted for deformation locking, and that in the melt state is adopted for angle variation monitoring by detecting resistance change (i.e., bones and nerve functions, respectively). The proposed artificial muscle demonstrates multiple performances, including controllable bending angle, position, and direction; deformation locking for supporting heavy objects; and real-time monitoring of angle variation, which also provides a straightforward and effective approach for designing soft devices.
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Corresponding author.
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Kai Zhang
- School of Information and Communications Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Hongyu Shi
- School of Information and Communications Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| |
Collapse
|
43
|
Yu Z, Shang J, Shi Q, Xia Y, Zhai DH, Wang H, Huang Q, Fukuda T. Electrically Controlled Aquatic Soft Actuators with Desynchronized Actuation and Light-Mediated Reciprocal Locomotion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12936-12948. [PMID: 35244389 DOI: 10.1021/acsami.2c01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft-bodied aquatic invertebrates can overcome hydrodynamic resistance and display diverse locomotion modes in response to environmental cues. Exploring the dynamics of locomotion from bioinspired aquatic actuators will broaden the perspective of underwater manipulation of artificial systems in fluidic environments. Here, we report a multilayer soft actuator design based on a light-driven hydrogel and a laser-induced graphene (LIG) actuator, minimizing the effect of the time delay by a monolithic hydrogel-based system while maintaining shape-morphing functionality. Moreover, different time scales in the response of actuator materials enable a real-time desynchronization of energy inputs, holding great potential for applications requiring desynchronized stimulation. This hybrid design principle is ultimately demonstrated with a high-performance aquatic soft actuator possessing an underwater walking speed of 0.81 body length per minute at a relatively low power consumption of 3 W. When integrated with an optical sensor, the soft actuator can sense the variation in light intensity and achieve mediated reciprocal motion. Our proposed locomotion mechanism could inspire other multilayer soft actuators to achieve underwater functionalities at the same spatiotemporal scale. The underwater actuation platform could be used to study locomotion kinematics and control mechanisms that mimic the motion of soft-bodied aquatic organisms.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Junyi Shang
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Yuanqing Xia
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Di-Hua Zhai
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Biomimetic Robots and Systems, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| |
Collapse
|
44
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
45
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
46
|
Towards enduring autonomous robots via embodied energy. Nature 2022; 602:393-402. [PMID: 35173338 DOI: 10.1038/s41586-021-04138-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Autonomous robots comprise actuation, energy, sensory and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, animals and other organisms that robots strive to emulate contain highly sophisticated and interconnected systems at all organizational levels, which allow multiple functions to be performed simultaneously. Herein, we examine how system integration and multifunctionality in nature inspires a new paradigm for autonomous robots that we call Embodied Energy. Whereas most untethered robots use batteries to store energy and power their operation, recent advancements in energy-storage techniques enable chemical or electrical energy sources to be embodied directly within the structures and materials used to create robots, rather than requiring separate battery packs. This perspective highlights emerging examples of Embodied Energy in the context of developing autonomous robots.
Collapse
|
47
|
|
48
|
Youssef SM, Soliman M, Saleh MA, Mousa MA, Elsamanty M, Radwan AG. Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. MICROMACHINES 2022; 13:mi13010110. [PMID: 35056275 PMCID: PMC8778375 DOI: 10.3390/mi13010110] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022]
Abstract
Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible characteristics they share with intelligent natural systems. This review provides an overview of the recent developments in the soft robotics field, with a focus on the underwater application frontier.
Collapse
Affiliation(s)
- Samuel M. Youssef
- Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed City 12588, Egypt;
- Correspondence:
| | - MennaAllah Soliman
- School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City 12588, Egypt; (M.S.); (M.A.S.); (A.G.R.)
| | - Mahmood A. Saleh
- School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City 12588, Egypt; (M.S.); (M.A.S.); (A.G.R.)
| | - Mostafa A. Mousa
- Nile University’s Innovation Hub, Nile University, Sheikh Zayed City 12588, Egypt;
| | - Mahmoud Elsamanty
- Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed City 12588, Egypt;
- Mechanical Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Ahmed G. Radwan
- School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City 12588, Egypt; (M.S.); (M.A.S.); (A.G.R.)
- Department of Engineering Mathematics and Physics, Cairo University, Giza 12613, Egypt
| |
Collapse
|
49
|
Ishida M, Sandoval JA, Lee S, Huen S, Tolley MT. Locomotion via active suction in a sea star-inspired soft robot. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Ishida
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jessica A. Sandoval
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Sebastian Lee
- Department of Mechanical Engineering, University of California Berkeley (UCB), Berkeley, CA, USA
| | - Sidney Huen
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Michael T. Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
50
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|