1
|
Yang Y, Sokolich M, Mallick S, Das S. Quadrupole Magnetic Tweezers for Precise Cell Transportation. IEEE Trans Biomed Eng 2025; 72:1437-1444. [PMID: 40030435 PMCID: PMC12079675 DOI: 10.1109/tbme.2024.3509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This research introduces a quadrupole magnetic tweezers which can be used for precise cell transportation by actuating magnetic spherical microrobots. The focus of the system is on navigating and manipulating cells within environments characterized by high cellular density. Demonstrating efficacy in moving cells through densely packed cell samples, the system underscores its potential to overcome common obstacles such as inaccurate target delivery and inefficiency. The findings from this study highlight the significant promise that microrobotic technologies hold in advancing medical applications, particularly in precise cell delivery mechanisms, setting a foundation for the future exploration and utilization of medical microrobots.
Collapse
|
2
|
Yang J, Liu Y, Li B, Li J, Yan S, Chen H. Cell elasticity measurement and sorting based on microfluidic techniques: Advances and applications. Biosens Bioelectron 2025; 271:116985. [PMID: 39642532 DOI: 10.1016/j.bios.2024.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Cell elasticity serves as a crucial physical biomarker that reflects changes in cellular structures and physiological states, providing key insights into cell behaviors. It links mechanical properties to biological function, highlighting its importance for understanding cell health and advancing biomedical research. Microfluidic technologies, with their capabilities for precise manipulation and high-throughput analysis, have significantly advanced the measurement of cell elasticity and elasticity-based cell sorting. This paper presents a comprehensive overview of advanced microsystems for assessing cell elasticity, discussing their advantages and limitations. The biomedical applications of elasticity-based sorting are highlighted, including cell classification, clinical diagnosis, drug screening, and stem cell differentiation prediction. The paper addresses the current challenges in the field, such as limited measurement efficiency and scalability, and explores future research directions, including the development of automated, high-throughput systems and the integration of elasticity measurements into practical biomedical applications. These advancements aim to deepen our understanding of cellular mechanics, improve diagnostic precision, and foster the development of novel therapeutic strategies. Ultimately, this work emphasizes the potential of cell elasticity as a key parameter in advancing disease diagnosis and therapeutic research.
Collapse
Affiliation(s)
- Jiahuan Yang
- School of Biomedical Engineering and Digital Health, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yong Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Bin Li
- School of Biomedical Engineering and Digital Health, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Huaying Chen
- School of Biomedical Engineering and Digital Health, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
3
|
Weerarathna IN, Kumar P, Dzoagbe HY, Kiwanuka L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS OMEGA 2025; 10:5214-5250. [PMID: 39989765 PMCID: PMC11840590 DOI: 10.1021/acsomega.4c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
In light of the ongoing technological transformation, embracing advancements that foster shared benefits is essential. Nanorobots, a breakthrough within nanotechnology, have demonstrated significant potential in fields such as medicine, where diagnostic and therapeutic applications are the primary focus areas. This review provides a comprehensive overview of nanotechnology, robots, and their evolving role in medical applications, particularly highlighting the use of nanorobots. Various design strategies and operational principles, including sensors, actuators, and nanocontrollers, are discussed based on prior research. Key nanorobot medical applications include biomedical imaging, biosensing, minimally invasive surgery, and targeted drug delivery, each utilizing advanced actuation technologies to enhance precision. The paper further examines recent progress in micro/nanorobot actuation and addresses important considerations for the future, including biocompatibility, control, navigation, delivery, targeting, safety, and ethical implications. This review offers a holistic perspective on how nanorobots can reshape medical practices, paving the way for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department
of Biomedical Sciences, Datta Meghe Institute
of Higher Education and Research (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Praveen Kumar
- Department
of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| | - Hellen Yayra Dzoagbe
- Datta
Meghe College of Pharmacy, Datta Meghe Institute of Higher Education
and Research, (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Lydia Kiwanuka
- Department
of Medical Radiology and Imaging Technology, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| |
Collapse
|
4
|
Yang H, Yan J, Xu Y, Gao E, Hu Y, Sun H. Efficient in-droplet cell culture and cytomechanics measurement for assessment of human cellular responses to alcohol. Anal Chim Acta 2025; 1339:343636. [PMID: 39832875 DOI: 10.1016/j.aca.2025.343636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Excessive alcohol consumption poses a significant threat to human health, leading to cellular dehydration, degeneration, and necrosis. Alcohol-induced cellular damage is closely linked to alterations in cellular mechanical properties. However, characterizing these changes following alcohol-related injury remains challenging. Moreover, current research on single-cell mechanics often struggles to culture and measure cells within a controlled microenvironment, leading to complex experimental procedures and imprecise results. (63). RESULTS In this study, we developed a novel single cell measurement method that combines cell microculture in alcohol-containing solutions with cytomechanics assessment within microdroplets. This approach integrates key operations, including single-cell encapsulation and culture in droplets, droplet reinjection, and cell deformation analysis within droplets, enabling high-throughput and multi-parameter quantification of single-cell mechanical properties. The use of droplets provides a precisely regulated microculture environment, effectively avoiding channel clogging issues. Additionally, the integration of cytomechanics measurement simplifies the analytical process by eliminating the need for complex techniques within the droplets. Gastric mucosal epithelial cells (GES-1) and human umbilical vein endothelial cells (HUVECs) were selected as models for ethanol-induced injury to validate the proposed technique. The results demonstrate a bidirectional response in cellular deformability following ethanol treatment, with cells becoming stiffer at lower ethanol concentrations and softer at higher concentrations. (136). SIGNIFICANCE The integration of droplet microfluidics and cell mechanics offers a powerful platform for investigating the underlying mechanisms of ethanol-induced cellular damage. This approach is also applicable for studying changes in cellular mechanical properties by precisely modulating the microculture environment, providing a reliable tool for drug screening and disease modeling in biochemistry and biomedical engineering. (54).
Collapse
Affiliation(s)
- Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Jiaqi Yan
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Youyuan Xu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Enting Gao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215299, China.
| | - Yichong Hu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Haizhen Sun
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Li K, Jan YN. Experimental tools and emerging principles of organellar mechanotransduction. Trends Cell Biol 2025:S0962-8924(24)00279-4. [PMID: 39828483 DOI: 10.1016/j.tcb.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Mechanotransduction is the process by which cells detect mechanical forces and convert them into biochemical or electrical signals. This process occurs across various cellular compartments, including the plasma membrane, cytoskeleton, and intracellular organelles. While research has focused mainly on force sensing at the plasma membrane, the mechanisms and significance of intracellular mechanotransduction are just beginning to be understood. This review summarizes current techniques for studying organellar mechanobiology, and highlights advances in our understanding of the mechanosensitive events occurring in organelles such as the endoplasmic reticulum (ER), Golgi apparatus, and endolysosomes. Additionally, some open questions and promising directions are identified for future research.
Collapse
Affiliation(s)
- Kai Li
- Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, 100069, China; School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Surappa S, Pavagada S, Soto F, Akin D, Wei C, Degertekin FL, Demirci U. Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly. Nat Commun 2025; 16:494. [PMID: 39814720 PMCID: PMC11736025 DOI: 10.1038/s41467-024-55337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Particle manipulation plays a pivotal role in scientific and technological domains such as materials science, physics, and the life sciences. Here, we present a dynamically reconfigurable acoustofluidic metasurface that enables precise trapping and positioning of microscale particles in fluidic environments. By harnessing acoustic-structure interaction in a passive membrane resonator array, we generate localized standing acoustic waves that can be reconfigured in real-time. The resulting radiation force allows for subwavelength manipulation and patterning of particles on the metasurface at individual and collective scales, with actuation frequencies below 2 MHz. We further demonstrate the capabilities of the reconfigurable metasurface in trapping and enriching beads and biological cells flowing in microfluidic channels, showcasing its potential in high-throughput bioanalytical applications. Our versatile and biocompatible particle manipulation platform is suitable for applications ranging from the assembly of colloidal particles to enrichment of rare cells.
Collapse
Affiliation(s)
- Sushruta Surappa
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA
| | - Suraj Pavagada
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA
| | - Charles Wei
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Levent Degertekin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, USA.
| |
Collapse
|
7
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
8
|
Chen Z, Chen H, Fang K, Liu N, Yu J. Magneto-Thermal Hydrogel Swarms for Targeted Lesion Sealing. Adv Healthc Mater 2025; 14:e2403076. [PMID: 39449232 DOI: 10.1002/adhm.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Magnetic microswarms capable of performing navigation to targeted lesions show great potential for in vivo medical applications. However, using the swarms for lesion cavity filling encounters challenges from precise delivery and sealing. Herein, this work develops a magneto-thermal hydrogel swarm consisting of magnetic hydrogel particles, which can perform phase transition induced by temperature change. The particles are prepared using a temperature-responsive hydrogel matrix, tissue adhesive monomers, and magnetic microparticles. The swarms can be remolded to various shapes, and it can be used to seal perforation in phantom and gastric tissue. The swarms can also serve as drug carriers, and their drug release profiles induced by temperature changes are characterized. Finally, the targeted delivery, adaptive filling, and sealing of a gastric ulcer using the swarms are achieved in ex vivo and in vivo environments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Kaiwen Fang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| |
Collapse
|
9
|
Ma Y, Hu W, Hu J, Ruan M, Hu J, Yang M, Zhang Y, Xie H, Hu C. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:171. [PMID: 39562541 PMCID: PMC11577004 DOI: 10.1038/s41378-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
Living cells can rapidly adjust their metabolic activities in response to external stimuli, leading to fluctuations in intracellular temperature and reactive oxygen species (ROS) levels. Monitoring these parameters is essential for understanding cellular metabolism, particularly during dynamic biological processes. In this study, we present a bifunctional nanoprobe capable of simultaneous measurement of ROS levels and temperature within single cells. The nanoprobe features two individually addressable nanoelectrodes, with platinum (Pt) and nickel (Ni) coatings on both sides. At the tip, these two metal layers form a nano-thermocouple, enabling precise intracellular temperature measurements, while the Pt layer facilitates selective ROS detection. This dual functionality allows for real-time monitoring of cellular responses during synergistic chemo-photothermal therapy of cancer cells and zebrafish embryos subjected to mitochondrial toxic stress. Our results demonstrate that the nanoprobe effectively measures increases in temperature and ROS levels in HeLa cells undergoing chemo-photothermal therapy, as well as in chemically stimulated zebrafish embryos. By providing detailed analysis of submicrometer-scale temperature and ROS variations within living cells, this nanoprobe offers valuable insights into cellular processes and holds promise for early disease detection and drug development.
Collapse
Affiliation(s)
- Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Weikang Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jian Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Muyang Ruan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jie Hu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yi Zhang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Jeong M, Tan X, Fischer F, Qiu T. A Convoy of Magnetic Millirobots Transports Endoscopic Instruments for Minimally-Invasive Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308382. [PMID: 38946679 DOI: 10.1002/advs.202308382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Small-scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini-robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human-scale permanent magnetic set-up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small-scale robots for future minimally invasive surgical procedures.
Collapse
Affiliation(s)
- Moonkwang Jeong
- Cyber Valley group - Biomedical Microsystems, Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Felix Fischer
- Division of Smart Technologies for Tumor Therapy, German Cancer Research Center (DKFZ) Site Dresden, Blasewitzer Str. 80, 01307, Dresden, Germany
- Faculty of Engineering Sciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Tian Qiu
- Division of Smart Technologies for Tumor Therapy, German Cancer Research Center (DKFZ) Site Dresden, Blasewitzer Str. 80, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, 01307, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
11
|
Zhao Y, Dong X, Li Y, Cui J, Shi Q, Huang HW, Huang Q, Wang H. Integrated Cross-Scale Manipulation and Modulable Encapsulation of Cell-Laden Hydrogel for Constructing Tissue-Mimicking Microstructures. RESEARCH (WASHINGTON, D.C.) 2024; 7:0414. [PMID: 39050820 PMCID: PMC11266663 DOI: 10.34133/research.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
Engineered microstructures that mimic in vivo tissues have demonstrated great potential for applications in regenerative medicine, drug screening, and cell behavior exploration. However, current methods for engineering microstructures that mimic the multi-extracellular matrix and multicellular features of natural tissues to realize tissue-mimicking microstructures in vitro remain insufficient. Here, we propose a versatile method for constructing tissue-mimicking heterogeneous microstructures by orderly integration of macroscopic hydrogel exchange, microscopic cell manipulation, and encapsulation modulation. First, various cell-laden hydrogel droplets are manipulated at the millimeter scale using electrowetting on dielectric to achieve efficient hydrogel exchange. Second, the cells are manipulated at the micrometer scale using dielectrophoresis to adjust their density and arrangement within the hydrogel droplets. Third, the photopolymerization of these hydrogel droplets is triggered in designated regions by dynamically modulating the shape and position of the excitation ultraviolet beam. Thus, heterogeneous microstructures with different extracellular matrix geometries and components were constructed, including specific cell densities and patterns. The resulting heterogeneous microstructure supported long-term culture of hepatocytes and fibroblasts with high cell viability (over 90%). Moreover, the density and distribution of the 2 cell types had significant effects on the cell proliferation and urea secretion. We propose that our method can lead to the construction of additional biomimetic heterogeneous microstructures with unprecedented potential for use in future tissue engineering applications.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Juan Cui
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education,
North University of China, Taiyuan 030051, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering,
Harvard Medical School, Cambridge, MA 02139, USA
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
12
|
Zhang X, Zhang X, Yong T, Gan L, Yang X. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine 2024; 105:105200. [PMID: 38876044 PMCID: PMC11225208 DOI: 10.1016/j.ebiom.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
13
|
Vos BE, Muenker TM, Betz T. Characterizing intracellular mechanics via optical tweezers-based microrheology. Curr Opin Cell Biol 2024; 88:102374. [PMID: 38824902 DOI: 10.1016/j.ceb.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Intracellular organization is a highly regulated homeostatic state maintained to ensure eukaryotic cells' correct and efficient functioning. Thanks to decades of research, vast knowledge of the proteins involved in intracellular transport and organization has been acquired. However, how these influence and potentially regulate the intracellular mechanical properties of the cell is largely unknown. There is a deep knowledge gap between the understanding of cortical mechanics, which is accessible by a series of experimental tools, and the intracellular situation that has been largely neglected due to the difficulty of performing intracellular mechanics measurements. Recently, tools required for such quantitative and localized analysis of intracellular mechanics have been introduced. Here, we review how these approaches and the resulting viscoelastic models lead the way to a full mechanical description of the cytoplasm, which is instrumental for a quantitative characterization of the intracellular life of cells.
Collapse
Affiliation(s)
- Bart E Vos
- Third Institute of Physics, Georg August University, Göttingen, Germany
| | - Till M Muenker
- Third Institute of Physics, Georg August University, Göttingen, Germany
| | - Timo Betz
- Third Institute of Physics, Georg August University, Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, Göttingen, Germany.
| |
Collapse
|
14
|
Tang W, Yan D, Qin K, Guo X, Zhong Y, Xu H, Yang H, Zou J. Single-Electrode Electrostatic Repulsion Phenomenon for Remote Actuation and Manipulation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0393. [PMID: 38812533 PMCID: PMC11134173 DOI: 10.34133/research.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
One of the fundamental principles of electrostatics is that an uncharged object will be attracted to a charged object through electrostatic induction as the two approaches one another. We refer to the charged object as a single electrode and examine the scenario where a positive voltage is applied. Because of electrostatic induction phenomenon, single-electrode electrostatics only generates electrostatic attraction forces. Here, we discover that single-electrode electrostatics can generate electrostatic repulsion forces and define this new phenomenon as single-electrode electrostatic repulsion phenomenon. We investigate the fundamental electrostatic phenomena, giving a curve of electrostatic force versus voltage and then defining 3 regions. Remote actuation and manipulation are essential technologies that are of enormous concern, with tweezers playing an important role. Various tweezers designed on the basis of external fields of optics, acoustics, and magnetism can be used for remote actuation and manipulation, but some inherent drawbacks still exist. Tweezers would benefit greatly from our discovery in electrostatics. On the basis of this discovery, we propose the concept of electrostatic tweezers, which can achieve noncontact and remote actuation and manipulation. Experimental characterizations and successful applications in metamaterials, robots, and manipulating objects demonstrated that electrostatic tweezers can produce large deformation rates (>6,000%), fast actuation (>100 Hz), and remote manipulating distance (~15 cm) and have the advantages of simple device structure, easy control, lightweight, no dielectric breakdown, and low cost. Our work may deepen people's understanding of single-electrode electrostatics and opens new opportunities for remote actuation and manipulation.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
- Institute of Process Equipment, College of Energy Engineering,
Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Zuo C, Wen Y, Chen D, Ouyang J, Li P, Dong T. Dynamic Monitoring of Biomolecular Hydrodynamic Dimensions by Magnetization Motion on Quartz Crystal Microbalance. Anal Chem 2024; 96:7421-7428. [PMID: 38691506 DOI: 10.1021/acs.analchem.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Hydrodynamic dimension (HD) is the primary indicator of the size of bioconjugated particles and biomolecules. It is an important parameter in the study of solid-liquid two-phase dynamics. HD dynamic monitoring is crucial for precise and customized medical research as it enables the investigation of the continuous changes in the physicochemical characteristics of biomolecules in response to external stimuli. However, current HD measurements based on Brownian motion, such as dynamic light scattering (DLS), are inadequate for meeting the polydisperse sample demands of dynamic monitoring. In this paper, we propose MMQCM method samples of various types and HD dynamic monitoring. An alternating magnetic field of frequency ωm excites biomolecule-magnetic bead particles (bioMBs) to generate magnetization motion, and the quartz crystal microbalance (QCM) senses this motion to provide HD dynamic monitoring. Specifically, the magnetization motion is modulated onto the thickness-shear oscillation of the QCM at the frequency ωq. By analysis of the frequency spectrum of the QCM output signal, the ratio of the magnitudes of the real and imaginary parts of the components at frequency ωq ± 2ωm is extracted to characterize the particle size. Using the MMQCM approach, we successfully evaluated the size of bioMBs with different biomolecule concentrations. The 30 min HD dynamic monitoring was implemented. An increase of ∼10 nm in size was observed upon biomolecular structural stretching. Subsequently, the size of bioMBs gradually reduced due to the continuous dissociation of biomolecules, with a total reduction of 20∼40 nm. This HD dynamic monitoring demonstrates that the release of biomolecules can be regulated by controlling the duration of magnetic stimulation, providing valuable insights and guidance for controlled drug release in personalized precision medicine.
Collapse
Affiliation(s)
- Can Zuo
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Jihai Ouyang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Tao Dong
- Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Yu S, Liu C, Sui M, Wei H, Cheng H, Chen Y, Zhu Y, Wang H, Ma P, Wang L, Li T. Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. ULTRASONICS SONOCHEMISTRY 2024; 102:106714. [PMID: 38113586 PMCID: PMC10772293 DOI: 10.1016/j.ultsonch.2023.106714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.
Collapse
Affiliation(s)
- Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqiang Wei
- The Twelfth Oil Production Plant of Changqing Oilfield Company, Qingyang 745400, China
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujing Chen
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Penglei Ma
- College of Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| |
Collapse
|
17
|
Yang L, Yang Z, Zhang M, Jiang J, Yang H, Zhang L. Optimal Parameter Design and Microrobotic Navigation Control of Parallel-Mobile-Coil Systems. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2024; 21:855-867. [DOI: 10.1109/tase.2022.3228547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Lidong Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Moqiu Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering and the Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK T Stone Robotics Institute, The Chinese University of Hong Kong (CUHK), Hong Kong, China
| |
Collapse
|
18
|
Wrede P, Aghakhani A, Bozuyuk U, Yildiz E, Sitti M. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37917969 PMCID: PMC10658455 DOI: 10.1021/acsami.3c11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Microparticle manipulation and trapping play pivotal roles in biotechnology. To achieve effective manipulation within fluidic flow conditions and confined spaces, it is necessary to consider the physical properties of microparticles and the types of trapping forces applied. While acoustic waves have shown potential for manipulating microparticles, the existing setups involve complex actuation mechanisms and unstable microbubbles. Consequently, the need persists for an easily deployable acoustic actuation setup with stable microparticles. Here, we propose the use of hollow borosilicate microparticles possessing a rigid thin shell, which can be efficiently trapped and manipulated using a single-lens focused ultrasound (FUS) transducer under physiologically relevant flow conditions. These hollow microparticles offer stability and advantageous acoustic properties. They can be scaled up and mass-produced, making them suitable for systemic delivery. Our research demonstrates the successful trapping dynamics of FUS within circular tubings of varying diameters, validating the effectiveness of the method under realistic flow rates and ultrasound amplitudes. We also showcase the ability to remove hollow microparticles by steering the FUS transducer against the flow. Furthermore, we present potential biomedical applications, such as active cell tagging and navigation in bifurcated channels as well as ultrasound imaging in mouse cadaver liver tissue.
Collapse
Affiliation(s)
- Paul Wrede
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
- Institute
of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Erdost Yildiz
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
- Institute
for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School
of Medicine and School of Engineering, Koç
University, Istanbul, 34450, Turkey
| |
Collapse
|
19
|
Liu X, Jing Y, Xu C, Wang X, Xie X, Zhu Y, Dai L, Wang H, Wang L, Yu S. Medical Imaging Technology for Micro/Nanorobots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2872. [PMID: 37947717 PMCID: PMC10648532 DOI: 10.3390/nano13212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.
Collapse
Affiliation(s)
- Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaoxiao Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaopeng Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
20
|
Barroso PAA, Nascimento DR, Lima Neto MFD, De Assis EIT, Figueira CS, Silva JRV. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations. ZYGOTE 2023; 31:433-440. [PMID: 37537957 DOI: 10.1017/s0967199423000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.
Collapse
Affiliation(s)
- Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ernando Igo T De Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| |
Collapse
|
21
|
Zheng L, Hart N, Zeng Y. Micro-/nanoscale robotics for chemical and biological sensing. LAB ON A CHIP 2023; 23:3741-3767. [PMID: 37496448 PMCID: PMC10530003 DOI: 10.1039/d3lc00404j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The field of micro-/nanorobotics has attracted extensive interest from a variety of research communities and witnessed enormous progress in a broad array of applications ranging from basic research to global healthcare and to environmental remediation and protection. In particular, micro-/nanoscale robots provide an enabling platform for the development of next-generation chemical and biological sensing modalities, owing to their unique advantages as programmable, self-sustainable, and/or autonomous mobile carriers to accommodate and promote physical and chemical processes. In this review, we intend to provide an overview of the state-of-the-art development in this area and share our perspective in the future trend. This review starts with a general introduction of micro-/nanorobotics and the commonly used methods for propulsion of micro-/nanorobots in solution, along with the commonly used methods in their fabrication. Next, we comprehensively summarize the current status of the micro/nanorobotic research in relevance to chemical and biological sensing (e.g., motion-based sensing, optical sensing, and electrochemical sensing). Following that, we provide an overview of the primary challenges currently faced in the micro-/nanorobotic research. Finally, we conclude this review by providing our perspective detailing the future application of soft robotics in chemical and biological sensing.
Collapse
Affiliation(s)
- Liuzheng Zheng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Nathan Hart
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|
22
|
Yuan Y, Ma D, Liu X, Tang T, Li M, Yang Y, Yalikun Y, Tanaka Y. 10 μm thick ultrathin glass sheet to realize a highly sensitive cantilever for precise cell stiffness measurement. LAB ON A CHIP 2023; 23:3651-3661. [PMID: 37449439 DOI: 10.1039/d3lc00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The micro-cantilever-based sensor platform has become a promising technique in the sensing area for physical, chemical and biological detection due to its portability, small size, label-free characteristics and good compatibility with "lab-on-a-chip" devices. However, traditional micro-cantilever methods are limited by their complicated fabrication, manipulation and detection, and low sensitivity. In this research, we proposed a 10 μm thick ultrathin, highly sensitive, and flexible glass cantilever integrated with a strain gauge sensor and presented its application for the measurement of single-cell mechanical properties. Compared to conventional methods, the proposed ultrathin glass sheet (UTGS)-based cantilever is easier to fabricate, has better physical and chemical properties, and shows a high linear relationship between resistance change and applied small force or displacement. The sensitivity of the cantilever is 15 μN μm-1 and the minimum detectable displacement at the current development stage is 500 nm, which is sufficient for cell stiffness measurement. The cantilever also possesses excellent optical transparency that supports real-time observation during measurement. We first calibrated the cantilever by measuring the Young's modulus of PDMS with known specific stiffness, and then we demonstrated the measurement of Xenopus oocytes and fertilized eggs in different statuses. By further optimizing the UTGS-based cantilever, we can extend its applicability to various measurements of different cells.
Collapse
Affiliation(s)
- Yapeng Yuan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0871, Japan.
| | - Doudou Ma
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0871, Japan.
| | - Xun Liu
- Graduate School of Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Tao Tang
- Graduate School of Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0871, Japan.
- Graduate School of Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Janiak J, Li Y, Ferry Y, Doinikov AA, Ahmed D. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nat Commun 2023; 14:4705. [PMID: 37543657 PMCID: PMC10404234 DOI: 10.1038/s41467-023-40387-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Achieving controlled mobility of microparticles in viscous fluids can become pivotal in biologics, biotechniques, and biomedical applications. The self-assembly, trapping, and transport of microparticles are being explored in active matter, micro and nanorobotics, and microfluidics; however, little work has been done in acoustics, particularly in active matter and robotics. This study reports the discovery and characterization of microbubble behaviors in a viscous gel that is confined to a slight opening between glass boundaries in an acoustic field. Where incident waves encounter a narrow slit, acoustic pressure is amplified, causing the microbubbles to nucleate and cavitate within it. Intermittent activation transforms microbubbles from spherical to ellipsoidal, allowing them to be trapped within the interstice. Continuous activation propels ellipsoidal microbubbles through shape and volume modes that is developed at their surfaces. Ensembles of microbubbles self-assemble into a train-like arrangement, which in turn capture, transport, and release microparticles.
Collapse
Affiliation(s)
- Jakub Janiak
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yuyang Li
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yann Ferry
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Alexander A Doinikov
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland.
| |
Collapse
|
24
|
Li T, Yu S, Sun B, Li Y, Wang X, Pan Y, Song C, Ren Y, Zhang Z, Grattan KTV, Wu Z, Zhao J. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. SCIENCE ADVANCES 2023; 9:eadg4501. [PMID: 37146139 PMCID: PMC10162671 DOI: 10.1126/sciadv.adg4501] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.1 cm/s, comparable with rabbit blood flow characteristics. The equivalent friction coefficient with magnetically actuated retention is elevated ~24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across biomedical applications.
Collapse
Affiliation(s)
- Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Shimin Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunlu Pan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Chunlei Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Kenneth T V Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Science and Technology, University of London, London EC1V 0HB, UK
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
25
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
26
|
Fenelon KD, Thomas E, Samani M, Zhu M, Tao H, Sun Y, McNeill H, Hopyan S. Transgenic force sensors and software to measure force transmission across the mammalian nuclear envelope in vivo. Biol Open 2022; 11:bio059656. [PMID: 36350289 PMCID: PMC9672859 DOI: 10.1242/bio.059656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2025] Open
Abstract
Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mohammad Samani
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Helen McNeill
- Department of Developmental Biology, Washington University, St. Louis, MO 63110, USA
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, ON M5G 1X8, Canada
| |
Collapse
|
27
|
Wang X, Wang T, Chen X, Law J, Shan G, Tang W, Gong Z, Pan P, Liu X, Yu J, Ru C, Huang X, Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS NANO 2022; 16:10824-10839. [PMID: 35786860 DOI: 10.1021/acsnano.2c02938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In cell biology, fluorescent dyes are routinely used for biochemical measurements. The traditional global dye treatment method suffers from low signal-to-noise ratios (SNR), especially when used for detecting a low concentration of ions, and increasing the concentration of fluorescent dyes causes more severe cytotoxicity. Here, we report a robotic technique that controls how a low amount of fluorescent-dye-coated magnetic nanoparticles accurately forms a swarm and increases the fluorescent dye concentration in a local region inside a cell for intracellular measurement. Different from existing magnetic micromanipulation systems that generate large swarms (several microns and above) or that cannot move the generated swarm to an arbitrary position, our system is capable of generating a small swarm (e.g., 1 μm) and accurately positioning the swarm inside a single cell (position control accuracy: 0.76 μm). In experiments, the generated swarm inside the cell showed an SNR 10 times higher than the traditional global dye treatment method. The high-SNR robotic swarm enabled intracellular measurements that had not been possible to achieve with traditional global dye treatment. The robotic swarm technique revealed an apparent pH gradient in a migrating cell and was used to measure the intracellular apparent pH in a single oocyte of living C. elegans. With the position control capability, the swarm was also applied to measure calcium changes at the perinuclear region of a cell before and after mechanical stimulation. The results showed a significant calcium increase after mechanical stimulation, and the calcium increase was regulated by the mechanically sensitive ion channel, PIEZO1.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518172, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
| |
Collapse
|
28
|
Law J, Wang X, Luo M, Xin L, Du X, Dou W, Wang T, Shan G, Wang Y, Song P, Huang X, Yu J, Sun Y. Microrobotic swarms for selective embolization. SCIENCE ADVANCES 2022; 8:eabm5752. [PMID: 35857830 PMCID: PMC9299543 DOI: 10.1126/sciadv.abm5752] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Inspired by the collective intelligence in natural swarms, microrobotic agents have been controlled to form artificial swarms for targeted drug delivery, enhanced imaging, and hyperthermia. Different from these well-investigated tasks, this work aims to develop microrobotic swarms for embolization, which is a clinical technique used to block blood vessels for treating tumors, fistulas, and arteriovenous malformations. Magnetic particle swarms were formed for selective embolization to address the low selectivity of the present embolization technique that is prone to cause complications such as stroke and blindness. We established an analytical model that describes the relationships between fluid viscosity, flow rate, branching angle, magnetic field strength, and swarm integrity, based on which an actuation strategy was developed to maintain the swarm integrity inside a targeted region under fluidic flow conditions. Experiments in microfluidic channels, ex vivo tissues, and in vivo porcine kidneys validated the efficacy of the proposed strategy for selective embolization.
Collapse
Affiliation(s)
- Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Liming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xingzhou Du
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Yibin Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Peng Song
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Corresponding author. (P.S.); (J.Y.); (Y.S.)
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Corresponding author. (P.S.); (J.Y.); (Y.S.)
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Corresponding author. (P.S.); (J.Y.); (Y.S.)
| |
Collapse
|
29
|
Mechanical Characterization and Modelling of Subcellular Components of Oocytes. MICROMACHINES 2022; 13:mi13071087. [PMID: 35888904 PMCID: PMC9319074 DOI: 10.3390/mi13071087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
The early steps of embryogenesis are controlled exclusively by the quality of oocyte that linked closely to its mechanical properties. The mechanical properties of an oocyte were commonly characterized by assuming it was homogeneous such that the result deviated significantly from the true fact that it was composed of subcellular components. In this work, we accessed and characterized the subcellular components of the oocytes and developed a layered high-fidelity finite element model for describing the viscoelastic responses of an oocyte under loading. The zona pellucida (ZP) and cytoplasm were isolated from an oocyte using an in-house robotic micromanipulation platform and placed on AFM to separately characterizing their mechanical profiling by analyzing the creep behavior with the force clamping technique. The spring and damping parameters of a Kelvin–Voigt model were derived by fitting the creeping curve to the model, which were used to define the shear relaxation modulus and relaxation time of ZP or cytoplasm in the ZP and cytoplasm model. In the micropipette aspiration experiment, the model was accurate sufficiently to deliver the time-varying aspiration depth of the oocytes under the step negative pressure of a micropipette. In the micropipette microinjection experiment, the model accurately described the intracellular strain introduced by the penetration. The developed oocyte FEM model has implications for further investigating the viscoelastic responses of the oocytes under different loading settings.
Collapse
|
30
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
31
|
Rivas D, Mallick S, Sokolich M, Das S. Cellular Manipulation Using Rolling Microrobots. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2022; 2022:10.1109/marss55884.2022.9870486. [PMID: 37663239 PMCID: PMC10474612 DOI: 10.1109/marss55884.2022.9870486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many biomedical applications, such as targeted drug delivery or cell manipulation, are well suited for the deployment of microrobots, untethered devices that are capable of carrying out tasks at the microscale. One biocompatible means of driving microrobots relies on magnetic actuation. In particular, microrobots driven using rotating fields rather than magnetic field gradients are especially practical for real-word applications. Many biological applications involve enclosed environments, such as blood vessels, in which surfaces are abundant, therefore, surface rolling is a particularly pertinent method of transportation. In this paper we demonstrate manipulation and transportation of cells using two types of magnetically driven rolling microrobots. We find that the microrobots are able to manipulate the cells by physically pushing or by first adhering to the cells and then carrying them. Microrobots spinning at high rates also can transport cells via the induced fluid flows.
Collapse
Affiliation(s)
- David Rivas
- Department of Mechanical Engineering, University of Delaware
| | - Sudipta Mallick
- Department of Mechanical Engineering, University of Delaware
| | - Max Sokolich
- Department of Mechanical Engineering, University of Delaware
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware
| |
Collapse
|
32
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
33
|
Chiba H, Kodama K, Okada K, Ichikawa Y, Motosuke M. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures. MICROMACHINES 2022; 13:mi13050801. [PMID: 35630269 PMCID: PMC9147180 DOI: 10.3390/mi13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
Plasmonic optical tweezers and thermophoresis are promising tools for nanomaterial manipulation. When a gold nanostructure is irradiated with laser light, an electric field around the nanostructure is enhanced because of the localized surface plasmon resonance, which increases the optical radiation pressure applied to the nanomaterials. In addition, a temperature gradient is also generated by the photothermal conversion, and thermophoretic force is then generated. This study numerically evaluated the electric and temperature fields induced by the localized surface plasmon resonance between two gold nanostructures. Here, we focused on the effect of the gap width between nanostructures on the optical radiation pressure and thermophoretic force. The simulation results show that the electric field is locally enhanced according to the gap width, but the effect on the temperature rise due to the photothermal heating is small. This fact suggests that the gap effect between the nanostructures is particularly dominant in nanomanipulation using optical force, whereas it has little effect in nanomanipulation using thermophoresis.
Collapse
Affiliation(s)
- Hirotomo Chiba
- Department of Mechanical Engineering, Graduate School of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (H.C.); (K.K.); (K.O.)
| | - Kento Kodama
- Department of Mechanical Engineering, Graduate School of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (H.C.); (K.K.); (K.O.)
| | - Koki Okada
- Department of Mechanical Engineering, Graduate School of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (H.C.); (K.K.); (K.O.)
| | - Yoshiyasu Ichikawa
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan;
- Water Frontier Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan;
- Water Frontier Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Correspondence: ; Tel.: +81-3-5876-1717
| |
Collapse
|
34
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
35
|
Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics. Proc Natl Acad Sci U S A 2022; 119:e2121816119. [PMID: 35439057 PMCID: PMC9170021 DOI: 10.1073/pnas.2121816119] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interactions between the cell nucleus and cytoskeleton regulate cell mechanics and are facilitated by the interplay between the nuclear lamina and linker of nucleoskeleton and cytoskeleton (LINC) complexes. To date, the specific contribution of the four lamin isoforms to nucleocytoskeletal connectivity and whole-cell mechanics remains unknown. We discover that A- and B-type lamins distinctively interact with LINC complexes that bind F-actin and vimentin filaments to differentially modulate cortical stiffness, cytoplasmic stiffness, and contractility of mouse embryonic fibroblasts (MEFs). We propose and experimentally verify an integrated lamin–LINC complex–cytoskeleton model that explains cellular mechanical phenotypes in lamin-deficient MEFs. Our findings uncover potential mechanisms for cellular defects in human laminopathies and many cancers associated with mutations or modifications in lamin isoforms. The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin–LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.
Collapse
|
36
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
37
|
Isitman O, Bettahar H, Zhou Q. Non-Contact Cooperative Manipulation of Magnetic Microparticles Using Two Robotic Electromagnetic Needles. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3137546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Design and Optimization of a New Alternating Electromagnetic-Field-Generation System for an Inverted Microscope. MICROMACHINES 2022; 13:mi13040542. [PMID: 35457847 PMCID: PMC9027640 DOI: 10.3390/mi13040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
This paper presents the design and optimization of a new alternating electromagnetic-field-generation system, which is dedicated to actuating untethered magnetic microrobots under an inverted microscope. Its uniqueness is that the system parameters are optimally designed by considering both electric and geometry constraints for the target-driving application. The dominant parameters of the system are first determined by establishing analytical models. According to the requirements of targeted application, the optimization problem with certain constraints is formulated, which is solved via the multiobjective genetic algorithm method. A prototype system with the optimal parameters is developed for experimental testing. Experimental studies are carried out to characterize actual performance of the developed actuation system. For demonstration, a magnetic microball has been actuated for navigation by surface rolling in a petri dish filled with pure water. Results indicate that the reported electromagnetic-field-generation system meets the actuation requirements for potential applications.
Collapse
|
39
|
Jooss VM, Bolten JS, Huwyler J, Ahmed D. In vivo acoustic manipulation of microparticles in zebrafish embryos. SCIENCE ADVANCES 2022; 8:eabm2785. [PMID: 35333569 PMCID: PMC8956268 DOI: 10.1126/sciadv.abm2785] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In vivo micromanipulation using ultrasound is an exciting technology with promises for cancer research, brain research, vasculature biology, diseases, and treatment development. In the present work, we demonstrate in vivo manipulation of gas-filled microparticles using zebrafish embryos as a vertebrate model system. Micromanipulation methods often are conducted in vitro, and they do not fully reflect the complex environment associated in vivo. Four piezoelectric actuators were positioned orthogonally to each other around an off-centered fluidic channel that allowed for two-dimensional manipulation of intravenously injected microbubbles. Selective manipulation of microbubbles inside a blood vessel with micrometer precision was achieved without interfering with circulating blood cells. Last, we studied the viability of zebrafish embryos subjected to the acoustic field. This successful high-precision, in vivo acoustic manipulation of intravenously injected microbubbles offers potentially promising therapeutic options.
Collapse
Affiliation(s)
- Viktor Manuel Jooss
- Acoustics Robotics Systems Lab (ARSL), ETH-Zürich, Rüschlikon CH-8803, Switzerland
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel CH-4056, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel CH-4056, Switzerland
| | - Daniel Ahmed
- Acoustics Robotics Systems Lab (ARSL), ETH-Zürich, Rüschlikon CH-8803, Switzerland
- Corresponding author.
| |
Collapse
|
40
|
Abstract
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Min Ju Shon
- Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
41
|
Noncontact rotation, levitation, and acceleration of flowing liquid metal wires. Proc Natl Acad Sci U S A 2022; 119:2117535119. [PMID: 35105811 PMCID: PMC8833150 DOI: 10.1073/pnas.2117535119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Streams of fluids, particulates, and other flowing media are difficult to control after they have left a nozzle. Here, we present the noncontact manipulation of a free-flowing stream of liquid metal. Such streams form by electrochemically lowering the interfacial tension. The electrochemical reactions make the streams into soft current–carrying conductors presenting minimal resistance to manipulation via the Lorentz force in the magnetic field. Meanwhile, the movement of the stream induces a secondary force arising from Lenz’s law that causes the manipulated streams to levitate in unique shapes. This work, which exploits these forces in a visually stunning manner, enables shaping of fluids in a noncontact manner. This paper reports the noncontact manipulation of free-falling cylindrical streams of liquid metals into unique shapes, such as levitated loops and squares. Such cylindrical streams form in aqueous media by electrochemically lowering the interfacial tension. The electrochemical reactions require an electrical current that flows through the streams, making them susceptible to the Lorentz force. Consequently, varying the position and shape of a magnetic field relative to the stream controls these forces. Moreover, the movement of the metal stream relative to the magnetic field induces significant forces arising from Lenz’s law that cause the manipulated streams to levitate in unique shapes. The ability to control streams of liquid metals in a noncontact manner will enable strategies for shaping electronically conductive fluids for advanced manufacturing and dynamic electronic structures.
Collapse
|
42
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
43
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
44
|
Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022; 122:5411-5475. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, the continuous development of magnetic nanostructures (MNSs) has tremendously promoted both fundamental scientific research and technological applications. Different from the bulk magnet, the systematic engineering on MNSs has brought a great breakthrough in some emerging fields such as the construction of MNSs, the magnetism exploration of multidimensional MNSs, and their potential translational applications. In this review, we give a detailed description of the synthetic strategies of MNSs based on the fundamental features and application potential of MNSs and discuss the recent progress of MNSs in the fields of nanomedicines, advanced nanobiotechnology, catalysis, and electromagnetic wave adsorption (EMWA), aiming to provide guidance for fabrication strategies of MNSs toward diverse applications.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Junjie Xu
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Wei Li
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Shengnan Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou 511442, China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
46
|
Xu M, Lee PVS, Collins DJ. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. LAB ON A CHIP 2021; 22:90-99. [PMID: 34860222 DOI: 10.1039/d1lc00711d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate a sawtooth-based metasurface approach for flexibly orienting acoustic fields in a microfluidic device driven by surface acoustic waves (SAW), where sub-wavelength channel features can be used to arbitrarily steer acoustic fringes in a microchannel. Compared to other acoustofluidic methods, only a single travelling wave is used, the fluidic pressure field is decoupled from the fluid domain's shape, and steerable pressure fields are a function of a simply constructed polydimethylsiloxane (PDMS) metasurface shape. Our results are relevant to microfluidic applications including the patterning, concentration, focusing, and separation of microparticles and cells.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
47
|
Carlucci LA, Thomas WE. Modification to axial tracking for mobile magnetic microspheres. BIOPHYSICAL REPORTS 2021; 1:100031. [PMID: 35965968 PMCID: PMC9371438 DOI: 10.1016/j.bpr.2021.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Three-dimensional particle tracking is a routine experimental procedure for various biophysical applications including magnetic tweezers. A common method for tracking the axial position of particles involves the analysis of diffraction rings whose pattern depends sensitively on the axial position of the bead relative to the focal plane. To infer the axial position, the observed rings are compared with reference images of a bead at known axial positions. Often the precision or accuracy of these algorithms is measured on immobilized beads over a limited axial range, while many experiments are performed using freely mobile beads. This inconsistency raises the possibility of incorrect estimates of experimental uncertainty. By manipulating magnetic beads in a bidirectional magnetic tweezer setup, we evaluated the error associated with tracking mobile magnetic beads and found that the error of tracking a moving magnetic bead increases by almost an order of magnitude compared to the error of tracking a stationary bead. We found that this additional error can be ameliorated by excluding the center-most region of the diffraction ring pattern from tracking analysis. Evaluation of the limitations of a tracking algorithm is essential for understanding the error associated with a measurement. These findings promise to bring increased resolution to three-dimensional bead tracking of magnetic microspheres.
Collapse
Affiliation(s)
- Laura A. Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
48
|
Quan K, Zhang Z, Ren Y, Busscher HJ, van der Mei HC, Peterson BW. On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112526. [PMID: 34857305 DOI: 10.1016/j.msec.2021.112526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Biomaterial-associated infections can occur any time after surgical implantation of biomaterial implants and limit their success rates. On-demand, antimicrobial release coatings have been designed, but in vivo release triggers uniquely relating with infection do not exist, while inadvertent leakage of antimicrobials can cause exhaustion of a coating prior to need. Here, we attach magnetic-nanoparticles to a biomaterial surface, that can be pulled-off in a magnetic field through an adhering, infectious biofilm. Magnetic-nanoparticles remained stably attached to a surface upon exposure to PBS for at least 50 days, did not promote bacterial adhesion or negatively affect interaction with adhering tissue cells. Nanoparticles could be magnetically pulled-off from a surface through an adhering biofilm, creating artificial water channels in the biofilm. At a magnetic-nanoparticle coating concentration of 0.64 mg cm-2, these by-pass channels increased the penetrability of Staphylococcus aureus and Pseudomonas aeruginosa biofilms towards different antibiotics, yielding 10-fold more antibiotic killing of biofilm inhabitants than in absence of artificial channels. This innovative use of magnetic-nanoparticles for the eradication of biomaterial-associated infections requires no precise targeting of magnetic-nanoparticles and allows more effective use of existing antibiotics by breaking the penetration barrier of an infectious biofilm adhering to a biomaterial implant surface on-demand.
Collapse
Affiliation(s)
- Kecheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
49
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
50
|
Tang W, Lin Y, Zhang C, Liang Y, Wang J, Wang W, Ji C, Zhou M, Yang H, Zou J. Self-contained soft electrofluidic actuators. SCIENCE ADVANCES 2021; 7:7/34/eabf8080. [PMID: 34417171 PMCID: PMC8378814 DOI: 10.1126/sciadv.abf8080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/30/2021] [Indexed: 05/18/2023]
Abstract
Soft robotics revolutionized human-robot interactions, yet there exist persistent challenges for developing high-performance soft actuators that are powerful, rapid, controllable, safe, and portable. Here, we introduce a class of self-contained soft electrofluidic actuators (SEFAs), which can directly convert electrical energy into the mechanical energy of the actuators through electrically responsive fluids that drive the outside elastomer deformation. The use of special dielectric liquid enhances fluid flow capabilities, improving the actuation performance of the SEFAs. SEFAs are easily manufactured by using widely available materials and common fabrication techniques, and display excellent comprehensive performances in portability, controllability, rapid response, versatility, safety, and actuation. An artificial muscle stretching a joint and a soft bionic ray swimming in a tank demonstrate their effective performance. Hence, SEFAs offer a platform for developing soft actuators with potential applications in wearable assistant devices and soft robots.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Yangqiao Lin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Yuwen Liang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Jinrong Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Chen Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Maoying Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|