1
|
Fremlén H, Burmann BM. Maintaining the Integral Membrane Proteome: Revisiting the Functional Repertoire of Integral Membrane Proteases. Chembiochem 2025; 26:e202500048. [PMID: 40056010 PMCID: PMC12067869 DOI: 10.1002/cbic.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cells in all kingdoms of life employ dedicated protein quality control machineries for both their cytosolic and membrane proteome ensuring cellular functionality. These crucial systems consist besides a large variety of molecular chaperones, ensuring a proper fold and consequently function of the client's proteome, of several proteases to clean out damaged, unfunctional and potentially toxic proteins. One of the key features underlying the functional cycle of these quality control systems is the inherent flexibility of their bound clients which for a long time impaired detailed structural characterization, with advanced high-resolution NMR spectroscopy in the last decade playing a key role contributing to the present understanding of their functional properties. Although these studies laid the foundation of the present knowledge of the mechanistic details of the maintenance of cytosolic proteins, the understanding of related systems employed for membrane associated as well as integral membrane proteins remains rather sparse to date. Herein, we review the crucial contributions of structural and dynamical biology approaches, possessing the power to resolve both structure and dynamics of such systems as well as enabling the elucidation of the functional repertoire of multimeric proteases involved in maintaining a functional membrane proteome.
Collapse
Affiliation(s)
- Hannah Fremlén
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg405 30GöteborgSweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular BiologyWallenberg Centre for Molecular and Translational MedicineScience for Life LaboratorySwedish NMR CentreUniversity of Gothenburg405 30GöteborgSweden
| |
Collapse
|
2
|
Márquez-Nogueras KM, Kuo IY. Cardiovascular perspectives of the TRP channel polycystin 2. J Physiol 2024; 602:1565-1577. [PMID: 37312633 PMCID: PMC10716366 DOI: 10.1113/jp283835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Calcium release from the endoplasmic reticulum (ER) is predominantly driven by two key ion channel receptors, inositol 1, 4, 5-triphosphate receptor (InsP3R) in non-excitable cells and ryanodine receptor (RyR) in excitable and muscle-based cells. These calcium transients can be modified by other less-studied ion channels, including polycystin 2 (PC2), a member of the transient receptor potential (TRP) family. PC2 is found in various cell types and is evolutionarily conserved with paralogues ranging from single-cell organisms to yeasts and mammals. Interest in the mammalian form of PC2 stems from its disease relevance, as mutations in the PKD2 gene, which encodes PC2, result in autosomal dominant polycystic kidney disease (ADPKD). This disease is characterized by renal and liver cysts, and cardiovascular extrarenal manifestations. However, in contrast to the well-defined roles of many TRP channels, the role of PC2 remains unknown, as it has different subcellular locations, and the functional understanding of the channel in each location is still unclear. Recent structural and functional studies have shed light on this channel. Moreover, studies on cardiovascular tissues have demonstrated a diverse role of PC2 in these tissues compared to that in the kidney. We highlight recent advances in understanding the role of this channel in the cardiovascular system and discuss the functional relevance of PC2 in non-renal cells.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
3
|
Rönkkö J, Rodriguez Y, Rasila T, Torregrosa-Muñumer R, Pennonen J, Kvist J, Kuuluvainen E, Bosch LVD, Hietakangas V, Bultynck G, Tyynismaa H, Ylikallio E. Human IP 3 receptor triple knockout stem cells remain pluripotent despite altered mitochondrial metabolism. Cell Calcium 2023; 114:102782. [PMID: 37481871 DOI: 10.1016/j.ceca.2023.102782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.
Collapse
Affiliation(s)
- Julius Rönkkö
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Yago Rodriguez
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emilia Kuuluvainen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Ville Hietakangas
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Leuven, 3000, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland.
| |
Collapse
|
4
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
5
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Ryan KC, Laboy JT, Norman KR. Deregulation of Mitochondrial Calcium Handling Due to Presenilin Loss Disrupts Redox Homeostasis and Promotes Neuronal Dysfunction. Antioxidants (Basel) 2022; 11:antiox11091642. [PMID: 36139715 PMCID: PMC9495597 DOI: 10.3390/antiox11091642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this imbalance by suppressing SKN-1/Nrf antioxidant activity.
Collapse
|
7
|
Dagnino-Acosta A, Guerrero-Hernandez A. PKC Inhibits Sec61 Translocon-Mediated Sarcoplasmic Reticulum Ca2+ Leak in Smooth Muscle Cells. Front Physiol 2022; 13:925023. [PMID: 35837019 PMCID: PMC9275787 DOI: 10.3389/fphys.2022.925023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
PKC inhibitors stimulate Ca2+ release from internal stores in diverse cell types. Our data indicate that this action cannot be explained by an increased agonist-induced IP3 production or an overloaded SR Ca2+ pool in smooth muscle cells from guinea pig urinary bladder. The incubation of these cells with three different PKC inhibitors, such as Go6976, Go6983, and BIM 1, resulted in a higher SR Ca2+ leak revealed by inhibition of the SERCA pump with thapsigargin. This SR Ca2+ leakage was sensitive to protein translocation inhibitors such as emetine and anisomycin. Since this increased SR Ca2+ leak did not result in a depleted SR Ca2+ store, we have inferred there was a compensatory increase in SERCA pump activity, resulting in a higher steady-state. This new steady-state increased the frequency of Spontaneous Transient Outward Currents (STOCs), which reflect the activation of high conductance, Ca2+-sensitive potassium channels in response to RyR-mediated Ca2+ sparks. This increased STOC frequency triggered by PKC inhibition was restored to normal by inhibiting translocon-mediated Ca2+ leak with emetine. These results suggest a critical role of PKC-mediated translocon phosphorylation in regulating SR Ca2+ steady-state, which, in turn, alters SR Ca2+ releasing activity.
Collapse
Affiliation(s)
- Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Colima, Mexico
| | - Agustín Guerrero-Hernandez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- *Correspondence: Agustín Guerrero-Hernandez,
| |
Collapse
|
8
|
Callens M, Loncke J, Bultynck G. Dysregulated Ca 2+ Homeostasis as a Central Theme in Neurodegeneration: Lessons from Alzheimer's Disease and Wolfram Syndrome. Cells 2022; 11:cells11121963. [PMID: 35741091 PMCID: PMC9221778 DOI: 10.3390/cells11121963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Calcium ions (Ca2+) operate as important messengers in the cell, indispensable for signaling the underlying numerous cellular processes in all of the cell types in the human body. In neurons, Ca2+ signaling is crucial for regulating synaptic transmission and for the processes of learning and memory formation. Hence, the dysregulation of intracellular Ca2+ homeostasis results in a broad range of disorders, including cancer and neurodegeneration. A major source for intracellular Ca2+ is the endoplasmic reticulum (ER), which has close contacts with other organelles, including mitochondria. In this review, we focus on the emerging role of Ca2+ signaling at the ER–mitochondrial interface in two different neurodegenerative diseases, namely Alzheimer’s disease and Wolfram syndrome. Both of these diseases share some common hallmarks in the early stages, including alterations in the ER and mitochondrial Ca2+ handling, mitochondrial dysfunction and increased Reactive oxygen species (ROS) production. This indicates that similar mechanisms may underly these two disease pathologies and suggests that both research topics might benefit from complementary research.
Collapse
|
9
|
Huang DX, Yu X, Yu WJ, Zhang XM, Liu C, Liu HP, Sun Y, Jiang ZP. Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer’s Disease. Front Cell Dev Biol 2022; 10:834962. [PMID: 35281104 PMCID: PMC8913592 DOI: 10.3389/fcell.2022.834962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Although anything that changes spatiotemporally could be a signal, cells, particularly neurons, precisely manipulate calcium ion (Ca2+) to transmit information. Ca2+ homeostasis is indispensable for neuronal functions and survival. The cytosolic Ca2+ concentration ([Ca2+]CYT) is regulated by channels, pumps, and exchangers on cellular membrane systems. Under physiological conditions, both endoplasmic reticulum (ER) and mitochondria function as intracellular Ca2+ buffers. Furthermore, efficient and effective Ca2+ flux is observed at the ER-mitochondria membrane contact site (ERMCS), an intracellular membrane juxtaposition, where Ca2+ is released from the ER followed by mitochondrial Ca2+ uptake in sequence. Hence, the ER intraluminal Ca2+ concentration ([Ca2+]ER), the mitochondrial matrix Ca2+ concentration ([Ca2+]MT), and the [Ca2+]CYT are related to each other. Ca2+ signaling dysregulation and Ca2+ dyshomeostasis are associated with Alzheimer’s disease (AD), an irreversible neurodegenerative disease. The present review summarizes the cellular and molecular mechanism underlying Ca2+ signaling regulation and Ca2+ homeostasis maintenance at ER and mitochondria levels, focusing on AD. Integrating the amyloid hypothesis and the calcium hypothesis of AD may further our understanding of pathogenesis in neurodegeneration, provide therapeutic targets for chronic neurodegenerative disease in the central nervous system.
Collapse
Affiliation(s)
- Dong-Xu Huang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin-Min Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Ping Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Deparment of The First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Zi-Ping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zi-Ping Jiang,
| |
Collapse
|
10
|
Xu X, Quan W, Zhang F, Jin T. A systems approach to investigate GPCR-mediated Ras signaling network in chemoattractant sensing. Mol Biol Cell 2021; 33:ar23. [PMID: 34910560 PMCID: PMC9250378 DOI: 10.1091/mbc.e20-08-0545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A GPCR-mediated signaling network enables a chemotactic cell to generate adaptative Ras signaling in response to a large range of concentrations of a chemoattractant. To explore potential regulatory mechanisms of GPCR-controlled Ras signaling in chemosensing, we applied a software package, Simmune, to construct detailed spatiotemporal models simulating responses of the cAR1-mediated Ras signaling network. We first determined the dynamics of G-protein activation and Ras signaling in Dictyostelium cells in response to cAMP stimulations using live-cell imaging and then constructed computation models by incorporating potential mechanisms. Using simulations, we validated the dynamics of signaling events and predicted the dynamic profiles of those events in the cAR1-mediated Ras signaling networks with defective Ras inhibitory mechanisms, such as without RasGAP, with RasGAP overexpression, or with RasGAP hyperactivation. We describe a method of using Simmune to construct spatiotemporal models of a signaling network and run computational simulations without writing mathematical equations. This approach will help biologists to develop and analyze computational models that parallel live-cell experiments.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Wei Quan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Fengkai Zhang
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
11
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
12
|
Loncke J, Kerkhofs M, Kaasik A, Bezprozvanny I, Bultynck G. Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 Down-Regulation Potentiates SOCE and Decreases Aβ42 Accumulation in Human Neuroglioma Cells. Int J Mol Sci 2020; 21:ijms21155288. [PMID: 32722509 PMCID: PMC7432374 DOI: 10.3390/ijms21155288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aβ), the proteolytic product of amyloid precursor protein (APP), by β and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aβ accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aβ production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aβ-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aβ42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.
Collapse
Affiliation(s)
- Elena Scremin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Mario Agostini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Correspondence: (E.G.); (C.F.)
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Correspondence: (E.G.); (C.F.)
| |
Collapse
|
14
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
15
|
Foreman R, Wollman R. Mammalian gene expression variability is explained by underlying cell state. Mol Syst Biol 2020; 16:e9146. [PMID: 32043799 PMCID: PMC7011657 DOI: 10.15252/msb.20199146] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Gene expression variability in mammalian systems plays an important role in physiological and pathophysiological conditions. This variability can come from differential regulation related to cell state (extrinsic) and allele-specific transcriptional bursting (intrinsic). Yet, the relative contribution of these two distinct sources is unknown. Here, we exploit the qualitative difference in the patterns of covariance between these two sources to quantify their relative contributions to expression variance in mammalian cells. Using multiplexed error robust RNA fluorescent in situ hybridization (MERFISH), we measured the multivariate gene expression distribution of 150 genes related to Ca2+ signaling coupled with the dynamic Ca2+ response of live cells to ATP. We show that after controlling for cellular phenotypic states such as size, cell cycle stage, and Ca2+ response to ATP, the remaining variability is effectively at the Poisson limit for most genes. These findings demonstrate that the majority of expression variability results from cell state differences and that the contribution of transcriptional bursting is relatively minimal.
Collapse
Affiliation(s)
- Robert Foreman
- Institute for Quantitative and Computational BiosciencesUniversity of California, Los AngelesLos AngelesCAUSA
- Program in Bioinformatics and Systems BiologyUniversity of California, San DiegoSan DiegoCAUSA
| | - Roy Wollman
- Institute for Quantitative and Computational BiosciencesUniversity of California, Los AngelesLos AngelesCAUSA
- Program in Bioinformatics and Systems BiologyUniversity of California, San DiegoSan DiegoCAUSA
- Department of Integrative Biology and PhysiologyDepartment of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
16
|
Jiang H, Jayadev S, Lardelli M, Newman M. A Review of the Familial Alzheimer's Disease Locus PRESENILIN 2 and Its Relationship to PRESENILIN 1. J Alzheimers Dis 2019; 66:1323-1339. [PMID: 30412492 DOI: 10.3233/jad-180656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) genes are loci for mutations causing familial Alzheimer's disease (fAD). However, the function of these genes and how they contribute to fAD pathogenesis has not been fully determined. This review provides a summary of the overlapping and independent functions of the PRESENILINS with a focus on the lesser studied PSEN2. As a core component of the γ-secretase complex, the PSEN2 protein is involved in many γ-secretase-related physiological activities, including innate immunity, Notch signaling, autophagy, and mitochondrial function. These physiological activities have all been associated with AD progression, indicating that PSEN2 plays a particular role in AD pathogenesis.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Calcium Signaling in Neurons and Glial Cells: Role of Cav1 channels. Neuroscience 2019; 421:95-111. [DOI: 10.1016/j.neuroscience.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
|
18
|
Chandra G, Defour A, Mamchoui K, Pandey K, Mishra S, Mouly V, Sreetama S, Mahad Ahmad M, Mahjneh I, Morizono H, Pattabiraman N, Menon AK, Jaiswal JK. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov 2019; 5:118. [PMID: 31341644 PMCID: PMC6639303 DOI: 10.1038/s41420-019-0197-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive mutations in Anoctamin 5 (ANO5/TMEM16E), a member of the transmembrane 16 (TMEM16) family of Ca2+-activated ion channels and phospholipid scramblases, cause adult-onset muscular dystrophies (limb girdle muscular dystrophy 2L (LGMD2L) and Miyoshi Muscular Dystrophy (MMD3). However, the molecular role of ANO5 is unclear and ANO5 knockout mouse models show conflicting requirements of ANO5 in muscle. To study the role of ANO5 in human muscle cells we generated a myoblast line from a MMD3-patient carrying the c.2272C>T mutation, which we find causes the mutant protein to be degraded. The patient myoblasts exhibit normal myogenesis, but are compromised in their plasma membrane repair (PMR) ability. The repair deficit is linked to the poor ability of the endoplasmic reticulum (ER) to clear cytosolic Ca2+ increase caused by focal plasma membrane injury. Expression of wild-type ANO5 or pharmacological prevention of injury-triggered cytosolic Ca2+ overload enable injured patient muscle cells to repair. A homology model of ANO5 shows that several of the known LGMD2L/MMD3 patient mutations line the transmembrane region of the protein implicated in its channel activity. These results point to a role of cytosolic Ca2+ homeostasis in PMR, indicate a role for ANO5 in ER-mediated cytosolic Ca2+ uptake and identify normalization of cytosolic Ca2+ homeostasis as a potential therapeutic approach to treat muscular dystrophies caused by ANO5 deficit.
Collapse
Affiliation(s)
- Goutam Chandra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Aurelia Defour
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,7Present Address: Aix Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, 13385 Marseille, France
| | - Kamel Mamchoui
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kalpana Pandey
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Soumya Mishra
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Vincent Mouly
- 2Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - SenChandra Sreetama
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Mohammad Mahad Ahmad
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA
| | - Ibrahim Mahjneh
- 4Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hiroki Morizono
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| | | | - Anant K Menon
- 3Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jyoti K Jaiswal
- 1Center of Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010 USA.,5Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20037 USA
| |
Collapse
|
19
|
Eckstein M, Vaeth M, Aulestia FJ, Costiniti V, Kassam SN, Bromage TG, Pedersen P, Issekutz T, Idaghdour Y, Moursi AM, Feske S, Lacruz RS. Differential regulation of Ca 2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019; 12:12/578/eaav4663. [PMID: 31015290 DOI: 10.1126/scisignal.aav4663] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Store-operated Ca2+ entry (SOCE) channels are highly selective Ca2+ channels activated by the endoplasmic reticulum (ER) sensors STIM1 and STIM2. Their direct interaction with the pore-forming plasma membrane ORAI proteins (ORAI1, ORAI2, and ORAI3) leads to sustained Ca2+ fluxes that are critical for many cellular functions. Mutations in the human ORAI1 gene result in immunodeficiency, anhidrotic ectodermal dysplasia, and enamel defects. In our investigation of the role of ORAI proteins in enamel, we identified enamel defects in a patient with an ORAI1 null mutation. Targeted deletion of the Orai1 gene in mice showed enamel defects and reduced SOCE in isolated enamel cells. However, Orai2-/- mice showed normal enamel despite having increased SOCE in the enamel cells. Knockdown experiments in the enamel cell line LS8 suggested that ORAI2 and ORAI3 modulated ORAI1 function, with ORAI1 and ORAI2 being the main contributors to SOCE. ORAI1-deficient LS8 cells showed altered mitochondrial respiration with increased oxygen consumption rate and ATP, which was associated with altered redox status and enhanced ER Ca2+ uptake, likely due to S-glutathionylation of SERCA pumps. Our findings demonstrate an important role of ORAI1 in Ca2+ influx in enamel cells and establish a link between SOCE, mitochondrial function, and redox homeostasis.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Serena N Kassam
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.,Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA
| | - Pal Pedersen
- Carl Zeiss Microscopy, LLC, Thornwood, NY 10594, USA
| | - Thomas Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amr M Moursi
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
20
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxid Redox Signal 2018; 29:1176-1188. [PMID: 29890840 PMCID: PMC6157344 DOI: 10.1089/ars.2018.7506] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calcium (Ca2+) hypothesis of Alzheimer's disease (AD) gains popularity. It points to new signaling pathways that may underlie AD pathogenesis. Based on calcium hypothesis, novel targets for the development of potential AD therapies are identified. Recent Advances: Recently, the key role of neuronal store-operated calcium entry (nSOCE) in the development of AD has been described. Correct regulation of nSOCE is necessary for the stability of postsynaptic contacts to preserve the memory formation. Molecular identity of hippocampal nSOCE is defined. Perspective nSOCE-activating molecule, prototype of future anti-AD drugs, is described. CRITICAL ISSUES Endoplasmic reticulum Ca2+ overload happens in many but not in all AD models. The nSOCE targeting therapy described in this review may not be universally applicable. FUTURE DIRECTIONS There is a need to determine whether AD is a syndrome with one critical signaling pathway that initiates pathology, or it is a disorder with many different signaling pathways that are disrupted simultaneously or one after each other. It is necessary to validate applicability of nSOCE-activating therapy for the development of anti-AD medication. There is an experimental correlation between downregulated nSOCE and disrupted postsynaptic contacts in AD mouse models. Signaling mechanisms downstream of nSOCE which are responsible for the regulation of stability of postsynaptic contacts have to be discovered. That will bring new targets for the development of AD-preventing therapies. Antioxid. Redox Signal. 29, 1176-1188.
Collapse
Affiliation(s)
- Elena Popugaeva
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ekaterina Pchitskaya
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation.,2 Department of Physiology, UT Southwestern Medical Center at Dallas , Dallas, Texas
| |
Collapse
|
21
|
Sarasija S, Norman KR. Role of Presenilin in Mitochondrial Oxidative Stress and Neurodegeneration in Caenorhabditis elegans. Antioxidants (Basel) 2018; 7:antiox7090111. [PMID: 30149498 PMCID: PMC6162450 DOI: 10.3390/antiox7090111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer’s disease (AD) are poised to become a global health crisis, and therefore understanding the mechanisms underlying the pathogenesis is critical for the development of therapeutic strategies. Mutations in genes encoding presenilin (PSEN) occur in most familial Alzheimer’s disease but the role of PSEN in AD is not fully understood. In this review, the potential modes of pathogenesis of AD are discussed, focusing on calcium homeostasis and mitochondrial function. Moreover, research using Caenorhabditis elegans to explore the effects of calcium dysregulation due to presenilin mutations on mitochondrial function, oxidative stress and neurodegeneration is explored.
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
22
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Sarasija S, Laboy JT, Ashkavand Z, Bonner J, Tang Y, Norman KR. Presenilin mutations deregulate mitochondrial Ca 2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans. eLife 2018; 7:33052. [PMID: 29989545 PMCID: PMC6075864 DOI: 10.7554/elife.33052] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction and subsequent metabolic deregulation is observed in neurodegenerative diseases and aging. Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) cause most cases of familial Alzheimer’s disease (AD); however, the underlying mechanism of pathogenesis remains unclear. Here, we show that mutations in the C. elegans gene encoding a PSEN homolog, sel-12 result in mitochondrial metabolic defects that promote neurodegeneration as a result of oxidative stress. In sel-12 mutants, elevated endoplasmic reticulum (ER)-mitochondrial Ca2+ signaling leads to an increase in mitochondrial Ca2+ content which stimulates mitochondrial respiration resulting in an increase in mitochondrial superoxide production. By reducing ER Ca2+ release, mitochondrial Ca2+ uptake or mitochondrial superoxides in sel-12 mutants, we demonstrate rescue of the mitochondrial metabolic defects and prevent neurodegeneration. These data suggest that mutations in PSEN alter mitochondrial metabolic function via ER to mitochondrial Ca2+ signaling and provide insight for alternative targets for treating neurodegenerative diseases. Alzheimer's disease is the most common type of dementia. A hallmark of this condition is progressive loss of memory, accompanied by a buildup of hard clumps of protein between the brain cells. These protein clumps, known as amyloid plaques, are a key focus of research into Alzheimer's disease. They are likely to be toxic to brain cells, but their role in the development and progression of the disease is not yet known. Though the cause of Alzheimer's disease remains unclear, an inherited form of the disease may hold some clues. Mutations in genes for proteins called presenilins cause an earlier onset form of Alzheimer's disease, in which symptoms can develop in people who are in their 40s or 50s. The presenilin proteins appear in a cell structure called the endoplasmic reticulum, which plays many roles in the normal activities of a cell. Among other things, this structure stores and releases calcium ions, and cells use these ions to send and process many signals. The cell's energy-producing powerhouses, the mitochondria, use calcium to boost their metabolic activity. This allows them to make more energy for the cell, but in the process they also make damaging byproducts. These byproducts include oxygen-containing chemicals, known as reactive oxygen species (ROS), which react strongly with other molecules. While low levels of ROS are a normal part of cell activity, if the levels get too high, these chemicals can attack and damage structures within the cell. Untangling the effects of amyloid plaques and presenilins on brain cells in humans is challenging. But, a nematode worm called Caenorhabditis elegans does not form plaques, making it possible to look at presenilins on their own. Previous work in these worms has shown that presenilin mutations affect the endoplasmic reticulum and change the appearance of mitochondria. Here, Sarasija et al. extend this work to find out more about the effects presenilin mutations have on living cells. Presenilin mutations in young adult worms increased the amount of calcium released by the endoplasmic reticulum. This increased the activity of the mitochondria and caused ROS levels to rise to damaging levels. This caused stress inside the cells, and the worms started to show early signs damage to their nervous systems. Mutations that decreased the movement of calcium from the endoplasmic reticulum to the mitochondria helped to prevent the damage. Treating the mitochondria with antioxidants to mop up the extra ROS also protected the cells. This kind of damage to brain cells did not depend on amyloid plaques. Whilst the plaques are likely to be toxic, these new findings highlights the role that other chemical and biological processes might play in Alzheimer's disease. Further work to reveal the underlying cause of Alzheimer's disease may lead to new therapies to treat this condition in the future.
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Jocelyn T Laboy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Jennifer Bonner
- Department of Biology, Skidmore College, Saratoga Springs, United States
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| |
Collapse
|
24
|
Vervliet T. Ryanodine Receptors in Autophagy: Implications for Neurodegenerative Diseases? Front Cell Neurosci 2018; 12:89. [PMID: 29636667 PMCID: PMC5880912 DOI: 10.3389/fncel.2018.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Intracellular Ca2+ signaling is important in the regulation of several cellular processes including autophagy. The endoplasmic reticulum (ER) is the main and largest intracellular Ca2+ store. At the ER two protein families of Ca2+ release channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), are expressed. Several studies have reported roles in the regulation of autophagy for the ubiquitously expressed IP3R. For instance, IP3R-mediated Ca2+ release supresses basal autophagic flux by promoting mitochondrial metabolism, while also promoting the rapid initial increase in autophagic flux in response to nutrient starvation. Insights into the contribution of RyRs in autophagy have been lagging significantly compared to the advances made for IP3Rs. This is rather surprising considering that RyRs are predominantly expressed in long-lived cells with specialized metabolic needs, such as neurons and muscle cells, in which autophagy plays important roles. In this review article, recent studies revealing roles for RyRs in the regulation of autophagy will be discussed. Several RyR-interacting proteins that have been established to modulate both RyR function and autophagy will also be highlighted. Finally, the involvement of RyRs in neurodegenerative diseases will be addressed. Inhibition of RyR channels has not only been shown to be beneficial for treating several of these diseases but also regulates autophagy.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|
26
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
27
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Gazda K, Kuznicki J, Wegierski T. Knockdown of amyloid precursor protein increases calcium levels in the endoplasmic reticulum. Sci Rep 2017; 7:14512. [PMID: 29109429 PMCID: PMC5673940 DOI: 10.1038/s41598-017-15166-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Familial Alzheimer's disease (AD) is caused by mutations in the genes that encode amyloid precursor protein (APP) and presenilins. Disturbances in calcium homeostasis have been observed in various cellular and animal models of AD and are proposed to underlie the pathogenesis of the disease. Furthermore, wildtype presenilins were shown to regulate endoplasmic reticulum (ER) calcium homeostasis, although their precise mechanism of action remains controversial. To investigate whether APP also affects ER calcium levels, we used RNA interference to target the APP gene in cultured T84 cells in combination with two types of ER calcium sensors. Using a genetically encoded calcium indicator, GEM-CEPIA1er, we found that APP-deficient cells exhibited elevated resting calcium levels in the ER and prolonged emptying of ER calcium stores upon the cyclopiazonic acid-induced inhibition of sarco-endoplasmic reticulum calcium-ATPase. These effects could be ascribed to lower ER calcium leakage rates. Consistent with these results, translocation of the endogenous ER calcium sensor STIM1 to its target channel Orai1 was delayed following ER calcium store depletion. Our data suggest a physiological function of APP in the regulation of ER calcium levels.
Collapse
Affiliation(s)
- Kinga Gazda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| |
Collapse
|
29
|
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK-1 channels control β cell endoplasmic reticulum Ca 2+ homeostasis. Sci Signal 2017; 10:eaan2883. [PMID: 28928238 PMCID: PMC5672804 DOI: 10.1126/scisignal.aan2883] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ca2+ handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca2+ homeostasis is determined by ion movements across the ER membrane, including K+ flux through K+ channels. We demonstrated that K+ flux through ER-localized TALK-1 channels facilitated Ca2+ release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca2+ and increased ER Ca2+ concentrations, suggesting reduced ER Ca2+ leak. These changes in Ca2+ homeostasis were presumably due to TALK-1-mediated ER K+ flux, because we recorded K+ currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K+-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca2+ stores. Reduced ER Ca2+ content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca2+ and suggest that TALK-1 may be a therapeutic target to reduce ER Ca2+ handling defects in β cells during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels 1200, Belgium
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Kania E, Roest G, Vervliet T, Parys JB, Bultynck G. IP 3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Front Oncol 2017; 7:140. [PMID: 28725634 PMCID: PMC5497685 DOI: 10.3389/fonc.2017.00140] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Calcium ions (Ca2+) play a complex role in orchestrating diverse cellular processes, including cell death and survival. To trigger signaling cascades, intracellular Ca2+ is shuffled between the cytoplasm and the major Ca2+ stores, the endoplasmic reticulum (ER), the mitochondria, and the lysosomes. A key role in the control of Ca2+ signals is attributed to the inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), the main Ca2+-release channels in the ER. IP3Rs can transfer Ca2+ to the mitochondria, thereby not only stimulating core metabolic pathways but also increasing apoptosis sensitivity and inhibiting basal autophagy. On the other hand, IP3-induced Ca2+ release enhances autophagy flux by providing cytosolic Ca2+ required to execute autophagy upon various cellular stresses, including nutrient starvation, chemical mechanistic target of rapamycin inhibition, or drug treatment. Similarly, IP3Rs are able to amplify Ca2+ signals from the lysosomes and, therefore, impact autophagic flux in response to lysosomal channels activation. Furthermore, indirect modulation of Ca2+ release through IP3Rs may also be achieved by controlling the sarco/endoplasmic reticulum Ca2+ ATPases Ca2+ pumps of the ER. Considering the complex role of autophagy in cancer development and progression as well as in response to anticancer therapies, it becomes clear that it is important to fully understand the role of the IP3R and its cellular context in this disease. In cancer cells addicted to ER–mitochondrial Ca2+ fueling, IP3R inhibition leads to cancer cell death via mechanisms involving enhanced autophagy or mitotic catastrophe. Moreover, IP3Rs are the targets of several oncogenes and tumor suppressors and the functional loss of these genes, as occurring in many cancer types, can result in modified Ca2+ transport to the mitochondria and in modulation of the level of autophagic flux. Similarly, IP3R-mediated upregulation of autophagy can protect some cancer cells against natural killer cells-induced killing. The involvement of IP3Rs in the regulation of both autophagy and apoptosis, therefore, directly impact cancer cell biology and contribute to the molecular basis of tumor pathology.
Collapse
Affiliation(s)
- Elzbieta Kania
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Orai3 channel is the 2-APB-induced endoplasmic reticulum calcium leak. Cell Calcium 2017; 65:91-101. [DOI: 10.1016/j.ceca.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
|
32
|
Leon-Aparicio D, Chavez-Reyes J, Guerrero-Hernandez A. Activation of endoplasmic reticulum calcium leak by 2-APB depends on the luminal calcium concentration. Cell Calcium 2017; 65:80-90. [DOI: 10.1016/j.ceca.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
33
|
Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V, Kacskovics I, Prakriya M, Feske S. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 2017; 8:14714. [PMID: 28294127 PMCID: PMC5355949 DOI: 10.1038/ncomms14714] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is critical for lymphocyte function and immune responses. CRAC channels are hexamers of ORAI proteins that form the channel pore, but the contributions of individual ORAI homologues to CRAC channel function are not well understood. Here we show that deletion of Orai1 reduces, whereas deletion of Orai2 increases, SOCE in mouse T cells. These distinct effects are due to the ability of ORAI2 to form heteromeric channels with ORAI1 and to attenuate CRAC channel function. The combined deletion of Orai1 and Orai2 abolishes SOCE and strongly impairs T cell function. In vivo, Orai1/Orai2 double-deficient mice have impaired T cell-dependent antiviral immune responses, and are protected from T cell-mediated autoimmunity and alloimmunity in models of colitis and graft-versus-host disease. Our study demonstrates that ORAI1 and ORAI2 form heteromeric CRAC channels, in which ORAI2 fine-tunes the magnitude of SOCE to modulate immune responses.
Collapse
Affiliation(s)
- Martin Vaeth
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Jun Yang
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Isabelle Zee
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Miriam Eckstein
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Camille Knosp
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Ulrike Kaufmann
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | | | - Rodrigo S. Lacruz
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, School of Medicine, Saarland University, Homburg 66421, Germany
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Stefan Feske
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| |
Collapse
|
34
|
Gibson GE, Thakkar A. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View. Neurochem Res 2017; 42:1636-1648. [PMID: 28181072 DOI: 10.1007/s11064-017-2182-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.
Collapse
Affiliation(s)
- Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
| | - Ankita Thakkar
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| |
Collapse
|
35
|
Bittremieux M, Gerasimenko JV, Schuermans M, Luyten T, Stapleton E, Alzayady KJ, De Smedt H, Yule DI, Mikoshiba K, Vangheluwe P, Gerasimenko OV, Parys JB, Bultynck G. DPB162-AE, an inhibitor of store-operated Ca 2+ entry, can deplete the endoplasmic reticulum Ca 2+ store. Cell Calcium 2017; 62:60-70. [PMID: 28196740 DOI: 10.1016/j.ceca.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 02/05/2023]
Abstract
Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.
Collapse
Affiliation(s)
- Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Julia V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Marleen Schuermans
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Eloise Stapleton
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Kamil J Alzayady
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Katsuhiko Mikoshiba
- The Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Peter Vangheluwe
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Oleg V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
ER-luminal thiol/selenol-mediated regulation of Ca2+ signalling. Biochem Soc Trans 2016; 44:452-9. [PMID: 27068954 DOI: 10.1042/bst20150233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular Ca(2+)storage unit. Among other signalling outputs, the ER can release Ca(2+)ions, which can, for instance, communicate the status of ER protein folding to the cytosol and to other organelles, in particular the mitochondria. As a consequence, ER Ca(2+)flux can alter the apposition of the ER with mitochondria, influence mitochondrial ATP production or trigger apoptosis. All aspects of ER Ca(2+)flux have emerged as processes that are intimately controlled by intracellular redox conditions. In this review, we focus on ER-luminal redox-driven regulation of Ca(2+)flux. This involves the direct reduction of disulfides within ER Ca(2+)handling proteins themselves, but also the regulated interaction of ER chaperones and oxidoreductases such as calnexin or ERp57 with them. Well-characterized examples are the activating interactions of Ero1α with inositol 1,4,5-trisphosphate receptors (IP3Rs) or of selenoprotein N (SEPN1) with sarco/endoplasmic reticulum Ca(2+)transport ATPase 2 (SERCA2). The future discovery of novel ER-luminal modulators of Ca(2+)handling proteins is likely. Based on the currently available information, we describe how the variable ER redox conditions govern Ca(2+)flux from the ER.
Collapse
|
37
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
38
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer's disease - A therapeutic opportunity? Biochem Biophys Res Commun 2016; 483:998-1004. [PMID: 27641664 DOI: 10.1016/j.bbrc.2016.09.053] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the disease of lost memories. Synaptic loss is a major reason for memory defects in AD. Signaling pathways involved in memory loss in AD are under intense investigation. The role of deranged neuronal calcium (Ca2+) signaling in synaptic loss in AD is described in this review. Familial AD (FAD) mutations in presenilins are linked directly with synaptic Ca2+ signaling abnormalities, most likely by affecting endoplasmic reticulum (ER) Ca2+ leak function of presenilins. Excessive ER Ca2+ release via type 2 ryanodine receptors (RyanR2) is observed in AD spines due to increase in expression and function of RyanR2. Store-operated Ca2+ entry (nSOC) pathway is disrupted in AD spines due to downregulation of STIM2 protein. Because of these Ca2+ signaling abnormalities, a balance in activities of Ca2+-calmodulin-dependent kinase II (CaMKII) and Ca2+-dependent phosphatase calcineurin (CaN) is shifted at the synapse, tilting a balance between long-term potentiation (LTP) and long-term depression (LTD) synaptic mechanisms. As a result, synapses are weakened and eliminated in AD brains by LTD mechanism, causing memory loss. Targeting synaptic calcium signaling pathways offers opportunity for development of AD therapeutic agents.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
39
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Theobald DL. Presenilin adopts the ClC channel fold. Protein Sci 2016; 25:1363-5. [PMID: 26971579 PMCID: PMC4918416 DOI: 10.1002/pro.2919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 01/31/2023]
Abstract
Presenilin is an integral membrane aspartate protease that regulates cellular processes by cleaving proteins within the cell membrane. The recent crystal structure of presenilin reveals a conspicuous pore in a bundle of nine α‐helices, which was originally thought to adopt a novel protein fold. However, here I show that the presenilin fold is a variant of the ClC chloride channel/transporter fold. This observation may have important implications for presenilin's postulated biological role as a calcium leak channel.
Collapse
Affiliation(s)
- Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| |
Collapse
|
41
|
Munoz F, Hu H. The Role of Store-operated Calcium Channels in Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:139-51. [PMID: 26920011 DOI: 10.1016/bs.apha.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Store-operated calcium channels (SOCCs) are calcium-selective cation channels. Recently, there has been explosive growth in establishing the molecular mechanisms that mediate store-operated Ca(2+) entry (SOCE) and the role of this process in normal cellular function and disease states. SOCCs and its components appear to play an important role in many Ca(2+)-dependent processes in nonexcitable cells and are implicated in several possible disorders including allergies, multiple sclerosis, cancer, and inflammatory bowel disease. Recent studies have shown that SOCCs are expressed in the central nervous system (CNS) and involved in neuronal functions and pathological conditions, including chronic pain. In this chapter, we discuss SOCE and its physiological and pathological roles in the CNS. More specifically, we discuss the expression and function of SOCCs and their downstream signaling mechanisms under chronic pain conditions.
Collapse
Affiliation(s)
- Frances Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 2015; 201:1453-66. [PMID: 26500256 DOI: 10.1534/genetics.115.182808] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.
Collapse
|
43
|
Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460:40-9. [PMID: 25998732 DOI: 10.1016/j.bbrc.2015.02.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 11/22/2022]
Abstract
Store-operated calcium entry is a central mechanism in cellular calcium signalling and in maintaining cellular calcium balance. This review traces the history of research on store-operated calcium entry, the discovery of STIM and ORAI as central players in calcium entry, and the role of STIM and ORAI in biology and human disease. It describes current knowledge of the basic mechanism of STIM-ORAI signalling and of the varied mechanisms by which STIM-ORAI signalling can be modulated.
Collapse
|
44
|
Rana A, Yen M, Sadaghiani AM, Malmersjö S, Park CY, Dolmetsch RE, Lewis RS. Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J Cell Biol 2015; 209:653-69. [PMID: 26033257 PMCID: PMC4460148 DOI: 10.1083/jcb.201412060] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
STIM2β is a novel STIM2 splice isoform that inhibits Orai channels. Store-operated calcium entry (SOCE) regulates a wide variety of essential cellular functions. SOCE is mediated by STIM1 and STIM2, which sense depletion of ER Ca2+ stores and activate Orai channels in the plasma membrane. Although the amplitude and dynamics of SOCE are considered important determinants of Ca2+-dependent responses, the underlying modulatory mechanisms are unclear. In this paper, we identify STIM2β, a highly conserved alternatively spliced isoform of STIM2, which, in contrast to all known STIM isoforms, is a potent inhibitor of SOCE. Although STIM2β does not by itself strongly bind Orai1, it is recruited to Orai1 channels by forming heterodimers with other STIM isoforms. Analysis of STIM2β mutants and Orai1-STIM2β chimeras suggested that it actively inhibits SOCE through a sequence-specific allosteric interaction with Orai1. Our results reveal a previously unrecognized functional flexibility in the STIM protein family by which alternative splicing creates negative and positive regulators of SOCE to shape the amplitude and dynamics of Ca2+ signals.
Collapse
Affiliation(s)
- Anshul Rana
- Graduate Program in Biochemistry, Stanford University School of Medicine, Stanford, CA 94305 Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Graduate Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Amir Masoud Sadaghiani
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305 Novartis Institutes for Biomedical Research, Boston, MA 02139
| | - Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Chan Young Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| | - Ricardo E Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305 Novartis Institutes for Biomedical Research, Boston, MA 02139
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
45
|
Liang J, Kulasiri D, Samarasinghe S. Ca2+ dysregulation in the endoplasmic reticulum related to Alzheimer's disease: A review on experimental progress and computational modeling. Biosystems 2015; 134:1-15. [PMID: 25998697 DOI: 10.1016/j.biosystems.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating, incurable neurodegenerative disease affecting millions of people worldwide. Dysregulation of intracellular Ca(2+) signaling has been observed as an early event prior to the presence of clinical symptoms of AD and is believed to be a crucial factor contributing to its pathogenesis. The progressive and sustaining increase in the resting level of cytosolic Ca(2+) will affect downstream activities and neural functions. This review focuses on the issues relating to the increasing Ca(2+) release from the endoplasmic reticulum (ER) observed in AD neurons. Numerous research papers have suggested that the dysregulation of ER Ca(2+) homeostasis is associated with mutations in the presenilin genes and amyloid-β oligomers. These disturbances could happen at many different points in the signaling process, directly affecting ER Ca(2+) channels or interfering with related pathways, which makes it harder to reveal the underlying mechanisms. This review paper also shows that computational modeling is a powerful tool in Ca(2+) signaling studies and discusses the progress in modeling related to Ca(2+) dysregulation in AD research.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Informatics and Enabling Technologies, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
46
|
Miederer AM, Alansary D, Schwär G, Lee PH, Jung M, Helms V, Niemeyer BA. A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun 2015; 6:6899. [PMID: 25896806 PMCID: PMC4411291 DOI: 10.1038/ncomms7899] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/11/2015] [Indexed: 02/01/2023] Open
Abstract
Cellular homeostasis relies upon precise regulation of Ca(2+) concentration. Stromal interaction molecule (STIM) proteins regulate store-operated calcium entry (SOCE) by sensing Ca(2+) concentration in the ER and forming oligomers to trigger Ca(2+) entry through plasma membrane-localized Orai1 channels. Here we characterize a STIM2 splice variant, STIM2.1, which retains an additional exon within the region encoding the channel-activating domain. Expression of STIM2.1 is ubiquitous but its abundance relative to the more common STIM2.2 variant is dependent upon cell type and highest in naive T cells. STIM2.1 knockdown increases SOCE in naive CD4(+) T cells, whereas knockdown of STIM2.2 decreases SOCE. Conversely, overexpression of STIM2.1, but not STIM2.2, decreases SOCE, indicating its inhibitory role. STIM2.1 interaction with Orai1 is impaired and prevents Orai1 activation, but STIM2.1 shows increased affinity towards calmodulin. Our results imply STIM2.1 as an additional player tuning Orai1 activation in vivo.
Collapse
Affiliation(s)
- Anna-Maria Miederer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| | - Gertrud Schwär
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg 66421, Germany
| | - Po-Hsien Lee
- Center for Bioinformatics, Saarland University, Campus E2 1, R. 315, PO Box 151150, Saarbrücken 66041, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, Homburg 66421, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2 1, R. 315, PO Box 151150, Saarbrücken 66041, Germany
| | - Barbara A. Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, Homburg 66421, Germany
| |
Collapse
|
47
|
Egorova P, Popugaeva E, Bezprozvanny I. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer's disease. Semin Cell Dev Biol 2015; 40:127-33. [PMID: 25846864 DOI: 10.1016/j.semcdb.2015.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer's disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review.
Collapse
Affiliation(s)
- Polina Egorova
- Laboratory of Molecular Neurodegeneration, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, St. Petersburg State Polytechnical University, St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
48
|
Boutin B, Tajeddine N, Monaco G, Molgo J, Vertommen D, Rider M, Parys JB, Bultynck G, Gailly P. Endoplasmic reticulum Ca2+ content decrease by PKA-dependent hyperphosphorylation of type 1 IP3 receptor contributes to prostate cancer cell resistance to androgen deprivation. Cell Calcium 2015; 57:312-20. [DOI: 10.1016/j.ceca.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/27/2023]
|
49
|
Pászty K, Caride AJ, Bajzer Ž, Offord CP, Padányi R, Hegedűs L, Varga K, Strehler EE, Enyedi A. Plasma membrane Ca2+-ATPases can shape the pattern of Ca2+transients induced by store-operated Ca2+entry. Sci Signal 2015; 8:ra19. [DOI: 10.1126/scisignal.2005672] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Kuo IY, Hu J, Ha Y, Ehrlich BE. Presenilin-like GxGD membrane proteases have dual roles as proteolytic enzymes and ion channels. J Biol Chem 2015; 290:6419-27. [PMID: 25609250 DOI: 10.1074/jbc.m114.629584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GxGD proteases function to cleave protein substrates within the membrane. As these proteases contain multiple transmembrane domains typical of ion channels, we examined if GxGD proteases also function as ion channels. We tested the putative dual function by examining two archeobacterial GxGD proteases (PSH and FlaK), with known three-dimensional structures. Both are in the same GxGD family as presenilin, a protein mutated in Alzheimer Disease. Here, we demonstrate that PSH and FlaK form cation channels in lipid bilayers. A mutation that affected the enzymatic activity of FlaK rendered the channel catalytically inactive and altered the ion selectivity, indicating that the ion channel and the catalytic activities are linked. We report that the GxGD proteases, PSH and FlaK, are true "chanzymes" with interdependent ion channel and protease activity conferred by a single structural domain embedded in the membrane, supporting the proposal that higher-order proteases, including presenilin, have channel function.
Collapse
Affiliation(s)
| | - Jian Hu
- From the Departments of Pharmacology and
| | - Ya Ha
- From the Departments of Pharmacology and
| | - Barbara E Ehrlich
- From the Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|