1
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Erman B. Gaussian network model revisited: Effects of mutation and ligand binding on protein behavior. Phys Biol 2022; 19. [PMID: 35105836 DOI: 10.1088/1478-3975/ac50ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
The coarse-grained Gaussian Network model, GNM, considers only the alpha carbons of the folded protein. Therefore it is not directly applicable to the study of mutation or ligand binding problems where atomic detail is required. This shortcoming is improved by including all atom pairs within the coordination shell of each other into the Kirchoff Adjacency Matrix. Counting all contacts rather than only alpha carbon contacts diminishes the magnitude of fluctuations in the system. But more importantly, it changes the graph-like connectivity structure, i.e., the Kirchoff Adjacency Matrix of the protein. This change depends on amino acid type which introduces amino acid specific and position specific information into the classical coarse-grained GNM which was originally modelled in analogy with the phantom network model of rubber elasticity. With this modification, it is now possible to explain the consequences of mutation and ligand binding on residue fluctuations, their pair-correlations and mutual information (MI) shared by each pair. We refer to the new model as 'all-atom GNM'. Using examples from published data we show that the all-atom GNM gives B-factors that are in better agreement with experiment, can explain effects of mutation on long range communication in PDZ domains and can predict effects of GDP and GTP binding on the dimerization of KRAS.
Collapse
Affiliation(s)
- Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Rumeifeneri Yolu, Istanbul, Istanbul, 34450, TURKEY
| |
Collapse
|
3
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
4
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
5
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
6
|
Mehaffey MR, Schardon CL, Novelli ET, Cammarata MB, Webb LJ, Fast W, Brodbelt JS. Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry. Chem Sci 2019; 10:8025-8034. [PMID: 31853358 PMCID: PMC6837035 DOI: 10.1039/c9sc01032g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5'-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing β-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling.
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Christopher L Schardon
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Elisa T Novelli
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Michael B Cammarata
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Lauren J Webb
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| |
Collapse
|
7
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
8
|
Khan I, Spencer-Smith R, O'Bryan JP. Targeting the α4-α5 dimerization interface of K-RAS inhibits tumor formation in vivo. Oncogene 2018; 38:2984-2993. [PMID: 30573767 PMCID: PMC6474814 DOI: 10.1038/s41388-018-0636-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 01/17/2023]
Abstract
RAS genes are the most commonly mutated oncogenes in human cancers. Despite tremendous efforts over the past several decades, however, RAS-specific inhibitors remain elusive. Thus, targeting RAS remains a highly sought after goal of cancer research. Previously, we reported a new approach to inhibit RAS-dependent signaling and transformation in vitro through targeting the α4-α5 dimerization interface with a novel RAS-specific monobody, termed NS1. Expression of NS1 inhibits oncogenic K-RAS and H-RAS signaling and transformation in vitro. Here, we evaluated the efficacy of targeting RAS dimerization as an approach to inhibit tumor formation in vivo. Using a doxycycline (DOX) regulated NS1 expression system, we demonstrate that DOX-induced NS1 inhibited oncogenic K-RAS driven tumor growth in vivo. Furthermore, we observed context-specific effects of NS1 on RAS-mediated signaling in 2D vs 3D growth conditions. Finally, our results highlight the potential therapeutic efficacy of targeting the α4-α5 dimerization interface as an approach to inhibit RAS-driven tumors in vivo.
Collapse
Affiliation(s)
- Imran Khan
- Department of Pharmacology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.,Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Russell Spencer-Smith
- Department of Pharmacology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,Jesse Brown VA Medical Center, Chicago, IL, 60612, USA. .,Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA.
| |
Collapse
|
9
|
Parker JA, Mattos C. The K-Ras, N-Ras, and H-Ras Isoforms: Unique Conformational Preferences and Implications for Targeting Oncogenic Mutants. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031427. [PMID: 29038336 DOI: 10.1101/cshperspect.a031427] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ras controls a multitude of cellular signaling processes, including cell proliferation, differentiation, and apoptosis. Deregulation of Ras cycling often promotes tumorigenesis and various other developmental disorders, termed RASopothies. Although the structure of Ras has been known for many decades, it is still one of the most highly sought-after drug targets today, and is often referred to as "undruggable." At the center of this paradoxical protein is a lack of understanding of fundamental differences in the G domains between the highly similar Ras isoforms and common oncogenic mutations, despite the immense wealth of knowledge accumulated about this protein to date. A shift in the field during the past few years toward a high-resolution understanding of the structure confirms the hypothesis that each isoform and oncogenic mutation must be considered individually, and that not all Ras mutations are created equal. For the first time in Ras history, we have the ability to directly compare the structures of each wild-type isoform to construct a "base-line" understanding, which can then be used as a springboard for analyzing the effects of oncogenic mutations on the structure-function relationship in Ras. This is a fundamental and large step toward the goal of developing personalized therapies for patients with Ras-driven cancers and diseases.
Collapse
Affiliation(s)
- Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Chung JK, Lee YK, Denson JP, Gillette WK, Alvarez S, Stephen AG, Groves JT. K-Ras4B Remains Monomeric on Membranes over a Wide Range of Surface Densities and Lipid Compositions. Biophys J 2018; 114:137-145. [PMID: 29320680 PMCID: PMC5984903 DOI: 10.1016/j.bpj.2017.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - John-Paul Denson
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California.
| |
Collapse
|
11
|
Spencer-Smith R, Li L, Prasad S, Koide A, Koide S, O'Bryan JP. Targeting the α4-α5 interface of RAS results in multiple levels of inhibition. Small GTPases 2017; 10:378-387. [PMID: 28692342 DOI: 10.1080/21541248.2017.1333188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Generation of RAS-targeted therapeutics has long been considered a "holy grail" in cancer research. However, a lack of binding pockets on the surface of RAS and its picomolar affinity for guanine nucleotides have made isolation of inhibitors particularly challenging. We recently described a monobody, termed NS1, that blocks RAS signaling and oncogenic transformation. NS1 binds to the α4-β6-α5 interface of H-RAS and K-RAS thus preventing RAS dimerization and nanoclustering, which in turn prevents RAS-stimulated dimerization and activation of RAF. Interestingly, NS1 reduces interaction of oncogenic K-RAS, but not H-RAS, with RAF and reduces K-RAS plasma membrane localization. Here, we show that these isoform specific effects of NS1 on RAS:RAF are due to the distinct hypervariable regions of RAS isoforms. NS1 inhibited wild type RAS function by reducing RAS GTP levels. These findings reveal that NS1 disrupts RAS signaling through a mechanism that is more complex than simply inhibiting RAS dimerization and nanoclustering.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Lie Li
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Sheela Prasad
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA
| | - Akiko Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,f Department of Medicine, New York University School of Medicine , New York , NY , USA
| | - Shohei Koide
- d Department of Biochemistry and Molecular Biology, University of Chicago , Chicago , IL , USA.,e Perlmutter Cancer Center, New York University Langone Medical Center , New York , NY , USA.,g Department of Biochemistry and Molecular Pharmacology, New York University School , New York , NY , USA
| | - John P O'Bryan
- a Department of Pharmacology, University of Illinois at Chicago , Chicago , IL , USA.,b University of Illinois Cancer Center, University of Illinois at Chicago , Chicago , IL , USA.,c Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
12
|
Spencer-Smith R, O'Bryan JP. Direct inhibition of RAS: Quest for the Holy Grail? Semin Cancer Biol 2017; 54:138-148. [PMID: 29248537 DOI: 10.1016/j.semcancer.2017.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
Abstract
RAS GTPases (H-, K-, and N-RAS) are the most frequently mutated oncoprotein family in human cancer. However, the relatively smooth surface architecture of RAS and its picomolar affinity for nucleotide have given rise to the assumption that RAS is an "undruggable" target. Recent advancements in drug screening, molecular modeling, and a greater understanding of RAS function have led to a resurgence in efforts to pharmacologically target this challenging foe. This review focuses on the state of the art of RAS inhibition, the approaches taken to achieve this goal, and the challenges of translating these discoveries into viable therapeutics.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
13
|
Engin HB, Carlin D, Pratt D, Carter H. Modeling of RAS complexes supports roles in cancer for less studied partners. BMC BIOPHYSICS 2017; 10:5. [PMID: 28815022 PMCID: PMC5558186 DOI: 10.1186/s13628-017-0037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background RAS protein interactions have predominantly been studied in the context of the RAF and PI3kinase oncogenic pathways. Structural modeling and X-ray crystallography have demonstrated that RAS isoforms bind to canonical downstream effector proteins in these pathways using the highly conserved switch I and II regions. Other non-canonical RAS protein interactions have been experimentally identified, however it is not clear whether these proteins also interact with RAS via the switch regions. Results To address this question we constructed a RAS isoform-specific protein-protein interaction network and predicted 3D complexes involving RAS isoforms and interaction partners to identify the most probable interaction interfaces. The resulting models correctly captured the binding interfaces for well-studied effectors, and additionally implicated residues in the allosteric and hyper-variable regions of RAS proteins as the predominant binding site for non-canonical effectors. Several partners binding to this new interface (SRC, LGALS1, RABGEF1, CALM and RARRES3) have been implicated as important regulators of oncogenic RAS signaling. We further used these models to investigate competitive binding and multi-protein complexes compatible with RAS surface occupancy and the putative effects of somatic mutations on RAS protein interactions. Conclusions We discuss our findings in the context of RAS localization to the plasma membrane versus within the cytoplasm and provide a list of RAS protein interactions with possible cancer-related consequences, which could help guide future therapeutic strategies to target RAS proteins. Electronic supplementary material The online version of this article (doi:10.1186/s13628-017-0037-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Billur Engin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Daniel Carlin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Dexter Pratt
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| |
Collapse
|
14
|
Gerwert K, Mann D, Kötting C. Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. Biol Chem 2017; 398:523-533. [PMID: 28245182 DOI: 10.1515/hsz-2016-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
GTPases are central switches in cells. Their dysfunctions are involved in severe diseases. The small GTPase Ras regulates cell growth, differentiation and apoptosis by transmitting external signals to the nucleus. In one group of oncogenic mutations, the 'switch-off' reaction is inhibited, leading to persistent activation of the signaling pathway. The switch reaction is regulated by GTPase-activating proteins (GAPs), which catalyze GTP hydrolysis in Ras, and by guanine nucleotide exchange factors, which catalyze the exchange of GDP for GTP. Heterotrimeric G-proteins are activated by G-protein coupled receptors and are inactivated by GTP hydrolysis in the Gα subunit. Their GAPs are called regulators of G-protein signaling. In the same way that Ras serves as a prototype for small GTPases, Gαi1 is the most well-studied Gα subunit. By utilizing X-ray structural models, time-resolved infrared-difference spectroscopy, and biomolecular simulations, we elucidated the detailed molecular reaction mechanism of the GTP hydrolysis in Ras and Gαi1. In both proteins, the charge distribution of GTP is driven towards the transition state, and an arginine is precisely positioned to facilitate nucleophilic attack of water. In addition to these mechanistic details of GTP hydrolysis, Ras dimerization as an emerging factor in signal transduction is discussed in this review.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Daniel Mann
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Carsten Kötting
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| |
Collapse
|
15
|
Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 2017; 21:499-509. [PMID: 28333549 DOI: 10.1080/14728222.2017.1311325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Targeting downstream effectors required for oncogenic Ras signaling is a potential alternative or complement to the development of more direct approaches targeting Ras in the treatment of Ras-dependent cancers. Areas covered: Here we review literature pertaining to the molecular scaffold Kinase Suppressor of Ras (KSR) and its role in promoting signals critical to tumor maintenance. We summarize the phenotypes in knockout models, describe the role of KSR in cancer, and outline the structure and function of the KSR1 and KSR2 proteins. We then focus on the most recent literature that describes the crystal structure of the kinase domain of KSR2 in complex with MEK1, KSR-RAF dimerization particularly in response to RAF inhibition, and novel attempts to target KSR proteins directly. Expert opinion: KSR is a downstream effector of Ras-mediated tumorigenesis that is dispensable for normal growth and development, making it a desirable target for the development of novel therapeutics with a high therapeutic index. Recent advances have revealed that KSR can be functionally inhibited using a small molecule that stabilizes KSR in an inactive conformation. The efficacy and potential for this novel approach to be used clinically in the treatment of Ras-driven cancers is still being investigated.
Collapse
Affiliation(s)
- Beth K Neilsen
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Danielle E Frodyma
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Robert E Lewis
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kurt W Fisher
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
16
|
Chen M, Peters A, Huang T, Nan X. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 2016; 16:391-403. [PMID: 26423697 PMCID: PMC5421135 DOI: 10.2174/1389557515666151001152212] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/31/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology.
Collapse
Affiliation(s)
| | | | | | - Xiaolin Nan
- Department of Biomedical Engineering, Knight Cancer Institute, and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR.
| |
Collapse
|
17
|
Kovrigina EA, Galiakhmetov AR, Kovrigin EL. The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers. Biophys J 2016; 109:1000-8. [PMID: 26331257 DOI: 10.1016/j.bpj.2015.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022] Open
Abstract
Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, differentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through protein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crystal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Variation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystallographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature.
Collapse
|
18
|
Chung JK, Lee YK, Lam HYM, Groves JT. Covalent Ras Dimerization on Membrane Surfaces through Photosensitized Oxidation. J Am Chem Soc 2016; 138:1800-3. [PMID: 26812279 PMCID: PMC5515073 DOI: 10.1021/jacs.5b12648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ras, a small GTPase found primarily on the inner leaflet of the plasma membrane, is an important signaling node and an attractive target for anticancer therapies. Lateral organization of Ras on cellular membranes has long been a subject of intense research; in particular, whether it forms dimers on membranes as part of its regulatory function has been a point of great interest. Here we report Ras dimer formation on membranes by Type II photosensitization reactions, in which molecular oxygen mediates the radicalization of proteins under typical fluorescence experimental conditions. The presence of Ras dimers on membranes was detected by diffusion-based fluorescence techniques including fluorescence correlation spectroscopy and single particle tracking, and molecular weights of the stable covalently coupled species were confirmed by gel electrophoresis. Fluorescence spectroscopy implicates interprotein dityrosine as one of the dimerization motifs. The specific surface tyrosine distribution on Ras renders the protein especially sensitive to this reaction, and point mutations affecting surface tyrosines are observed to alter dimerization potential. The photosensitization reactions are reflective of physiological oxidative stress induced by reactive oxygen species, suggesting such processes may occur naturally and influence signaling pathways in cells.
Collapse
Affiliation(s)
| | | | | | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R. GTP-Dependent K-Ras Dimerization. Structure 2015; 23:1325-35. [PMID: 26051715 PMCID: PMC4497850 DOI: 10.1016/j.str.2015.04.019] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated β-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lyuba Khavrutskii
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Natasha Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Marzena A Dyba
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Karen Stefanisko
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|