1
|
Zhang S, Wang H, Sipko EL, Li S, Daugird TA, Legant WR, Dohlman HG. Shared and redundant proteins coordinate signal cross-talk between MAPK pathways in yeast. Mol Biol Cell 2024; 35:ar126. [PMID: 39083355 PMCID: PMC11481699 DOI: 10.1091/mbc.e24-06-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
All cells must detect, interpret, and adapt to multiple and concurrent stimuli. While signaling pathways are highly specialized, different pathways often share components or have components with overlapping functions. In the yeast Saccharomyces cerevisiae, the high osmolarity glycerol (HOG) pathway has two seemingly redundant branches, mediated by Sln1 and Sho1. Both branches are activated by osmotic pressure, leading to phosphorylation of the MAPKs Hog1 and Kss1. The mating pathway is activated by pheromone, leading to phosphorylation of the MAPKs Fus3 and Kss1. Given that Kss1 is shared by the two pathways, we investigated its role in signal coordination. We activated both pathways with a combination of salt and pheromone, in cells lacking the shared MAPK and in cells lacking either of the redundant branches of the HOG pathway. By systematically evaluating MAPK activation, translocation, and transcription programs, we determined that Sho1 mediates cross talk between the HOG and mating pathways and does so through Kss1. Further, we show that Kss1 initiates a transcriptional program that is distinct from that induced by Hog1 and Fus3. Our findings reveal how redundant and shared components coordinate concurrent signals and thereby adapt to sudden environmental changes.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hao Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emily L. Sipko
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shuang Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy A. Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Wesley R. Legant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
2
|
González B, Mirzaei M, Basu S, Pujari AN, Vandermeulen MD, Prabhakar A, Cullen PJ. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. J Biol Chem 2023; 299:105297. [PMID: 37774975 PMCID: PMC10641623 DOI: 10.1016/j.jbc.2023.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mahnoosh Mirzaei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aditi Prabhakar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
3
|
Papasergi-Scott MM, Kwarcinski FE, Yu M, Panova O, Ovrutsky AM, Skiniotis G, Tall GG. Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms. Structure 2023; 31:553-564.e7. [PMID: 36931277 PMCID: PMC10164081 DOI: 10.1016/j.str.2023.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann M Ovrutsky
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Mosbacher M, Lee SS, Yaakov G, Nadal-Ribelles M, de Nadal E, van Drogen F, Posas F, Peter M, Claassen M. Positive feedback induces switch between distributive and processive phosphorylation of Hog1. Nat Commun 2023; 14:2477. [PMID: 37120434 PMCID: PMC10148820 DOI: 10.1038/s41467-023-37430-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/16/2023] [Indexed: 05/01/2023] Open
Abstract
Cellular decision making often builds on ultrasensitive MAPK pathways. The phosphorylation mechanism of MAP kinase has so far been described as either distributive or processive, with distributive mechanisms generating ultrasensitivity in theoretical analyses. However, the in vivo mechanism of MAP kinase phosphorylation and its activation dynamics remain unclear. Here, we characterize the regulation of the MAP kinase Hog1 in Saccharomyces cerevisiae via topologically different ODE models, parameterized on multimodal activation data. Interestingly, our best fitting model switches between distributive and processive phosphorylation behavior regulated via a positive feedback loop composed of an affinity and a catalytic component targeting the MAP kinase-kinase Pbs2. Indeed, we show that Hog1 directly phosphorylates Pbs2 on serine 248 (S248), that cells expressing a non-phosphorylatable (S248A) or phosphomimetic (S248E) mutant show behavior that is consistent with simulations of disrupted or constitutively active affinity feedback and that Pbs2-S248E shows significantly increased affinity to Hog1 in vitro. Simulations further suggest that this mixed Hog1 activation mechanism is required for full sensitivity to stimuli and to ensure robustness to different perturbations.
Collapse
Affiliation(s)
- Maximilian Mosbacher
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sung Sik Lee
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
| | - Gilad Yaakov
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mariona Nadal-Ribelles
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Eulàlia de Nadal
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Frank van Drogen
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Francesc Posas
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
- Department of Internal Medicine I, Faculty of Medicine, University Hospital Tübingen, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4. J Biol Chem 2023; 299:104569. [PMID: 36870684 PMCID: PMC10070915 DOI: 10.1016/j.jbc.2023.104569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
To cope with an increased external osmolarity, the budding yeast Saccharomyces cerevisiae activates the Hog1 mitogen-activated kinase (MAPK) through the High-Osmolarity Glycerol (HOG) pathway, which governs adaptive responses to osmostress. In the HOG pathway, two apparently redundant upstream branches, termed SLN1 and SHO1, activate cognate MAP3Ks Ssk2/22 and Ste11, respectively. These MAP3Ks, when activated, phosphorylate and thus activate the Pbs2 MAP2K, which in turn phosphorylates and activates Hog1. Previous studies have shown that protein tyrosine phosphatases (PTP) and the serine/threonine protein phosphatases type 2C (PP2C) negatively regulate the HOG pathway to prevent its excessive and inappropriate activation, which is detrimental to cell growth. The tyrosine phosphatases Ptp2 and Ptp3 dephosphorylate Hog1 at Tyr-176, whereas the PP2Cs Ptc1 and Ptc2 dephosphorylate Hog1 at Thr-174. In contrast, the identities of phosphatases that dephosphorylate Pbs2 remained less clear. Here, we examined the phosphorylation status of Pbs2 at the activating phosphorylation sites Ser-514 and Thr-518 (S514 and T518) in various mutants, both in the unstimulated and osmostressed conditions. Thus, we found that Ptc1-Ptc4 collectively regulate Pbs2 negatively, but each Ptc acts differently to the two phosphorylation sites in Pbs2. T518 is predominantly dephosphorylated by Ptc1, whereas the effect of Ptc2-Ptc4 could be seen only when Ptc1 is absent. Conversely, S514 can be dephosphorylated by any of Ptc1-4 to an appreciable extent. We also show that Pbs2 dephosphorylation by Ptc1 requires the adaptor protein Nbp2 that recruits Ptc1 to Pbs2, thus highlighting the complex processes involved in regulating adaptive responses to osmostress.
Collapse
|
6
|
Gonz Lez B, Mirzaei M, Basu S, Prabhakar A, Cullen PJ. New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530426. [PMID: 36909494 PMCID: PMC10002611 DOI: 10.1101/2023.02.28.530426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
Collapse
|
7
|
Modulation of transcription factor dynamics allows versatile information transmission. Sci Rep 2023; 13:2652. [PMID: 36788258 PMCID: PMC9929046 DOI: 10.1038/s41598-023-29539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Cells detect changes in their environment and generate responses, often involving changes in gene expression. In this paper we use information theory and a simple transcription model to analyze whether the resulting gene expression serves to identify extracellular stimuli and assess their intensity when they are encoded in the amplitude, duration or frequency of pulses of a transcription factor's nuclear concentration (or activation state). We find, for all cases, that about three ranges of input strengths can be distinguished and that maximum information transmission occurs for fast and high activation threshold promoters. The three input modulation modes differ in the sensitivity to changes in the promoters parameters. Frequency modulation is the most sensitive and duration modulation, the least. This is key for signal identification: there are promoter parameters that yield a relatively high information transmission for duration or amplitude modulation and a much smaller value for frequency modulation. The reverse situation cannot be found with a single promoter transcription model. Thus, pulses of transcription factors can selectively activate the "frequency-tuned" promoter while prolonged nuclear accumulation would activate promoters of all three modes simultaneously. Frequency modulation is therefore highly selective and better suited than the other encoding modes for signal identification without requiring other mediators of the transduction process.
Collapse
|
8
|
Thiemicke A, Neuert G. Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments. Front Cell Dev Biol 2023; 11:1124874. [PMID: 37025183 PMCID: PMC10072286 DOI: 10.3389/fcell.2023.1124874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
All cells employ signal transduction pathways to respond to physiologically relevant extracellular cytokines, stressors, nutrient levels, hormones, morphogens, and other stimuli that vary in concentration and rate in healthy and diseased states. A central unsolved fundamental question in cell signaling is whether and how cells sense and integrate information conveyed by changes in the rate of extracellular stimuli concentrations, in addition to the absolute difference in concentration. We propose that different environmental changes over time influence cell behavior in addition to different signaling molecules or different genetic backgrounds. However, most current biomedical research focuses on acute environmental changes and does not consider how cells respond to environments that change slowly over time. As an example of such environmental change, we review cell sensitivity to environmental rate changes, including the novel mechanism of rate threshold. A rate threshold is defined as a threshold in the rate of change in the environment in which a rate value below the threshold does not activate signaling and a rate value above the threshold leads to signal activation. We reviewed p38/Hog1 osmotic stress signaling in yeast, chemotaxis and stress response in bacteria, cyclic adenosine monophosphate signaling in Amoebae, growth factors signaling in mammalian cells, morphogen dynamics during development, temporal dynamics of glucose and insulin signaling, and spatio-temproral stressors in the kidney. These reviewed examples from the literature indicate that rate thresholds are widespread and an underappreciated fundamental property of cell signaling. Finally, by studying cells in non-linear environments, we outline future directions to understand cell physiology better in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander Thiemicke
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Gregor Neuert,
| |
Collapse
|
9
|
Hollenstein DM, Veis J, Romanov N, Gérecová G, Ogris E, Hartl M, Ammerer G, Reiter W. PP2A Rts1 antagonizes Rck2-mediated hyperosmotic stress signaling in yeast. Microbiol Res 2022; 260:127031. [PMID: 35461031 DOI: 10.1016/j.micres.2022.127031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
In Saccharomyces cerevisiae, impairment of protein phosphatase PP2ARts1 leads to temperature and hyperosmotic stress sensitivity, yet the underlying mechanism and the scope of action of the phosphatase in the stress response remain elusive. Using a quantitative mass spectrometry-based approach we have identified a set of putative substrate proteins that show both hyperosmotic stress- and PP2ARts1-dependent changes in their phosphorylation pattern. A comparative analysis with published MS-shotgun data revealed that the phosphorylation status of many of these sites is regulated by the MAPKAP kinase Rck2, suggesting that the phosphatase antagonizes Rck2 signaling. Detailed gel mobility shift assays and protein-protein interaction analysis strongly indicate that Rck2 activity is directly regulated by PP2ARts1 via a SLiM B56-family interaction motif, revealing how PP2ARts1 influences the response to hyperosmotic stress in Yeast.
Collapse
Affiliation(s)
- D M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - J Veis
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - N Romanov
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - G Gérecová
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - E Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - M Hartl
- Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - G Ammerer
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - W Reiter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
10
|
Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals (Basel) 2022; 12:ani12111337. [PMID: 35681802 PMCID: PMC9179521 DOI: 10.3390/ani12111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heat stress (HS) represents an environmental and socio-economic burden to the poultry industry worldwide. However, the underpinning mechanisms for HS responses are still not well defined. Here, we used a high-throughput analysis to determine the metabolite profiles in acute and chronic heat-stressed broilers in comparison with thermoneutral and pair-fed birds. The results showed that HS altered several duodenal metabolites in a duration-dependent manner and identified potential metabolite signatures. Abstract Heat stress (HS) is devastating to poultry production sustainability worldwide. In addition to its adverse effects on growth, welfare, meat quality, and mortality, HS alters the gut integrity, leading to dysbiosis and leaky gut syndrome; however, the underlying mechanisms are not fully defined. Here, we used a high-throughput mass spectrometric metabolomics approach to probe the metabolite profile in the duodenum of modern broilers exposed to acute (AHS, 2 h) or chronic cyclic (CHS, 8 h/day for 2 weeks) HS in comparison with thermoneutral (TN) and pair-fed birds. Ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC–HRMS) identified a total of 178 known metabolites. The trajectory analysis of the principal component analysis (PCA) score plots (both 2D and 3D maps) showed clear separation between TN and each treated group, indicating a unique duodenal metabolite profile in HS birds. Within the HS groups, partial least squares discriminant analysis (PLS-DA) displayed different clusters when comparing metabolite profiles from AHS and CHS birds, suggesting that the metabolite signatures were also dependent on HS duration. To gain biologically related molecule networks, the above identified duodenal metabolites were mapped into the Ingenuity Pathway Analysis (IPA) knowledge-base and analyzed to outline the most enriched biological functions. Several common and specific top canonical pathways were generated. Specifically, the adenosine nucleotide degradation and dopamine degradation pathways were specific for the AHS group; however, the UDP-D-xylose and UDP-D-glucuronate biosynthesis pathways were generated only for the CHS group. The top diseases enriched by the IPA core analysis for the DA metabolites, including cancer, organismal (GI) injury, hematological, cardiovascular, developmental, hereditary, and neurological disorders, were group-specific. The top altered molecular and cellular functions were amino acid metabolism, molecular transport, small molecule biochemistry, protein synthesis, cell death and survival, and DNA damage and repair. The IPA-causal network predicted that the upstream regulators (carnitine palmitoyltransferase 1B, CPT1B; histone deacetylase 11, HDAC11; carbonic anhydrase 9, CA9; interleukin 37, IL37; glycine N-methyl transferase, GNMT; GATA4) and the downstream mediators (mitogen-activated protein kinases, MAPKs; superoxide dismutase, SOD) were altered in the HS groups. Taken together, these data showed that, independently of feed intake depression, HS induced significant changes in the duodenal metabolite profile in a duration-dependent manner and identified a potential duodenal signature for HS.
Collapse
|
11
|
Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Biomolecules 2021; 11:biom11101530. [PMID: 34680163 PMCID: PMC8533825 DOI: 10.3390/biom11101530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Eukaryotes utilize distinct mitogen/messenger-activated protein kinase (MAPK) pathways to evoke appropriate responses when confronted with different stimuli. In yeast, hyperosmotic stress activates MAPK Hog1, whereas mating pheromones activate MAPK Fus3 (and MAPK Kss1). Because these pathways share several upstream components, including the small guanosine-5'-triphosphate phosphohydrolase (GTPase) cell-division-cycle-42 (Cdc42), mechanisms must exist to prevent inadvertent cross-pathway activation. Hog1 activity is required to prevent crosstalk to Fus3 and Kss1. To identify other factors required to maintain signaling fidelity during hypertonic stress, we devised an unbiased genetic selection for mutants unable to prevent such crosstalk even when active Hog1 is present. We repeatedly isolated truncated alleles of RGA1, a Cdc42-specific GTPase-activating protein (GAP), each lacking its C-terminal catalytic domain, that permit activation of the mating MAPKs under hyperosmotic conditions despite Hog1 being present. We show that Rga1 down-regulates Cdc42 within the high-osmolarity glycerol (HOG) pathway, but not the mating pathway. Because induction of mating pathway output via crosstalk from the HOG pathway takes significantly longer than induction of HOG pathway output, our findings suggest that, under normal conditions, Rga1 contributes to signal insulation by limiting availability of the GTP-bound Cdc42 pool generated by hypertonic stress. Thus, Rga1 action contributes to squelching crosstalk by imposing a type of “kinetic proofreading”. Although Rga1 is a Hog1 substrate in vitro, we eliminated the possibility that its direct Hog1-mediated phosphorylation is necessary for its function in vivo. Instead, we found first that, like its paralog Rga2, Rga1 is subject to inhibitory phosphorylation by the S. cerevisiae cyclin-dependent protein kinase 1 (Cdk1) ortholog Cdc28 and that hyperosmotic shock stimulates its dephosphorylation and thus Rga1 activation. Second, we found that Hog1 promotes Rga1 activation by blocking its Cdk1-mediated phosphorylation, thereby allowing its phosphoprotein phosphatase 2A (PP2A)-mediated dephosphorylation. These findings shed light on why Hog1 activity is required to prevent crosstalk from the HOG pathway to the mating pheromone response pathway.
Collapse
|
12
|
Jashnsaz H, Fox ZR, Munsky B, Neuert G. Building predictive signaling models by perturbing yeast cells with time-varying stimulations resulting in distinct signaling responses. STAR Protoc 2021; 2:100660. [PMID: 34286292 PMCID: PMC8273411 DOI: 10.1016/j.xpro.2021.100660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This protocol provides a step-by-step approach to perturb single cells with time-varying stimulation profiles, collect distinct signaling responses, and use these to infer a system of ordinary differential equations to capture and predict dynamics of protein-protein regulation in signal transduction pathways. The models are validated by predicting the signaling activation upon new cell stimulation conditions. In comparison to using standard step-like stimulations, application of diverse time-varying cell stimulations results in better inference of model parameters and substantially improves model predictions. For complete details on the use and results of this protocol, please refer to Jashnsaz et al. (2020). Diverse time-varying cell stimulations result in distinct signaling activation dynamics Signaling models fit step stimuli responses well but result in poor predictions Distinct responses upon diverse time-varying stimulations improve model predictions Temporal stimulation of pathways result in novel signaling dynamics and mechanisms
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Zachary R Fox
- Inria Paris, Paris 75012, France.,Institut Pasteur, USR 3756 IP CNRS, Paris 75015, France.,Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - Brian Munsky
- Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 USA.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523 USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232 USA.,Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232 USA.,Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
13
|
González-Rubio G, Sellers-Moya Á, Martín H, Molina M. A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. Int Microbiol 2021; 24:531-543. [PMID: 33993419 DOI: 10.1007/s10123-021-00183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved signaling proteins involved in the regulation of most eukaryotic cellular processes. They are downstream components of essential signal transduction pathways activated by the external stimuli, in which the signal is conveyed through phosphorylation cascades. The excellent genetic and biochemical tractability of simple eukaryotes such as Saccharomyces cerevisiae has significantly contributed to gain fundamental information into the physiology of these key proteins. The budding yeast MAPK Slt2 was identified 30 years ago and was later revealed as a fundamental element of the cell wall integrity (CWI) pathway, one of the five MAPK routes of S. cerevisiae. As occurs with other MAPKs, whereas Slt2 displays the core typical structural traits of eukaryotic protein kinases, it also features conserved domains among MAPKs that allow an exquisite spatio-temporal regulation of their activity and binding to activating kinases, downregulatory phosphatases, or nuclear transcription factors. Additionally, Slt2 bears a regulatory extra C-terminal tail unique among S. cerevisiae MAPKs. Here, we review the structural and functional basis for the signaling role of Slt2 in the context of the molecular architecture of this important family of protein kinases.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ángela Sellers-Moya
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2. Int J Mol Sci 2021; 22:ijms22031110. [PMID: 33498635 PMCID: PMC7866135 DOI: 10.3390/ijms22031110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) Slt2 is central to signaling through the yeast Cell Wall Integrity (CWI) pathway. MAPKs are regulated by phosphorylation at both the threonine and tyrosine of the conserved TXY motif within the activation loop (T190/Y192 in Slt2). Since phosphorylation at both sites results in the full activation of MAPKs, signaling through MAPK pathways is monitored with antibodies that detect dually phosphorylated forms. However, most of these antibodies also recognize monophosphorylated species, whose relative abundance and functionality are diverse. By using different phosphospecific antibodies and phosphate-affinity (Phos-tag) analysis on distinct Slt2 mutants, we determined that Y192- and T190-monophosphorylated species coexist with biphosphorylated Slt2, although most of the Slt2 pool remains unphosphorylated following stress. Among the monophosphorylated forms, only T190 exhibited biological activity. Upon stimulation, Slt2 is first phosphorylated at Y192, mainly by the MAPKK Mkk1, and this phosphorylation is important for the subsequent T190 phosphorylation. Similarly, dephosphorylation of Slt2 by the Dual Specificity Phosphatase (DSP) Msg5 is ordered, with dephosphorylation of T190 depending on previous Y192 dephosphorylation. Whereas Y192 phosphorylation enhances the Slt2 catalytic activity, T190 is essential for this activity. The conserved T195 residue is also critical for Slt2 functionality. Mutations that abolish the activity of Slt2 result in a high increase in inactive Y192-monophosphorylated Slt2. The coexistence of different Slt2 phosphoforms with diverse biological significance highlights the importance of the precise detection of the Slt2 phosphorylation status.
Collapse
|
15
|
Johnson AN, Li G, Jashnsaz H, Thiemicke A, Kesler BK, Rogers DC, Neuert G. A rate threshold mechanism regulates MAPK stress signaling and survival. Proc Natl Acad Sci U S A 2021; 118:e2004998118. [PMID: 33443180 PMCID: PMC7812835 DOI: 10.1073/pnas.2004998118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells are exposed to changes in extracellular stimulus concentration that vary as a function of rate. However, how cells integrate information conveyed from stimulation rate along with concentration remains poorly understood. Here, we examined how varying the rate of stress application alters budding yeast mitogen-activated protein kinase (MAPK) signaling and cell behavior at the single-cell level. We show that signaling depends on a rate threshold that operates in conjunction with stimulus concentration to determine the timing of MAPK signaling during rate-varying stimulus treatments. We also discovered that the stimulation rate threshold and stimulation rate-dependent cell survival are sensitive to changes in the expression levels of the Ptp2 phosphatase, but not of another phosphatase that similarly regulates osmostress signaling during switch-like treatments. Our results demonstrate that stimulation rate is a regulated determinant of cell behavior and provide a paradigm to guide the dissection of major stimulation rate dependent mechanisms in other systems.
Collapse
Affiliation(s)
- Amanda N Johnson
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Guoliang Li
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Alexander Thiemicke
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Benjamin K Kesler
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Dustin C Rogers
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232;
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
16
|
Huang S, Zhang D, Weng F, Wang Y. Activation of a Mitogen-Activated Protein Kinase Hog1 by DNA Damaging Agent Methyl Methanesulfonate in Yeast. Front Mol Biosci 2021; 7:581095. [PMID: 33425986 PMCID: PMC7793754 DOI: 10.3389/fmolb.2020.581095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Hog1 is a mitogen-activated protein kinase in yeast that primarily regulates cellular responses to hyperosmolarity stress. In this study, we have examined the potential involvement of Hog1 in mediating cellular responses to DNA damaging agents. We find that treatment of yeast cells with DNA damaging agent methyl methanesulfonate (MMS) induces a marked and prolonged Hog1 activation. Distinct from stressors such as arsenite that activates Hog1 via inhibiting its phosphatases, activation of Hog1 by MMS is phosphatase-independent. Instead, MMS impairs a critical phosphor-relay process that normally keeps Hog1 in an inactive state. Functionally, MMS-activated Hog1 is not translocated to the nucleus to regulate gene expression but rather stays in the cytoplasm and regulates MMS-induced autophagy and cell adaptation to MMS stress. These findings reveal a new role of Hog1 in regulating MMS-induced cellular stress.
Collapse
Affiliation(s)
- Shan Huang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - David Zhang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Fangli Weng
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
17
|
Rangarajan N, Kapoor I, Li S, Drossopoulos P, White KK, Madden VJ, Dohlman HG. Potassium starvation induces autophagy in yeast. J Biol Chem 2020; 295:14189-14202. [PMID: 32788210 DOI: 10.1074/jbc.ra120.014687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a conserved process that recycles cellular contents to promote survival. Although nitrogen limitation is the canonical inducer of autophagy, recent studies have revealed several other nutrients important to this process. In this study, we used a quantitative, high-throughput assay to identify potassium starvation as a new and potent inducer of autophagy in the yeast Saccharomyces cerevisiae We found that potassium-dependent autophagy requires the core pathway kinases Atg1, Atg5, and Vps34, and other components of the phosphatidylinositol 3-kinase complex. Transmission EM revealed abundant autophagosome formation in response to both stimuli. RNA-Seq indicated distinct transcriptional responses: nitrogen affects transport of ions such as copper, whereas potassium targets the organization of other cellular components. Thus, nitrogen and potassium share the ability to influence molecular supply and demand but do so in different ways. Both inputs promote catabolism through bulk autophagy, but result in distinct mechanisms of cellular remodeling and synthesis.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ishani Kapoor
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shuang Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Drossopoulos
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristen K White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria J Madden
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Leech CM, Flynn MJ, Arsenault HE, Ou J, Liu H, Zhu LJ, Benanti JA. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network. PLoS Genet 2020; 16:e1008600. [PMID: 32343701 PMCID: PMC7209309 DOI: 10.1371/journal.pgen.1008600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/08/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Upon exposure to environmental stressors, cells transiently arrest the cell cycle while they adapt and restore homeostasis. A challenge for all cells is to distinguish between stress signals and coordinate the appropriate adaptive response with cell cycle arrest. Here we investigate the role of the phosphatase calcineurin (CN) in the stress response and demonstrate that CN activates the Hog1/p38 pathway in both yeast and human cells. In yeast, the MAPK Hog1 is transiently activated in response to several well-studied osmostressors. We show that when a stressor simultaneously activates CN and Hog1, CN disrupts Hog1-stimulated negative feedback to prolong Hog1 activation and the period of cell cycle arrest. Regulation of Hog1 by CN also contributes to inactivation of multiple cell cycle-regulatory transcription factors (TFs) and the decreased expression of cell cycle-regulated genes. CN-dependent downregulation of G1/S genes is dependent upon Hog1 activation, whereas CN inactivates G2/M TFs through a combination of Hog1-dependent and -independent mechanisms. These findings demonstrate that CN and Hog1 act in a coordinated manner to inhibit multiple nodes of the cell cycle-regulatory network. Our results suggest that crosstalk between CN and stress-activated MAPKs helps cells tailor their adaptive responses to specific stressors. In order to survive exposure to environmental stress, cells transiently arrest the cell division cycle while they adapt to the stress. Several kinases and phosphatases are known to control stress adaptation programs, but the extent to which these signaling pathways work together to tune the stress response is not well understood. This study investigates the role of the phosphatase calcineurin in the stress response and shows that calcineurin inhibits the cell cycle in part by stimulating the activity of the Hog1/p-38 stress-activated MAPK in both yeast and human cells. Crosstalk between stress response pathways may help cells mount specific responses to diverse stressors and to survive changes in their environment.
Collapse
Affiliation(s)
- Cassandra M. Leech
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heather E. Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Basu S, González B, Li B, Kimble G, Kozminski KG, Cullen PJ. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Mol Biol Cell 2020; 31:491-510. [PMID: 31940256 PMCID: PMC7185891 DOI: 10.1091/mbc.e19-08-0441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras homology (Rho) GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (Σ1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared with the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. Versions of Bem1p defective for recruitment of Ste20p to the plasma membrane, intramolecular interactions, and interaction with the GEF, Cdc24p, were defective for fMAPK pathway signaling. Bem1p also regulated effector pathways in different ways. In some pathways, multiple domains of the protein were required for its function, whereas in other pathways, a single domain or function was needed. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.
Collapse
Affiliation(s)
- Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Beatriz González
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Boyang Li
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Garrett Kimble
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
20
|
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 2020; 39:e103444. [PMID: 32011004 PMCID: PMC7049814 DOI: 10.15252/embj.2019103444] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11‐Pbs2‐Hog1 MAPK cascade and the Ssk2/Ssk22‐Pbs2‐Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr‐518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser‐514 and Thr‐518 under optimal osmostress conditions. Mono‐phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2‐Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone‐to‐Hog1 crosstalk in the absence of osmostress. We also report that the rapid‐and‐transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Rangarajan N, Gordy CL, Askew L, Bevill SM, Elston TC, Errede B, Hurst JH, Kelley JB, Sheetz JB, Suzuki SK, Valentin NH, Young E, Dohlman HG. Systematic analysis of F-box proteins reveals a new branch of the yeast mating pathway. J Biol Chem 2019; 294:14717-14731. [PMID: 31399514 DOI: 10.1074/jbc.ra119.010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
The mating pathway in yeast Saccharomyces cerevisiae has long been used to reveal new mechanisms of signal transduction. The pathway comprises a pheromone receptor, a heterotrimeric G protein, and intracellular effectors of morphogenesis and transcription. Polarized cell growth, in the direction of a potential mating partner, is accomplished by the G-protein βγ subunits and the small G-protein Cdc42. Transcription induction, needed for cell-cell fusion, is mediated by Gβγ and the mitogen-activated protein kinase (MAPK) scaffold protein Ste5. A potential third pathway is initiated by the G-protein α subunit Gpa1. Gpa1 signaling was shown previously to involve the F-box adaptor protein Dia2 and an endosomal effector protein, the phosphatidylinositol 3-kinase Vps34. Vps34 is also required for proper vacuolar sorting and autophagy. Here, using a panel of reporter assays, we demonstrate that mating pheromone stimulates vacuolar targeting of a cytoplasmic reporter protein and that this process depends on Vps34. Through a systematic analysis of F-box deletion mutants, we show that Dia2 is required to sustain pheromone-induced vacuolar targeting. We also found that other F-box proteins selectively regulate morphogenesis (Ydr306, renamed Pfu1) and transcription (Ucc1). These findings point to the existence of a new and distinct branch of the pheromone-signaling pathway, one that likely leads to vacuolar engulfment of cytoplasmic proteins and recycling of cellular contents in preparation for mating.
Collapse
Affiliation(s)
- Nambirajan Rangarajan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Claire L Gordy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lauren Askew
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Samantha M Bevill
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jillian H Hurst
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Kelley
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joshua B Sheetz
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sara Kimiko Suzuki
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Natalie H Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Everett Young
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
English JG, Olsen RHJ, Lansu K, Patel M, White K, Cockrell AS, Singh D, Strachan RT, Wacker D, Roth BL. VEGAS as a Platform for Facile Directed Evolution in Mammalian Cells. Cell 2019; 178:748-761.e17. [PMID: 31280962 DOI: 10.1016/j.cell.2019.05.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Directed evolution, artificial selection toward designed objectives, is routinely used to develop new molecular tools and therapeutics. Successful directed molecular evolution campaigns repeatedly test diverse sequences with a designed selective pressure. Unicellular organisms and their viral pathogens are exceptional for this purpose and have been used for decades. However, many desirable targets of directed evolution perform poorly or unnaturally in unicellular backgrounds. Here, we present a system for facile directed evolution in mammalian cells. Using the RNA alphavirus Sindbis as a vector for heredity and diversity, we achieved 24-h selection cycles surpassing 10-3 mutations per base. Selection is achieved through genetically actuated sequences internal to the host cell, thus the system's name: viral evolution of genetically actuating sequences, or "VEGAS." Using VEGAS, we evolve transcription factors, GPCRs, and allosteric nanobodies toward functional signaling endpoints each in less than 1 weeks' time.
Collapse
Affiliation(s)
- Justin G English
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Michael Patel
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Karoline White
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Adam S Cockrell
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Darshan Singh
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Daniel Wacker
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
23
|
Shellhammer JP, Pomeroy AE, Li Y, Dujmusic L, Elston TC, Hao N, Dohlman HG. Quantitative analysis of the yeast pheromone pathway. Yeast 2019; 36:495-518. [PMID: 31022772 DOI: 10.1002/yea.3395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
The pheromone response pathway of the yeast Saccharomyces cerevisiae is a well-established model for the study of G proteins and mitogen-activated protein kinase (MAPK) cascades. Our longstanding ability to combine sophisticated genetic approaches with established functional assays has provided a thorough understanding of signalling mechanisms and regulation. In this report, we compare new and established methods used to quantify pheromone-dependent MAPK phosphorylation, transcriptional induction, mating morphogenesis, and gradient tracking. These include both single-cell and population-based assays of activity. We describe several technical advances, provide example data for benchmark mutants, highlight important differences between newer and established methodologies, and compare the advantages and disadvantages of each as applied to the yeast model. Quantitative measurements of pathway activity have been used to develop mathematical models and reveal new regulatory mechanisms in yeast. It is our expectation that experimental and computational approaches developed in yeast may eventually be adapted to human systems biology and pharmacology.
Collapse
Affiliation(s)
- James P Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amy E Pomeroy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang Li
- Division of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Lorena Dujmusic
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nan Hao
- Division of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
24
|
Dunayevich P, Baltanás R, Clemente JA, Couto A, Sapochnik D, Vasen G, Colman-Lerner A. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep 2018; 8:15168. [PMID: 30310096 PMCID: PMC6181916 DOI: 10.1038/s41598-018-33203-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Cells make decisions based on a combination of external and internal signals. In yeast, the high osmolarity response (HOG) is a mitogen-activated protein kinase (MAPK) pathway that responds to a variety of stimuli, and it is central to the general stress response. Here we studied the effect of heat-stress (HS) on HOG. Using live-cell reporters and genetics, we show that HS promotes Hog1 phosphorylation and Hog1-dependent gene expression, exclusively via the Sln1 phosphorelay branch, and that the strength of the activation is larger in yeast adapted to high external osmolarity. HS stimulation of HOG is indirect. First, we show that HS causes glycerol loss, necessary for HOG activation. Preventing glycerol efflux by deleting the glyceroporin FPS1 or its regulators RGC1 and ASK10/RGC2, or by increasing external glycerol, greatly reduced HOG activation. Second, we found that HOG stimulation by HS depended on the operation of a second MAPK pathway, the cell-wall integrity (CWI), a well-known mediator of HS, since inactivating Pkc1 or deleting the MAPK SLT2 greatly reduced HOG activation. Our data suggest that the main role of the CWI in this process is to stimulate glycerol loss. We found that in yeast expressing the constitutively open channel mutant (Fps1-Δ11), HOG activity was independent of Slt2. In summary, we suggest that HS causes a reduction in turgor due to the loss of glycerol and the accompanying water, and that this is what actually stimulates HOG. Thus, taken together, our findings highlight a central role for Fps1, and the metabolism of glycerol, in the communication between the yeast MAPK pathways, essential for survival and reproduction in changing environments.
Collapse
Affiliation(s)
- Paula Dunayevich
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Rodrigo Baltanás
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - José Antonio Clemente
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Alicia Couto
- CIHIDECAR-Departamento de Química Orgánica, FCEN, UBA, Buenos Aires, Argentina
| | - Daiana Sapochnik
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Gustavo Vasen
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Yu W, Yu M, Papasergi-Scott MM, Tall GG. Production of Phosphorylated Ric-8A proteins using protein kinase CK2. Protein Expr Purif 2018; 154:98-103. [PMID: 30290220 DOI: 10.1016/j.pep.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023]
Abstract
Resistance to Inhibitors of Cholinesterase-8 (Ric-8) proteins are molecular chaperones that fold heterotrimeric G protein α subunits shortly after biosynthesis. Ric-8 proteins also act as test tube guanine nucleotide exchange factors (GEF) that promote Gα subunit GDP for GTP exchange. The GEF and chaperoning activities of Ric-8A are regulated by phosphorylation of five serine and threonine residues within protein kinase CK2 consensus sites. The traditional way that Ric-8A proteins have been purified is from Spodoptera frugiperda (Sf9) or Trichoplusia ni (Tni) insect cells. Endogenous insect cell kinases do phosphorylate the critical regulatory sites of recombinant Ric-8A reasonably well, but there is batch-to-batch variability among recombinant Ric-8A preparations. Additionally, insect cell-production of some Ric-8 proteins with phosphosite alanine substitution mutations is proscribed as there seems to be interdependency of multi-site phosphorylation for functional protein production. Here, we present a method to produce wild type and phosphosite mutant Ric-8A proteins that are fully occupied with bound phosphate at each of the regulatory positions. Ric-8A proteins were expressed and purified from E. coli. Purified Ric-8A was phosphorylated in vitro with protein kinase CK2 and then re-isolated to remove kinase. The phosphorylated Ric-8A proteins were ∼99% pure and the completeness of phosphorylation was verified by chromatography, phos-tag SDS-PAGE mobility shifts, immunoblotting using phospho-site specific antibodies, and mass spectrometry analysis. E. coli-produced Ric-8A that was phosphorylated using this method promoted a faster rate of Gα subunit guanine nucleotide exchange than Ric-8A that was variably phosphorylated during production in insect cells.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Nagy Z, Comer S, Smolenski A. Analysis of Protein Phosphorylation Using Phos-Tag Gels. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e64. [PMID: 30044546 DOI: 10.1002/cpps.64] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phos-tag gels are recent tools to dissect protein phosphorylation that operate by inducing a shift in the electrophoretic mobility of phosphorylated proteins compared to their nonphosphorylated counterparts. This article describes the preparation and electrophoresis of Zn2+ -Phos-tag gels along with electrotransfer of the separated phospho- and nonphosphoproteins onto a PVDF membrane using either wet-tank or semidry transfer. We also discuss the theory behind the technology with critical parameters to keep in mind for its successful application. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Shane Comer
- UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
27
|
Papasergi-Scott MM, Stoveken HM, MacConnachie L, Chan PY, Gabay M, Wong D, Freeman RS, Beg AA, Tall GG. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein α subunit folding and to stimulate guanine nucleotide exchange. Sci Signal 2018; 11:11/532/eaap8113. [PMID: 29844055 DOI: 10.1126/scisignal.aap8113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to inhibitors of cholinesterase-8A (Ric-8A) and Ric-8B are essential biosynthetic chaperones for heterotrimeric G protein α subunits. We provide evidence for the direct regulation of Ric-8A cellular activity by dual phosphorylation. Using proteomics, Western blotting, and mutational analyses, we determined that Ric-8A was constitutively phosphorylated at five serines and threonines by the protein kinase CK2. Phosphorylation of Ser435 and Thr440 in rat Ric-8A (corresponding to Ser436 and Thr441 in human Ric-8A) was required for high-affinity binding to Gα subunits, efficient stimulation of Gα subunit guanine nucleotide exchange, and mediation of Gα subunit folding. The CK2 consensus sites that contain Ser435 and Thr440 are conserved in Ric-8 homologs from worms to mammals. We found that the homologous residues in mouse Ric-8B, Ser468 and Ser473, were also phosphorylated. Mutation of the genomic copy of ric-8 in Caenorhabditis elegans to encode alanine in the homologous sites resulted in characteristic ric-8 reduction-of-function phenotypes that are associated with defective Gq and Gs signaling, including reduced locomotion and defective egg laying. The C. elegans ric-8 phosphorylation site mutant phenotypes were partially rescued by chemical stimulation of Gq signaling. These results indicate that dual phosphorylation represents a critical form of conserved Ric-8 regulation and demonstrate that Ric-8 proteins are needed for effective Gα signaling. The position of the CK2-phosphorylated sites within a structural model of Ric-8A reveals that these sites contribute to a key acidic and negatively charged surface that may be important for its interactions with Gα subunits.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lauren MacConnachie
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pui-Yee Chan
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dorothy Wong
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert S Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Zhang J, Tian XJ, Chen YJ, Wang W, Watkins S, Xing J. Pathway crosstalk enables cells to interpret TGF-β duration. NPJ Syst Biol Appl 2018; 4:18. [PMID: 29872541 PMCID: PMC5972147 DOI: 10.1038/s41540-018-0060-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
The detection and transmission of the temporal quality of intracellular and extracellular signals is an essential cellular mechanism. It remains largely unexplored how cells interpret the duration information of a stimulus. In this paper, we performed an integrated quantitative and computational analysis on TGF-β induced activation of SNAIL1, a key transcription factor that regulates several subsequent cell fate decisions such as apoptosis and epithelial-to-mesenchymal transition. We demonstrate that crosstalk among multiple TGF-β activated pathways forms a relay from SMAD to GLI1 that initializes and maintains SNAILl expression, respectively. SNAIL1 functions as a key integrator of information from TGF-β signaling distributed through upstream divergent pathways. The intertwined network serves as a temporal checkpoint, so that cells can generate a transient or sustained expression of SNAIL1 depending on TGF-β duration. Furthermore, we observed that TGF-β treatment leads to an unexpected accumulation of GSK3 molecules in an enzymatically active tyrosine phosphorylation form in Golgi apparatus and ER, followed by accumulation of GSK3 molecules in an enzymatically inhibitive serine phosphorylation in the nucleus. Subsequent model analysis and inhibition experiments revealed that the initial localized increase of GSK3 enzymatic activity couples to the positive feedback loop of the substrate Gli1 to form a network motif with multi-objective functions. That is, the motif is robust against stochastic fluctuations, and has a narrow distribution of response time that is insensitive to initial conditions. Specifically for TGF-β signaling, the motif ensures a smooth relay from SMAD to GLI1 on regulating SNAIL1 expression.
Collapse
Affiliation(s)
- Jingyu Zhang
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Xiao-Jun Tian
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA.,4Present Address: School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Yi-Jiun Chen
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Weikang Wang
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Simon Watkins
- 2Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jianhua Xing
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA.,3UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232 USA
| |
Collapse
|
29
|
Epigenetic control of pheromone MAPK signaling determines sexual fecundity in Candida albicans. Proc Natl Acad Sci U S A 2017; 114:13780-13785. [PMID: 29255038 DOI: 10.1073/pnas.1711141115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several pathogenic Candida species are capable of heritable and reversible switching between two epigenetic states, "white" and "opaque." In Candida albicans, white cells are essentially sterile, whereas opaque cells are mating-proficient. Here, we interrogate the mechanism by which the white-opaque switch regulates sexual fecundity and identify four genes in the pheromone MAPK pathway that are expressed at significantly higher levels in opaque cells than in white cells. These genes encode the β subunit of the G-protein complex (STE4), the pheromone MAPK scaffold (CST5), and the two terminal MAP kinases (CEK1/CEK2). To define the contribution of each factor to mating, C. albicans white cells were reverse-engineered to express elevated, opaque-like levels of these factors, either singly or in combination. We show that white cells co-overexpressing STE4, CST5, and CEK2 undergo mating four orders of magnitude more efficiently than control white cells and at a frequency approaching that of opaque cells. Moreover, engineered white cells recapitulate the transcriptional and morphological responses of opaque cells to pheromone. These results therefore reveal multiple bottlenecks in pheromone MAPK signaling in white cells and that alleviation of these bottlenecks enables efficient mating by these "sterile" cell types. Taken together, our findings establish that differential expression of several MAPK factors underlies the epigenetic control of mating in C. albicans We also discuss how fitness advantages could have driven the evolution of a toggle switch to regulate sexual reproduction in pathogenic Candida species.
Collapse
|
30
|
Dudin O, Merlini L, Martin SG. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion. Genes Dev 2017; 30:2226-2239. [PMID: 27798845 PMCID: PMC5088570 DOI: 10.1101/gad.286922.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Here, Dudin et al. show that cell fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR–MAPK signaling cascade that drives earlier mating events in Schizosaccharomyces pombe. Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR (G-protein-coupled receptor)–MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell–cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception.
Collapse
Affiliation(s)
- Omaya Dudin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Granados AA, Crane MM, Montano-Gutierrez LF, Tanaka RJ, Voliotis M, Swain PS. Distributing tasks via multiple input pathways increases cellular survival in stress. eLife 2017; 6. [PMID: 28513433 PMCID: PMC5464774 DOI: 10.7554/elife.21415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/12/2017] [Indexed: 12/23/2022] Open
Abstract
Improving in one aspect of a task can undermine performance in another, but how such opposing demands play out in single cells and impact on fitness is mostly unknown. Here we study budding yeast in dynamic environments of hyperosmotic stress and show how the corresponding signalling network increases cellular survival both by assigning the requirements of high response speed and high response accuracy to two separate input pathways and by having these pathways interact to converge on Hog1, a p38 MAP kinase. Cells with only the less accurate, reflex-like pathway are fitter in sudden stress, whereas cells with only the slow, more accurate pathway are fitter in increasing but fluctuating stress. Our results demonstrate that cellular signalling is vulnerable to trade-offs in performance, but that these trade-offs can be mitigated by assigning the opposing tasks to different signalling subnetworks. Such division of labour could function broadly within cellular signal transduction. DOI:http://dx.doi.org/10.7554/eLife.21415.001 The faster we do tasks the harder it is to do them well. For example, when we wish to judge if, say, a cup, is too hot, we first quickly withdraw our hand after touching it: we know that the cup is hot but not how much. Next we hold a finger against the cup to accurately judge its temperature. Such speed-accuracy trade-offs are studied widely in fields ranging from neuroscience to engineering, but their consequences for single cells are unknown. This is despite the fact that when cells are exposed to stress they must respond both quickly (to survive) and accurately (to reduce how many resources they consume). One way of stressing yeast cells is to place them in a syrupy substance called sorbitol. This causes the cells to lose water, shrink in size, and launch a stress response to regain volume. If the cells respond inappropriately to the situation, they may die. The signalling network that produces the stress response is unusual in that it has a Y-shaped structure, where the two ‘arms’ of the Y are the input pathways. Although it was known that one input pathway responds to stress faster than the other, the advantages of having two inputs in the signalling network were not understood. Granados, Crane et al. thought that the differences in speed and the Y-shaped structure could allow the cell to respond to stress with both speed and accuracy. To investigate this theory, Granados, Crane et al. used a microscope to study individual yeast cells that had been exposed to sorbitol. Combining these results with a mathematical model of the cell signalling network revealed that a mutant yeast cell that only has one of the input pathways specializes in speed but is inaccurate, similar to a reflex-like response. In contrast, a mutant with only the other pathway specializes in accuracy, being slower but matching the level of the cell’s response to the level of stress placed on it. This trade-off is reflected in rates of cell survival: the first mutant survives best in sudden shocks of stress; the second mutant survives best in gradually increasing stress. Normal yeast cells that have both input pathways survive more often than either mutant. Overall, the results presented by Granados, Crane et al. reveal principles behind cellular decision-making that should hold true in more complex organisms and could be exploited by synthetic biologists to programme cells with new behaviours. DOI:http://dx.doi.org/10.7554/eLife.21415.002
Collapse
Affiliation(s)
- Alejandro A Granados
- SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Matthew M Crane
- SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.,School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Luis F Montano-Gutierrez
- SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.,School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Peter S Swain
- SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.,School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc Natl Acad Sci U S A 2017; 114:E1450-E1459. [PMID: 28167781 DOI: 10.1073/pnas.1614787114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are characterized by their lack of stable secondary or tertiary structure and comprise a large part of the eukaryotic proteome. Although these regions play a variety of signaling and regulatory roles, they appear to be rapidly evolving at the primary sequence level. To understand the functional implications of this rapid evolution, we focused on a highly diverged IDR in Saccharomyces cerevisiae that is involved in regulating multiple conserved MAPK pathways. We hypothesized that under stabilizing selection, the functional output of orthologous IDRs could be maintained, such that diverse genotypes could lead to similar function and fitness. Consistent with the stabilizing selection hypothesis, we find that diverged, orthologous IDRs can mostly recapitulate wild-type function and fitness in S. cerevisiae We also find that the electrostatic charge of the IDR is correlated with signaling output and, using phylogenetic comparative methods, find evidence for selection maintaining this quantitative molecular trait despite underlying genotypic divergence.
Collapse
|
33
|
Atay O, Skotheim JM. Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol 2017; 216:317-330. [PMID: 28043970 PMCID: PMC5294789 DOI: 10.1083/jcb.201609124] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are conserved from yeast to man and regulate a variety of cellular processes, including proliferation and differentiation. Recent developments show how MAPK pathways perform exquisite spatial and temporal signal processing and underscores the importance of studying the dynamics of signaling pathways to understand their physiological response. The importance of dynamic mechanisms that process input signals into graded downstream responses has been demonstrated in the pheromone-induced and osmotic stress-induced MAPK pathways in yeast and in the mammalian extracellular signal-regulated kinase MAPK pathway. Particularly, recent studies in the yeast pheromone response have shown how positive feedback generates switches, negative feedback enables gradient detection, and coherent feedforward regulation underlies cellular memory. More generally, a new wave of quantitative single-cell studies has begun to elucidate how signaling dynamics determine cell physiology and represents a paradigm shift from descriptive to predictive biology.
Collapse
Affiliation(s)
- Oguzhan Atay
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
34
|
Mayya V, Dustin ML. What Scales the T Cell Response? Trends Immunol 2016; 37:513-522. [PMID: 27364960 DOI: 10.1016/j.it.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/14/2023]
Abstract
T cells are known to scale their clonal expansion and effector cytokine response according to the dose and strength of antigenic signal so as to balance their role of affecting protection with the intertwined and immunologically driven tissue damage. How T cells achieve this is now beginning to be understood. We underscore temporal integration of digital T cell receptor (TCR) signaling as the basis for achieving scaled response by means of accumulating crucial mediators over time. We also discuss the role of temporally integrated crosstalk between TCR and IL2 signaling in mediating a scaled, coherent, collective response by T cells. Finally, we highlight numerous known and putative regulatory interactions in the transcriptional program that are expected to quantitatively scale the T cell response, and also offer new mechanisms to hitherto unexplained observations.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK; Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
35
|
Chitforoushzadeh Z, Ye Z, Sheng Z, LaRue S, Fry RC, Lauffenburger DA, Janes KA. TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors. Sci Signal 2016; 9:ra59. [PMID: 27273097 DOI: 10.1126/scisignal.aad3373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signal transduction networks coordinate transcriptional programs activated by diverse extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli simultaneously, and mapping how activation of the integrated signaling network affects gene expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively linked the proteomic and transcriptomic data sets by implementing a structured computational approach called tensor partial least squares regression. This statistical model accurately predicted transcriptional signatures from signaling arising from single and combined stimuli and also predicted time-dependent contributions of signaling events. Specifically, the model predicted that an early-phase, AKT-associated signal downstream of insulin repressed a set of transcripts induced by TNF. Through bioinformatics and cell-based experiments, we identified the AKT-repressed signal as glycogen synthase kinase 3 (GSK3)-catalyzed phosphorylation of Ser(37) on the long form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser(37) promoted its degradation, thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells receiving multiple stimuli.
Collapse
Affiliation(s)
- Zeinab Chitforoushzadeh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Zi Ye
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Ziran Sheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Silvia LaRue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
36
|
García R, Sanz AB, Rodríguez-Peña JM, Nombela C, Arroyo J. Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression. J Cell Sci 2016; 129:1649-60. [PMID: 26933180 DOI: 10.1242/jcs.180190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Activation of the yeast cell wall integrity (CWI) pathway induces an adaptive transcriptional programme that is largely dependent on the transcription factor Rlm1 and the mitogen-activated protein kinase (MAPK) Slt2. Upon cell wall stress, the transcription factor Rlm1 is recruited to the promoters of RLM1 and SLT2, and exerts positive-feedback mechanisms on the expression of both genes. Activation of the MAPK Slt2 by cell wall stress is not impaired in strains with individual blockade of any of the two feedback pathways. Abrogation of the autoregulatory feedback mechanism on RLM1 severely affects the transcriptional response elicited by activation of the CWI pathway. In contrast, a positive trans-acting feedback mechanism exerted by Rlm1 on SLT2 also regulates CWI output responses but to a lesser extent. Therefore, a complete CWI transcriptional response requires not only phosphorylation of Rlm1 by Slt2 but also concurrent SLT2- and RLM1-mediated positive-feedback mechanisms; sustained patterns of gene expression are mainly achieved by positive autoregulatory circuits based on the transcriptional activation of Rlm1.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| |
Collapse
|
37
|
Durandau E, Aymoz D, Pelet S. Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors. BMC Biol 2015; 13:55. [PMID: 26231587 PMCID: PMC4521377 DOI: 10.1186/s12915-015-0163-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mitogen activated protein kinases (MAPK) play an essential role in integrating extra-cellular signals and intra-cellular cues to allow cells to grow, adapt to stresses, or undergo apoptosis. Budding yeast serves as a powerful system to understand the fundamental regulatory mechanisms that allow these pathways to combine multiple signals and deliver an appropriate response. To fully comprehend the variability and dynamics of these signaling cascades, dynamic and quantitative single cell measurements are required. Microscopy is an ideal technique to obtain these data; however, novel assays have to be developed to measure the activity of these cascades. RESULTS We have generated fluorescent biosensors that allow the real-time measurement of kinase activity at the single cell level. Here, synthetic MAPK substrates were engineered to undergo nuclear-to-cytoplasmic relocation upon phosphorylation of a nuclear localization sequence. Combination of fluorescence microscopy and automated image analysis allows the quantification of the dynamics of kinase activity in hundreds of single cells. A large heterogeneity in the dynamics of MAPK activity between individual cells was measured. The variability in the mating pathway can be accounted for by differences in cell cycle stage, while, in the cell wall integrity pathway, the response to cell wall stress is independent of cell cycle stage. CONCLUSIONS These synthetic kinase activity relocation sensors allow the quantification of kinase activity in live single cells. The modularity of the architecture of these reporters will allow their application in many other signaling cascades. These measurements will allow to uncover new dynamic behaviour that previously could not be observed in population level measurements.
Collapse
Affiliation(s)
- Eric Durandau
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Delphine Aymoz
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
38
|
Nagiec MJ, McCarter PC, Kelley JB, Dixit G, Elston TC, Dohlman HG. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK. Mol Biol Cell 2015; 26:3359-71. [PMID: 26179917 PMCID: PMC4569323 DOI: 10.1091/mbc.e15-01-0037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/08/2015] [Indexed: 12/21/2022] Open
Abstract
MAPKs are activated by dual phosphorylation. Much of the MAPK Fus3 is monophosphorylated and acts to inhibit signaling in vivo. Computational models reveal how a kinase scaffold and phosphatase act together to dynamically regulate dual-phosphorylated and monophosphorylated MAPKs and the downstream signal. Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling.
Collapse
Affiliation(s)
- Michal J Nagiec
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Patrick C McCarter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joshua B Kelley
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gauri Dixit
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
39
|
Abstract
Immunoblotting (also known as Western blotting) combined with digital image analysis can be a reliable method for analyzing the abundance of proteins and protein modifications, but not every immunoblot-analysis combination produces an accurate result. I illustrate how sample preparation, protocol implementation, detection scheme, and normalization approach profoundly affect the quantitative performance of immunoblotting. This study implemented diagnostic experiments that assess an immunoblot-analysis workflow for accuracy and precision. The results showed that ignoring such diagnostics can lead to pseudoquantitative immunoblot data that markedly overestimate or underestimate true differences in protein abundance.
Collapse
Affiliation(s)
- Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. E-mail:
| |
Collapse
|