1
|
Olsen WP, Larsen AKK, Christensen JL, Malle MG, Otzen DE. Investigating strategies for creating cross-linked amyloid fibril networks through branching of amyloid growth. Colloids Surf B Biointerfaces 2025; 251:114617. [PMID: 40068237 DOI: 10.1016/j.colsurfb.2025.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Hydrogel biomaterials have been extensively explored for applications in medicine, materials science, and the development of functionalized materials. Traditionally, hydrogels were produced using simple polymers, but advancements over recent decades have enabled the use of biological materials such as proteins, peptides, polysaccharides, and even amyloid fibrils. Among these, amyloid-based hydrogels have demonstrated unique advantages, including enhanced cell adhesion and differentiation. Furthermore, they can be engineered as living materials using bacteria capable of producing and repairing the hydrogel in situ. Here we investigate novel strategies for controlling amyloid fibrillation using the functional amyloid CsgA. We designed fusion proteins combining two CsgA moieties to explore methods for creating branched fibril networks. Our approach utilized two distinct strategies: passive and active branching. The passive strategy involved direct fusion of two CsgA moieties separated by a designed alpha-helical linker and engineered to integrate into fibrils without external intervention. The active branching approach incorporated a redox-sensitive CsgA variant containing an internal disulfide bridge that blocks fibrillation until reduced. This design allows for precise control of amyloid fibrillation in the active variants. We analyzed these constructs qualitatively approach using a combination of transmission electron microscopy (TEM), real-time atomic force microscopy (AFM), and total internal reflection fluorescence (TIRF) microscopy, supported by quantitative image analysis. While we did not observe direct evidence of fibril branching, our modifications led to significant changes in fibrillation behavior. Notably, TIRF imaging revealed a marked increase in high-density fibril regions following the activation of our engineered constructs, indicating the potential for controlled assembly of higher-order structures. These findings provide new insights into controlling amyloid fibrillation and suggest alternative strategies for manipulating fibril organization. The observed ability to alter local fibril density through chemical triggers offers promising directions for developing responsive biomaterials. We propose refinements for future design and suggest new directions to optimize amyloid-based hydrogels for next-generation biomaterial applications.
Collapse
Affiliation(s)
- William P Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Anne-Kathrine K Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Jakob L Christensen
- Department of Applied Mathematics and Computer Science, DTU Compute, DTU Technical University of Denmark, Lyngby, Denmark
| | - Mette G Malle
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark.
| |
Collapse
|
2
|
Jain A, Lopus M, Kishore N. From Self-Assembly to Drug Delivery: Understanding and Exploring Protein Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:473-495. [PMID: 39745783 DOI: 10.1021/acs.langmuir.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127). The effect of pluronics on protein aggregation and fibrillation has been studied mechanistically using a combination of calorimetric and spectroscopic techniques. TEM images and the ThT binding experiment were used to analyze the conformation of protein fibrils, and the results showed that pluronics accelerated the fibrillation process. When pluronics interact with protein at different stages of fibrillation, their pre- and postmicellar concentrations show a decrease in ΔHm° value as the time of incubation increases. This indicates the formation of amorphous aggregates due to which endothermic enthalpy is observed. As a consequence, it was investigated if these generated aggregates can also act as drug delivery vehicle; therefore, the work was carried out with 5-fluorouracil and cytarabine. The endothermic enthalpy of interaction suggests that hydrophobic interaction is more prevalent when cytarabine is employed with protein fibrils, whereas the electrostatic interaction is more prevalent when 5-fluorouracil is combined with it. The former drug, however, showed a greater adsorption than the latter on the surface of protein fibrils. It is therefore determined that 5-fluorouracil has relatively significant adsorption on fibril surfaces, whereas cytarabine has weak adsorption and is easily desorbed in cells. Consequently, the combination of LFF127 and 5-FU is lethal to malignant cells. The drug encapsulation and delivery aspect of protein fibrils/aggregates needs further exploration.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Olsen WP, Courtade G, Peña‐Díaz S, Nagaraj M, Sønderby TV, Mulder FAA, Malle MG, Otzen DE. CsgA gatekeeper residues control nucleation but not stability of functional amyloid. Protein Sci 2024; 33:e5178. [PMID: 39302107 PMCID: PMC11414021 DOI: 10.1002/pro.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Functional amyloids, beneficial to the organism producing them, are found throughout life, from bacteria to humans. While disease-related amyloids form by uncontrolled aggregation, the fibrillation of functional amyloid is regulated by complex cellular machinery and optimized sequences, including so-called gatekeeper residues such as Asp. However, the molecular basis for this regulation remains unclear. Here we investigate how the introduction of additional gatekeeper residues affects fibril formation and stability in the functional amyloid CsgA from E. coli. Step-wise introduction of additional Asp gatekeepers gradually eliminated fibrillation unless preformed fibrils were added, illustrating that gatekeepers mainly affect nucleus formation. Once formed, the mutant CsgA fibrils were just as stable as wild-type CsgA. HSQC NMR spectra confirmed that CsgA is intrinsically disordered, and that the introduction of gatekeeper residues does not alter this ensemble. NMR-based Dark-state Exchange Saturation Transfer (DEST) experiments on the different CsgA variants, however, show a decrease in transient interactions between monomeric states and the fibrils, highlighting a critical role for these interactions in the fibrillation process. We conclude that gatekeeper residues affect fibrillation kinetics without compromising structural integrity, making them useful and selective modulators of fibril properties.
Collapse
Affiliation(s)
- William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Sino‐Danish College (SDC)University of Chinese Academy of SciencesBeijingChina
| | - Gaston Courtade
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Samuel Peña‐Díaz
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | | | - Frans A. A. Mulder
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Institute of BiochemistryJohannes Kepler UniversityLinzAustria
- Department of ChemistryAarhus UniversityAarhus CDenmark
| | - Mette G. Malle
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| |
Collapse
|
4
|
López-Laguna H, Tsimbouri PM, Jayawarna V, Rigou I, Serna N, Voltà-Durán E, Unzueta U, Salmeron-Sanchez M, Vázquez E, Dalby MJ, Villaverde A. Hybrid Micro-/Nanoprotein Platform Provides Endocrine-like and Extracellular Matrix-like Cell Delivery of Growth Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32930-32944. [PMID: 38888932 PMCID: PMC11231985 DOI: 10.1021/acsami.4c01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Ioanna Rigou
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| |
Collapse
|
5
|
Application of Amyloid-Based Hybrid Membranes in Drug Delivery. Polymers (Basel) 2023; 15:polym15061444. [PMID: 36987222 PMCID: PMC10052896 DOI: 10.3390/polym15061444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The properties of amyloid fibrils, e.g., unique structural characteristics and superior biocompatibility, make them a promising vehicle for drug delivery. Here, carboxymethyl cellulose (CMC) and whey protein isolate amyloid fibril (WPI-AF) were used to synthesize amyloid-based hybrid membranes as vehicles for the delivery of cationic and hydrophobic drugs (e.g., methylene blue (MB) and riboflavin (RF)). The CMC/WPI-AF membranes were synthesized via chemical crosslinking coupled with phase inversion. The zeta potential and scanning electron microscopy results revealed a negative charge and a pleated surface microstructure with a high content of WPI-AF. FTIR analysis showed that the CMC and WPI-AF were cross-linked via glutaraldehyde and the interacting forces between membrane and MB or RF was found to be electrostatic interaction and hydrogen bonding, respectively. Next, the in vitro drug release from membranes was monitored using UV-vis spectrophotometry. Additionally, two empirical models were used to analyze the drug release data and relevant rate constant and parameters were determined accordingly. Moreover, our results indicated that in vitro drug release rates depended on the drug–matrix interactions and transport mechanism, which could be controlled by altering the WPI-AF content in membrane. This research provides an excellent example of utilizing two-dimensional amyloid-based materials for drug delivery.
Collapse
|
6
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
7
|
Gómez-Pérez D, Chaudhry V, Kemen A, Kemen E. Amyloid Proteins in Plant-Associated Microbial Communities. Microb Physiol 2021; 31:88-98. [PMID: 34107493 DOI: 10.1159/000516014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.
Collapse
Affiliation(s)
| | | | - Ariane Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Serna N, Cano-Garrido O, Sánchez JM, Sánchez-Chardi A, Sánchez-García L, López-Laguna H, Fernández E, Vázquez E, Villaverde A. Release of functional fibroblast growth factor-2 from artificial inclusion bodies. J Control Release 2020; 327:61-69. [DOI: 10.1016/j.jconrel.2020.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
|
9
|
Abstract
Amyloids are implicated in many protein misfolding diseases. Amyloid folds, however, also display a range of functional roles particularly in the microbial world. The templating ability of these folds endows them with specific properties allowing their self-propagation and protein-to-protein transmission in vivo. This property, the prion principle, is exploited by specific signaling pathways that use transmission of the amyloid fold as a way to convey information from a receptor to an effector protein. I describe here amyloid signaling pathways involving fungal nucleotide binding and oligomerization domain (NOD)-like receptors that were found to control nonself recognition and programmed cell death processes. Studies on these fungal amyloid signaling motifs stem from the characterization of the fungal [Het-s] prion protein and have led to the identification in fungi but also in multicellular bacteria of several distinct families of signaling motifs, one of which is related to RHIM [receptor-interacting protein (RIP) homotypic interaction motif], an amyloid motif regulating mammalian necroptosis.
Collapse
Affiliation(s)
- Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077 Bordeaux CEDEX, France
| |
Collapse
|
10
|
Pesarrodona M, Jauset T, Díaz‐Riascos ZV, Sánchez‐Chardi A, Beaulieu M, Seras‐Franzoso J, Sánchez‐García L, Baltà‐Foix R, Mancilla S, Fernández Y, Rinas U, Schwartz S, Soucek L, Villaverde A, Abasolo I, Vázquez E. Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900849. [PMID: 31559131 PMCID: PMC6755514 DOI: 10.1002/advs.201900849] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Indexed: 05/07/2023]
Abstract
Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
| | - Toni Jauset
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Zamira V. Díaz‐Riascos
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Alejandro Sánchez‐Chardi
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaAv. Diagonal 64308028BarcelonaSpain
| | - Marie‐Eve Beaulieu
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Joaquin Seras‐Franzoso
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Sánchez‐García
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ricardo Baltà‐Foix
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Sandra Mancilla
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Yolanda Fernández
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Ursula Rinas
- Leibniz University of HannoverTechnical Chemistry and Life ScienceCallinstr. 530167HannoverGermany
- Helmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Simó Schwartz
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)08010BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ibane Abasolo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Esther Vázquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| |
Collapse
|
11
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Datta D, Harikrishna A, Nagaraj R, Chaudhary N. Self-assembly of β-turn motif-connected tandem repeats of Aβ16-22
and its aromatic analogs. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Debika Datta
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | | | | | - Nitin Chaudhary
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
13
|
Emerging Paradigms for Synthetic Design of Functional Amyloids. J Mol Biol 2018; 430:3720-3734. [DOI: 10.1016/j.jmb.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
|
14
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Allison WT, DuVal MG, Nguyen-Phuoc K, Leighton PLA. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology. Int J Mol Sci 2017; 18:E2223. [PMID: 29064456 PMCID: PMC5666902 DOI: 10.3390/ijms18102223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.
Collapse
Affiliation(s)
- W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Michèle G DuVal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kim Nguyen-Phuoc
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
16
|
Dharmadana D, Reynolds NP, Conn CE, Valéry C. Molecular interactions of amyloid nanofibrils with biological aggregation modifiers: implications for cytotoxicity mechanisms and biomaterial design. Interface Focus 2017; 7:20160160. [PMID: 28630679 PMCID: PMC5474041 DOI: 10.1098/rsfs.2016.0160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid nanofibrils are ubiquitous biological protein fibrous aggregates, with a wide range of either toxic or beneficial activities that are relevant to human disease and normal biology. Protein amyloid fibrillization occurs via nucleated polymerization, through non-covalent interactions. As such, protein nanofibril formation is based on a complex interplay between kinetic and thermodynamic factors. The process entails metastable oligomeric species and a highly thermodynamically favoured end state. The kinetics, and the reaction pathway itself, can be influenced by third party moieties, either molecules or surfaces. Specifically, in the biological context, different classes of biomolecules are known to act as catalysts, inhibitors or modifiers of the generic protein fibrillization process. The biological aggregation modifiers reviewed here include lipid membranes of varying composition, glycosaminoglycans and metal ions, with a final word on xenobiotic compounds. The corresponding molecular interactions are critically analysed and placed in the context of the mechanisms of cytotoxicity of the amyloids involved in diverse pathologies and the non-toxicity of functional amyloids (at least towards their biological host). Finally, the utilization of this knowledge towards the design of bio-inspired and biocompatible nanomaterials is explored.
Collapse
Affiliation(s)
- Durga Dharmadana
- School of Health and Biomedical Sciences, Discipline of Pharmaceutical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia
| | - Céline Valéry
- School of Health and Biomedical Sciences, Discipline of Pharmaceutical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| |
Collapse
|
17
|
Unzueta U, Seras-Franzoso J, Céspedes MV, Saccardo P, Cortés F, Rueda F, Garcia-Fruitós E, Ferrer-Miralles N, Mangues R, Vázquez E, Villaverde A. Engineering tumor cell targeting in nanoscale amyloidal materials. NANOTECHNOLOGY 2017; 28:015102. [PMID: 27893441 DOI: 10.1088/0957-4484/28/1/015102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sekar G, Florance I, Sivakumar A, Mukherjee A, Chandrasekaran N. Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules. Int J Biol Macromol 2016; 93:1007-1018. [PMID: 27651276 DOI: 10.1016/j.ijbiomac.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo.
Collapse
Affiliation(s)
- Gajalakshmi Sekar
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Ida Florance
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - A Sivakumar
- School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | | |
Collapse
|
19
|
Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Sci Rep 2016; 6:35765. [PMID: 27775083 PMCID: PMC5075894 DOI: 10.1038/srep35765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system.
Collapse
|
20
|
Huang X, Dorta-Estremera S, Yao Y, Shen N, Cao W. Predominant Role of Plasmacytoid Dendritic Cells in Stimulating Systemic Autoimmunity. Front Immunol 2015; 6:526. [PMID: 26528288 PMCID: PMC4601279 DOI: 10.3389/fimmu.2015.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), which are prominent type I interferon (IFN-I)-producing immune cells, have been extensively implicated in systemic lupus erythematosus (SLE). However, whether they participate critically in lupus pathogenesis remains unknown. Recent studies using various genetic and cell type-specific ablation strategies have demonstrated that pDCs play a pivotal role in the development of autoantibodies and the progression of lupus under diverse experimental conditions. The findings of several investigations highlight a notion that pDCs operate critically at the early stage of lupus development. In particular, pDCs have a profound effect on B-cell activation and humoral autoimmunity in vivo. This deeper understanding of the vital role of pDCs in lupus pathogenesis supports the therapeutic targeting of the pDC-IFN-I pathway in SLE.
Collapse
Affiliation(s)
- Xinfang Huang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China ; Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences , Houston, TX , USA
| | - Yihong Yao
- Cellular Biomedicine Group Inc. , Palo Alto, CA , USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wei Cao
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China ; Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences , Houston, TX , USA
| |
Collapse
|
21
|
Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 2015; 23:693-706. [PMID: 26439293 DOI: 10.1016/j.tim.2015.07.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023]
Abstract
Curli are functional amyloid fibers assembled by many Gram-negative bacteria as part of an extracellular matrix that encapsulates the bacteria within a biofilm. A multicomponent secretion system ensures the safe transport of the aggregation-prone curli subunits across the periplasm and outer membrane, and coordinates subunit self-assembly into surface-attached fibers. To avoid the build-up of potentially toxic intracellular protein aggregates, the timing and location of the interactions of the different curli proteins are of paramount importance. Here we review the structural and molecular biology of curli biogenesis, with a focus on the recent breakthroughs in our understanding of subunit chaperoning and secretion. The mechanistic insight into the curli assembly pathway will provide tools for new biotechnological applications and inform the design of targeted inhibitors of amyloid polymerization and biofilm formation.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Roger D Klein
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
22
|
Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). JOURNAL OF NATURE AND SCIENCE 2015; 1:e138. [PMID: 26097896 PMCID: PMC4469284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
According to the 'amyloid cascade hypothesis of Alzheimer's disease' first proposed about 16 years ago, the accumulation of Aβ peptides in the human central nervous system (CNS) is the primary influence driving Alzheimer's disease (AD) pathogenesis, and Aβ peptide accretion is the result of an imbalance between Aβ peptide production and clearance. In the last 18 months multiple laboratories have reported two particularly important observations: (i) that because the microbes of the human microbiome naturally secrete large amounts of amyloid, lipopolysaccharides (LPS) and other related pro-inflammatory pathogenic signals, these may contribute to both the systemic and CNS amyloid burden in aging humans; and (ii) that the clearance of Aβ peptides appears to be intrinsically impaired by deficits in the microglial plasma-membrane enriched triggering receptor expressed in microglial/myeloid-2 cells (TREM2). This brief general commentary-perspective paper: (i) will highlight some of these very recent findings on microbiome-secreted amyloids and LPS and the potential contribution of these microbial-derived pro-inflammatory and neurotoxic exudates to age-related inflammatory and AD-type neurodegeneration in the host; and (ii) will discuss the contribution of a defective microglial-based TREM2 transmembrane sensor-receptor system to amyloidogenesis in AD that is in contrast to the normal, homeostatic clearance of Aβ peptides from the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Zhao Y, Dua P, Lukiw WJ. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2015; 5:177. [PMID: 25977840 PMCID: PMC4428612 DOI: 10.4172/2161-0460.1000177] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the inception of the human microbiome project (HMP) by the US National Institutes of Health (NIH) in 2007 there has been a keen resurgence in our recognition of the human microbiome and its contribution to development, immunity, neurophysiology, metabolic and nutritive support to central nervous system (CNS) health and disease. What is not generally appreciated is that (i) the ~1014 microbial cells that comprise the human microbiome outnumber human host cells by approximately one hundred-to-one; (ii) together the microbial genes of the microbiome outnumber human host genes by about one hundred-and-fifty to one; (iii) collectively these microbes constitute the largest 'diffuse organ system' in the human body, more metabolically active than the liver; strongly influencing host nutritive-, innate-immune, neuroinflammatory-, neuromodulatory- and neurotransmission-functions; and (iv) that these microbes actively secrete highly complex, immunogenic mixtures of lipopolysaccharide (LPS) and amyloid from their outer membranes into their immediate environment. While secreted LPS and amyloids are generally quite soluble as monomers over time they form into highly insoluble fibrous protein aggregates that are implicated in the progressive degenerative neuropathology of several common, age-related disorders of the human CNS including Alzheimer's disease (AD). This general commentary-perspective paper will highlight some recent findings on microbial-derived secreted LPS and amyloids and the potential contribution of these neurotoxic and proinflammatory microbial exudates to age-related inflammatory amyloidogenesis and neurodegeneration, with specific reference to AD wherever possible.
Collapse
Affiliation(s)
- Y Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans LA 70112 USA ; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans LA 70112 USA
| | - P Dua
- Department of Health Information Management, Louisiana State University Ruston LA 71270 USA
| | - W J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans LA 70112 USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans LA 70112 USA ; Department of Neurology, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans LA 70112 USA
| |
Collapse
|
24
|
Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer's disease (AD). Front Aging Neurosci 2015; 7:9. [PMID: 25713531 PMCID: PMC4322713 DOI: 10.3389/fnagi.2015.00009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/21/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- James M Hill
- Louisiana State University Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Departments of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Microbiology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Pharmacology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Walter J Lukiw
- Louisiana State University Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Departments of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Neurology, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
25
|
Dorta-Estremera SM, Cao W. Human Pentraxins Bind to Misfolded Proteins and Inhibit Production of Type I Interferon Induced by Nucleic Acid-Containing Amyloid. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6. [PMID: 31080694 DOI: 10.4172/2155-9899.1000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Amyloid deposition is linked to multiple human ailments, including neurodegenerative diseases, type 2 diabetes, and systemic amyloidosis. The assembly of misfolded proteins into amyloid fibrils involves an intermediate form, i.e., soluble amyloid precursor (AP), which exerts cytotoxic function. Insoluble amyloid also stimulates innate immune cells to elicit cytokine response and inflammation. How any of these misfolded proteins are controlled by the host remains obscure. Serum amyloid-P component (SAP) is a universal constituent of amyloid deposits. Short-chain pentraxins, which include both SAP and C-reactive protein (CRP), are pattern recognition molecules that bind to diverse ligands and promote the clearance of microbes and cell debris. Whether these pentraxins interact with AP and cofactor-containing amyloid and subsequently impact their function is not known. Methods and Results To detect the interaction between SAP and different types of amyloids, we performed dot blot analysis. The results showed that SAP invariably bound to protein-only, nucleic acid-containing and glycosaminoglycan-containing amyloid fibrils. This interaction required the presence of calcium. By ELISA, both SAP and CRP bound to soluble AP in the absence of divalent cations. Further characterization, by gel filtration, implied that SAP decamer may recognize AP whereas aggregated SAP preferentially associates with amyloid fibril. Although SAP binding did not affect cytotoxic function of AP, SAP potently inhibited the production of interferon-α from human plasmacytoid dendritic cells triggered by DNA-containing amyloid. Conclusions Our data suggest that short pentraxins differentially interact with various forms of misfolded proteins and, in particular, modulate the ability of nucleic acid-containing amyloid to stimulate aberrant type I interferon response. Hence, pentraxins may function as key players in modulating the pathogenesis of protein misfolding diseases as well as interferon-mediated autoimmune manifestation.
Collapse
Affiliation(s)
- Stephanie M Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
26
|
Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J, García-Fruitós E, Villaverde A. Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl Microbiol Biotechnol 2014; 98:9229-38. [PMID: 25129611 DOI: 10.1007/s00253-014-6008-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022]
Abstract
Escherichia coli is the workhorse for gene cloning and production of soluble recombinant proteins in both biotechnological and biomedical industries. The bacterium is also a good producer of several classes of protein-based self-assembling materials such as inclusion bodies (IBs). Apart from being a relatively pure source of protein for in vitro refolding, IBs are under exploration as functional, protein-releasing materials in regenerative medicine and protein replacement therapies. Endotoxin removal is a critical step for downstream applications of therapeutic proteins. The same holds true for IBs as they are often highly contaminated with cell-wall components of the host cells. Here, we have investigated the production of IBs in a recently developed endotoxin-free E. coli strain. The characterization of IBs revealed this mutant as a very useful cell factory for the production of functional endotoxin-free IBs that are suitable for the use at biological interfaces without inducing endotoxic responses in human immune cells.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction. Colloids Surf B Biointerfaces 2014; 122:341-349. [PMID: 25073074 DOI: 10.1016/j.colsurfb.2014.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022]
Abstract
Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA.
Collapse
|
28
|
Hauser CAE, Maurer-Stroh S, Martins IC. Amyloid-based nanosensors and nanodevices. Chem Soc Rev 2014; 43:5326-45. [DOI: 10.1039/c4cs00082j] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Peggion C, Sorgato MC, Bertoli A. Prions and prion-like pathogens in neurodegenerative disorders. Pathogens 2014; 3:149-63. [PMID: 25437612 PMCID: PMC4235734 DOI: 10.3390/pathogens3010149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/24/2014] [Accepted: 02/01/2014] [Indexed: 12/24/2022] Open
Abstract
Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders—known as transmissible spongiform encephalopathies, or prion diseases—which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
30
|
Abstract
Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Dorta-Estremera SM, Li J, Cao W. Rapid generation of amyloid from native proteins in vitro. J Vis Exp 2013:50869. [PMID: 24335677 DOI: 10.3791/50869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteins carry out crucial tasks in organisms by exerting functions elicited from their specific three dimensional folds. Although the native structures of polypeptides fulfill many purposes, it is now recognized that most proteins can adopt an alternative assembly of beta-sheet rich amyloid. Insoluble amyloid fibrils are initially associated with multiple human ailments, but they are increasingly shown as functional players participating in various important cellular processes. In addition, amyloid deposited in patient tissues contains nonproteinaceous components, such as nucleic acids and glycosaminoglycans (GAGs). These cofactors can facilitate the formation of amyloid, resulting in the generation of different types of insoluble precipitates. By taking advantage of our understanding how proteins misfold via an intermediate stage of soluble amyloid precursor, we have devised a method to convert native proteins to amyloid fibrils in vitro. This approach allows one to prepare amyloid in large quantities, examine the properties of amyloid generated from specific proteins, and evaluate the structural changes accompanying the conversion.
Collapse
|
32
|
Fang Y, Gao S, Tai D, Middaugh CR, Fang J. Identification of properties important to protein aggregation using feature selection. BMC Bioinformatics 2013; 14:314. [PMID: 24165390 PMCID: PMC3819749 DOI: 10.1186/1471-2105-14-314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2013] [Indexed: 11/22/2022] Open
Abstract
Background Protein aggregation is a significant problem in the biopharmaceutical industry (protein drug stability) and is associated medically with over 40 human diseases. Although a number of computational models have been developed for predicting aggregation propensity and identifying aggregation-prone regions in proteins, little systematic research has been done to determine physicochemical properties relevant to aggregation and their relative importance to this important process. Such studies may result in not only accurately predicting peptide aggregation propensities and identifying aggregation prone regions in proteins, but also aid in discovering additional underlying mechanisms governing this process. Results We use two feature selection algorithms to identify 16 features, out of a total of 560 physicochemical properties, presumably important to protein aggregation. Two predictors (ProA-SVM and ProA-RF) using selected features are built for predicting peptide aggregation propensity and identifying aggregation prone regions in proteins. Both methods are compared favourably to other state-of-the-art algorithms in cross validation. The identified important properties are fairly consistent with previous studies and bring some new insights into protein and peptide aggregation. One interesting new finding is that aggregation prone peptide sequences have similar properties to signal peptide and signal anchor sequences. Conclusions Both predictors are implemented in a freely available web application (http://www.abl.ku.edu/ProA/). We suggest that the quaternary structure of protein aggregates, especially soluble oligomers, may allow the formation of new molecular recognition signals that guide aggregate targeting to specific cellular sites.
Collapse
Affiliation(s)
| | | | | | | | - Jianwen Fang
- Applied Bioinformatics Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
33
|
Di Domizio J, Cao W. Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Rev Clin Immunol 2013; 9:201-10. [PMID: 23445195 DOI: 10.1586/eci.12.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, active research using genomic, cellular and animal modeling approaches has revealed the fundamental forces driving the development of autoimmune diseases. Type I interferon imprints unique molecular signatures in a list of autoimmune diseases. Interferon is induced by diverse nucleic acid-containing complexes, which trigger innate immune activation of plasmacytoid dendritic cells. Interferon primes, activates or differentiates various leukocyte populations to promote autoimmunity. Accordingly, interferon signaling is essential for the initiation and/or progression of lupus in several experimental models. However, the heterogeneous nature of systemic lupus erythematosus requires better characterization on how interferon pathways are activated and subsequently promote the advancement of autoimmune diseases. Given the central role of type I interferon, various strategies are devised to target these cytokines or related pathways to curtail the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | |
Collapse
|
34
|
Romero D, Sanabria-Valentín E, Vlamakis H, Kolter R. Biofilm inhibitors that target amyloid proteins. ACTA ACUST UNITED AC 2013; 20:102-10. [PMID: 23352144 DOI: 10.1016/j.chembiol.2012.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/16/2022]
Abstract
Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules.
Collapse
Affiliation(s)
- Diego Romero
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
35
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond) 2013; 8:1587-99. [PMID: 23394133 DOI: 10.2217/nnm.12.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Bacterial inclusion bodies (IBs) are protein-based, amyloidal nanomaterials that mechanically stimulate mammalian cell proliferation upon surface decoration. However, their biological performance as potentially functional scaffolds in mammalian cell culture still needs to be explored. MATERIALS & METHODS Using fluorescent proteins, we demonstrate significant membrane penetration of surface-attached IBs and a corresponding intracellular bioavailability of the protein material. RESULTS When IBs are formed by protein drugs, such as the intracellular acting human chaperone Hsp70 or the extracellular/intracellular acting human FGF-2, IB components intervene on top-growing cells, namely by rescuing them from chemically induced apoptosis or by stimulating cell division under serum starvation, respectively. Protein release from IBs seems to mechanistically mimic the sustained secretion of protein hormones from amyloid-like secretory granules in higher organisms. CONCLUSION We propose bacterial IBs as biomimetic nanostructured scaffolds (bioscaffolds) suitable for tissue engineering that, while acting as adhesive materials, partially disintegrate for the slow release of their biologically active building blocks. The bottom-up delivery of protein drugs mediated by bioscaffolds offers a highly promising platform for emerging applications in regenerative medicine.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and Department de Genètica i de MicroBiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Curli are proteinaceous fibrous structures produced on the surface of many gram-negative bacteria. As a major constituent of the extracellular matrix, curli mediate interactions between the bacteria and its environment, and as such, curli play a critical role in biofilm formation. Curli fibers share biophysical properties with a growing number of remarkably stable and ordered protein aggregates called amyloid. Here we describe experimental methods to study the biogenesis and assembly of curli by exploiting their amyloid properties. We also present methods to analyze curli-mediated biofilm formation. These approaches are straightforward and can easily be adapted to study other bacterially produced amyloids.
Collapse
|
38
|
Salt Anions Promote the Conversion of HypF-N into Amyloid-Like Oligomers and Modulate the Structure of the Oligomers and the Monomeric Precursor State. J Mol Biol 2012; 424:132-49. [DOI: 10.1016/j.jmb.2012.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/11/2012] [Accepted: 09/26/2012] [Indexed: 11/17/2022]
|
39
|
Gsponer J, Babu M. Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep 2012; 2:1425-37. [PMID: 23168257 PMCID: PMC3607227 DOI: 10.1016/j.celrep.2012.09.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/23/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.
Collapse
Affiliation(s)
- Jörg Gsponer
- Centre for High-Throughput Biology, Department of Biochemistry and Molecular Biology, University of British Columbia, East Mall, Vancouver V6T 1Z4, Canada
- Corresponding author
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
40
|
Schor M, Vreede J, Bolhuis P. Elucidating the locking mechanism of peptides onto growing amyloid fibrils through transition path sampling. Biophys J 2012; 103:1296-304. [PMID: 22995502 PMCID: PMC3446680 DOI: 10.1016/j.bpj.2012.07.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/30/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
We investigate the molecular mechanism of monomer addition to a growing amyloid fibril composed of the main amyloidogenic region from the insulin peptide hormone, the LVEALYL heptapeptide. Applying transition path sampling in combination with reaction coordinate analysis reveals that the transition from a docked peptide to a locked, fully incorporated peptide can occur in two ways. Both routes involve the formation of backbone hydrogen bonds between the three central amino acids of the attaching peptide and the fibril, as well as a reorientation of the central Glu side chain of the locking peptide toward the interface between two β-sheets forming the fibril. The mechanisms differ in the sequence of events. We also conclude that proper docking is important for correct alignment of the peptide with the fibril, as alternative pathways result in misfolding.
Collapse
Affiliation(s)
| | | | - Peter G. Bolhuis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 2012; 287:35092-35103. [PMID: 22891247 DOI: 10.1074/jbc.m112.383737] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB- mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB- mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.
Collapse
Affiliation(s)
- Yizhou Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Daniel Smith
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Bryan J Leong
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | | | - Fredrik Almqvist
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
42
|
Dannies PS. Prolactin and growth hormone aggregates in secretory granules: the need to understand the structure of the aggregate. Endocr Rev 2012; 33:254-70. [PMID: 22357343 DOI: 10.1210/er.2011-1002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prolactin and GH form reversible aggregates in the trans-Golgi lumen that become the dense cores of secretory granules. Aggregation is an economical means of sorting, because self-association removes the hormones from other possible pathways. Secretory granules containing different aggregates show different behavior, such as the reduction in stimulated release of granules containing R183H-GH compared with release of those containing wild-type hormone. Aggregates may facilitate localization of membrane proteins necessary for transport and exocytosis of secretory granules, and therefore understanding their properties is important. Three types of self-association have been characterized: dimers of human GH that form with Zn(2+), low-affinity self-association of human prolactin caused by acidic pH and Zn(2+) with macromolecular crowding, and amyloid fibers of prolactin. The best candidate for the form in most granules may be low-affinity self-association because it occurs rapidly at Zn(2+) concentrations that are likely to be in granules and reverses rapidly in neutral pH. Amyloid may form in older granules. Determining differences between aggregates of wild type and those of R183H-GH should help to understand why granules containing the mutant behave differently from those containing wild-type hormone. If reversible aggregation of other hormones, including those that are proteolytically processed, is the crucial act in forming granules, rather than use of a sorting signal, then prohormones should form reversible aggregates in solution in conditions that resemble those of the trans-Golgi lumen, including macromolecular crowding.
Collapse
Affiliation(s)
- Priscilla S Dannies
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| |
Collapse
|
43
|
Shahnawaz M, Soto C. Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J Biol Chem 2012; 287:11665-76. [PMID: 22337880 DOI: 10.1074/jbc.m111.282533] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microcin E492 (Mcc), a low molecular weight bacteriocin produced by Klebsiella pneumoniae RYC492, has been shown to exist in two forms: soluble forms that are believed to be toxic to the bacterial cell by forming pores and non-toxic fibrillar forms that share similar biochemical and biophysical properties with amyloids associated with several human diseases. Here we report that fibrils polymerized in vitro from soluble forms sequester toxic species that can be released upon changing environmental conditions such as pH, ionic strength, and upon dilution. Our results indicate that basic pH (≥8.5), low NaCl concentrations (≤50 mm), and dilution (>10-fold) destabilize Mcc fibrils into more soluble species that are found to be toxic to the target cells. Additionally, we also found a similar conversion of non-toxic fibrils into highly toxic oligomers using Mcc aggregates produced in vivo. Moreover, the soluble protein released from fibrils is able to rapidly polymerize into amyloid fibrils under fibril-forming conditions and to efficiently seed aggregation of monomeric Mcc. Our findings indicate that fibrillar forms of Mcc constitute a reservoir of toxic oligomeric species that is released into the medium upon changing the environmental conditions. These findings may have substantial implications to understand the dynamic process of interconversion between toxic and non-toxic aggregated species implicated in protein misfolding diseases.
Collapse
Affiliation(s)
- Mohammad Shahnawaz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
44
|
Di Domizio J, Zhang R, Stagg LJ, Gagea M, Zhuo M, Ladbury JE, Cao W. Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J Biol Chem 2012; 287:736-747. [PMID: 22102410 PMCID: PMC3249128 DOI: 10.1074/jbc.m111.238477] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ample evidence suggests that almost all polypeptides can either adopt a native structure (folded or intrinsically disordered) or form misfolded amyloid fibrils. Soluble protein oligomers exist as an intermediate between these two states, and their cytotoxicity has been implicated in the pathology of multiple human diseases. However, the mechanism by which soluble protein oligomers develop into insoluble amyloid fibrils is not clear, and investigation of this important issue is hindered by the unavailability of stable protein oligomers. Here, we have obtained stabilized protein oligomers generated from common native proteins. These oligomers exert strong cytotoxicity and display a common conformational structure shared with known protein oligomers. They are soluble and remain stable in solution. Intriguingly, the stabilized protein oligomers interact preferentially with both nucleic acids and glycosaminoglycans (GAG), which facilitates their rapid conversion into insoluble amyloid. Concomitantly, binding with nucleic acids or GAG strongly diminished the cytotoxicity of the protein oligomers. EGCG, a small molecule that was previously shown to directly bind to protein oligomers, effectively inhibits the conversion to amyloid. These results indicate that stabilized oligomers of common proteins display characteristics similar to those of disease-associated protein oligomers and represent immediate precursors of less toxic amyloid fibrils. Amyloid conversion is potently expedited by certain physiological factors, such as nucleic acids and GAGs. These findings concur with reports of cofactor involvement with disease-associated amyloid and shed light on potential means to interfere with the pathogenic properties of misfolded proteins.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ran Zhang
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Loren J Stagg
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ming Zhuo
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Wei Cao
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030.
| |
Collapse
|
45
|
Romero D, Vlamakis H, Losick R, Kolter R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 2011; 80:1155-68. [PMID: 21477127 PMCID: PMC3103627 DOI: 10.1111/j.1365-2958.2011.07653.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells within Bacillus subtilis biofilms are held in place by an extracellular matrix that contains cell-anchored amyloid fibres, composed of the amyloidogenic protein TasA. As biofilms age they disassemble because the cells release the amyloid fibres. This release appears to be the consequence of incorporation of D-tyrosine, D-leucine, D-tryptophan and D-methionine into the cell wall. Here, we characterize the in vivo roles of an accessory protein TapA (TasA anchoring/assembly protein; previously YqxM) that serves both to anchor the fibres to the cell wall and to assemble TasA into fibres. TapA is found in discrete foci in the cell envelope and these foci disappear when cells are treated with a mixture of D-amino acids. Purified cell wall sacculi retain a functional form of this anchoring protein such that purified fibres can be anchored to the sacculi in vitro. In addition, we show that TapA is essential for the proper assembly of the fibres. Its absence results in a dramatic reduction in TasA levels and what little TasA is left produces only thin fibres that are not anchored to the cell.
Collapse
Affiliation(s)
- Diego Romero
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, MA 02115
| | - Hera Vlamakis
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, MA 02115
| | - Richard Losick
- Department of Molecular and Cellular Biology Harvard University Cambridge, MA 02138
| | - Roberto Kolter
- Department of Microbiology and Molecular Genetics Harvard Medical School Boston, MA 02115
| |
Collapse
|
46
|
Abstract
Amyloids are common protein aggregates in nature. Some amyloids fulfill important biological tasks while others are known to cause diseases. Despite the fact that the ultrastructure of amyloid is highly conserved, the mechanism of amyloidogenesis remains a challenging research topic. In humans, amyloidoses may develop in the skin or lead to skin signs due to secondary cutaneous involvement. An accurate diagnostic procedure is crucial for planning the therapy of this heterogeneous group of diseases. Therefore, the aim of this paper is to give an overview on the different kinds of amyloidoses as well as on diagnostic and therapeutic approaches. Furthermore, the discrimination between functional and disease-causing amyloid is briefly presented.
Collapse
Affiliation(s)
- S Schreml
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg.
| | | | | | | |
Collapse
|
47
|
Giehm L, Lorenzen N, Otzen DE. Assays for α-synuclein aggregation. Methods 2010; 53:295-305. [PMID: 21163351 DOI: 10.1016/j.ymeth.2010.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 01/06/2023] Open
Abstract
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.
Collapse
Affiliation(s)
- Lise Giehm
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
48
|
Johansson J, Nerelius C, Willander H, Presto J. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation. Biochem Biophys Res Commun 2010; 402:515-8. [PMID: 20971069 DOI: 10.1016/j.bbrc.2010.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
Amyloid consists of β-sheet polymers and is associated with disease and with functional assemblies. Amyloid-forming proteins differ widely in native structures and sequences. We describe here how conformational preferences of non-polar amino acid residues can affect amyloid formation. The most non-polar residues promote either β-strands (Val, Ile, Phe, and Cys, VIFC) or α-helices (Leu, Ala, and Met, LAM), while the most polar residues promote only α-helices. For 12 proteins associated with disease, the localizations of the amyloid core regions are known. Eleven of these contain segments that are biased for VIFC, but essentially lack segments that are biased for LAM. For the amyloid β-peptide associated with Alzheimer's disease and an amyloidogenic fragment of the prion protein, observed effects of mutations support that VIFC bias favors formation of β-sheet aggregates and amyloid, while LAM bias prevents it. VIFC and LAM profiles combine information on secondary structure propensities and polarity, and add a simple criterion to the prediction of amyloidogenic regions.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
49
|
Abstract
Evidence is growing at an increasing -pace that amyloid fibers are not just the result of aberrant protein folding associated with neurodegenerative diseases, but are widespread in nature for beneficial reasons. Amyloid is an attractive building material because its robust design and simple repetitive structure make for very durable and metabolically cheap material. But this requires that the production of amyloid be put under firm control. This appears to involve the use of four to five chaperones that are expressed under the control of the same promoter as the amyloid proteins. Significant progress has been made in deciphering this process in E. coli's csg operon, also found in Salmonella. Recently, we have discovered a new and unrelated operon (fap) responsible for amyloid production in Pseudomonas, which also confers biofilm-forming properties to E. coli. Intriguingly, this operon shares a number of features with csg, namely two homologous proteins (one of which, FapC, has been shown to be directly involved in amyloid build-up) and a small number of auxiliary proteins. However, FapC seems to be less economically structured than its E. coli counterpart, with a smaller number of repeats and very large and variable linker regions. Furthermore, the putative chaperones are not homologous to their csg counterparts and have intriguing homologies to proteins with other functions. These findings suggest that controlled amyloid production has arisen on many independent occasions due to the usefulness of the product and offers the potential for intriguing insights into how nature disarms and reconstructs a potentially very dangerous weapon.
Collapse
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
50
|
Schreml S, Kaiser E, Landthaler M, Szeimies RM, Babilas P. Amyloid in skin and brain: What′s the link? Exp Dermatol 2010; 19:953-7. [DOI: 10.1111/j.1600-0625.2010.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|