1
|
Jiao S, Zhang Y, Yang X, Wang J, Li Z. Alternative Splicing Analysis Reveals Adrenergic Signaling as a Novel Target for Protein Arginine Methyltransferase 5 (PRMT5) in the Heart. Int J Mol Sci 2025; 26:2301. [PMID: 40076920 PMCID: PMC11899901 DOI: 10.3390/ijms26052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Adrenergic signaling is critical for maintaining cardiac function and works by regulating heart rate, contractility, and stress responses. Protein arginine methyltransferase 5 (PRMT5), a key enzyme involved in gene expression, signal transduction, and RNA processing, has been revealed to be an important factor in heart disease. However, its specific effects on adrenergic signaling have not been fully elucidated. In this study, we examined the role of PRMT5 in the heart by analyzing alternative splicing events in cardiac tissues from Prmt5-deficient mice. High-throughput RNA sequencing and bioinformatics analyses identified significant alterations in alternative splicing, particularly in genes related to adrenergic signaling, which were further validated using reverse transcription PCR. These results underscore the role of PRMT5 as an important regulator of alternative splicing in the heart and identify adrenergic signaling as a novel target. Collectively, our findings offer new insights into the molecular mechanisms underlying cardiac function and suggest that PRMT5 is a potential therapeutic target for heart diseases.
Collapse
Affiliation(s)
- Shouye Jiao
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (S.J.); (Y.Z.)
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Yimeng Zhang
- Department of Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (S.J.); (Y.Z.)
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China;
| | - Zhenhua Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China;
| |
Collapse
|
2
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
3
|
Pluteanu F, Glaser D, Massing F, Schulte JS, Kirchhefer U. Loss of protein phosphatase 2A regulatory subunit PPP2R5A is associated with increased incidence of stress-induced proarrhythmia. Front Cardiovasc Med 2024; 11:1419597. [PMID: 38863902 PMCID: PMC11165201 DOI: 10.3389/fcvm.2024.1419597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Dennis Glaser
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Fabian Massing
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jan S. Schulte
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
4
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
5
|
Glaser D, Heinick A, Herting JR, Massing F, Müller FU, Pauls P, Rozhdestvensky TS, Schulte JS, Seidl MD, Skryabin BV, Stümpel F, Kirchhefer U. Impaired myocellular Ca 2+ cycling in protein phosphatase PP2A-B56α knockout mice is normalized by β-adrenergic stimulation. J Biol Chem 2022; 298:102362. [PMID: 35963431 PMCID: PMC9478386 DOI: 10.1016/j.jbc.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B′-family in the heart. Its role in regulating the cardiac response to β-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B′ subunits (β and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show β-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to β-adrenergic stimulation in the myocardium.
Collapse
Affiliation(s)
- Dennis Glaser
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Julius R Herting
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Fabian Massing
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Paul Pauls
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Timofey S Rozhdestvensky
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Jan S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Matthias D Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Frank Stümpel
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
7
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
9
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
10
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
11
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
12
|
Hamilton S, Veress R, Belevych A, Terentyev D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch 2021; 473:377-387. [PMID: 33404893 PMCID: PMC7940310 DOI: 10.1007/s00424-020-02505-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
|
14
|
Panicker N, Coutman M, Lawlor-O’Neill C, Kahl RGS, Roselli S, Verrills NM. Ppp2r2a Knockout Mice Reveal That Protein Phosphatase 2A Regulatory Subunit, PP2A-B55α, Is an Essential Regulator of Neuronal and Epidermal Embryonic Development. Front Cell Dev Biol 2020; 8:358. [PMID: 32582689 PMCID: PMC7290052 DOI: 10.3389/fcell.2020.00358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The serine/threonine protein phosphatase 2A (PP2A) is a master regulator of the complex cellular signaling that occurs during all stages of mammalian development. PP2A is composed of a catalytic, a structural, and regulatory subunit, for which there are multiple isoforms. The association of specific regulatory subunits determines substrate specificity and localization of phosphatase activity, however, the precise role of each regulatory subunit in development is not known. Here we report the generation of the first knockout mouse for the Ppp2r2a gene, encoding the PP2A-B55α regulatory subunit, using CRISPR/Cas9. Heterozygous animals developed and grew as normal, however, homozygous knockout mice were not viable. Analysis of embryos at different developmental stages found a normal Mendelian ratio of Ppp2r2a-/- embryos at embryonic day (E) 10.5 (25%), but reduced Ppp2r2a-/- embryos at E14.5 (18%), and further reduced at E18.5 (10%). No live Ppp2r2a-/- pups were observed at birth. Ppp2r2a-/- embryos were significantly smaller than wild-type or heterozygous littermates and displayed a variety of neural defects such as exencephaly, spina bifida, and cranial vault collapse, as well as syndactyly and severe epidermal defects; all processes driven by growth and differentiation of the ectoderm. Ppp2r2a-/- embryos had incomplete epidermal barrier acquisition, associated with thin, poorly differentiated stratified epithelium with weak attachment to the underlying dermis. The basal keratinocytes in Ppp2r2a-/- embryos were highly disorganized, with reduced immunolabeling of integrins and basement membrane proteins, suggesting impaired focal adhesion and hemidesmosome assembly. The spinous and granular layers were thinner in the Ppp2r2a-/- embryos, with aberrant expression of adherens and tight junction associated proteins. The overlying stratum corneum was either absent or incomplete. Thus PP2A-B55α is an essential regulator of epidermal stratification, and is essential for ectodermal development during embryogenesis.
Collapse
Affiliation(s)
- Nikita Panicker
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Melody Coutman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Charley Lawlor-O’Neill
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Richard G. S. Kahl
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Séverine Roselli
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Nicole M. Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| |
Collapse
|
15
|
Puhl SL, Weeks KL, Güran A, Ranieri A, Boknik P, Kirchhefer U, Müller FU, Avkiran M. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo. Cardiovasc Res 2020; 115:519-529. [PMID: 30203051 PMCID: PMC6383118 DOI: 10.1093/cvr/cvy230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS B56α is a protein phosphatase 2A (PP2A) regulatory subunit that is highly expressed in the heart. We previously reported that cardiomyocyte B56α localizes to myofilaments under resting conditions and translocates to the cytosol in response to acute β-adrenergic receptor (β-AR) stimulation. Given the importance of reversible protein phosphorylation in modulating cardiac function during sympathetic stimulation, we hypothesized that loss of B56α in mice with targeted disruption of the gene encoding B56α (Ppp2r5a) would impact on cardiac responses to β-AR stimulation in vivo. METHODS AND RESULTS Cardiac phenotype of mice heterozygous (HET) or homozygous (HOM) for the disrupted Ppp2r5a allele and wild type (WT) littermates was characterized under basal conditions and following acute β-AR stimulation with dobutamine (DOB; 0.75 mg/kg i.p.) or sustained β-AR stimulation by 2-week infusion of isoproterenol (ISO; 30 mg/kg/day s.c.). Left ventricular (LV) wall thicknesses, chamber dimensions and function were assessed by echocardiography, and heart tissue collected for gravimetric, histological, and biochemical analyses. Western blot analysis revealed partial and complete loss of B56α protein in hearts from HET and HOM mice, respectively, and no changes in the expression of other PP2A regulatory, catalytic or scaffolding subunits. PP2A catalytic activity was reduced in hearts of both HET and HOM mice. There were no differences in the basal cardiac phenotype between genotypes. Acute DOB stimulation induced the expected inotropic response in WT and HET mice, which was attenuated in HOM mice. In contrast, DOB-induced increases in heart rate were unaffected by B56α deficiency. In WT mice, ISO infusion increased LV wall thicknesses, cardiomyocyte area and ventricular mass, without LV dilation, systolic dysfunction, collagen deposition or foetal gene expression. The hypertrophic response to ISO was blunted in mice deficient for B56α. CONCLUSION These findings identify B56α as a potential regulator of cardiac structure and function during β-AR stimulation.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstrasse 9b, D-80336 Munich, Germany
| | - Kate L Weeks
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Alican Güran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Antonella Ranieri
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| |
Collapse
|
16
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
17
|
El Refaey M, Musa H, Murphy NP, Lubbers ER, Skaf M, Han M, Cavus O, Koenig SN, Wallace MJ, Gratz D, Bradley E, Alsina KM, Wehrens XHT, Hund TJ, Mohler PJ. Protein Phosphatase 2A Regulates Cardiac Na + Channels. Circ Res 2019; 124:737-746. [PMID: 30602331 DOI: 10.1161/circresaha.118.314350] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Mona El Refaey
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Hassan Musa
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Nathaniel P Murphy
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Ellen R Lubbers
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michel Skaf
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Mei Han
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Omer Cavus
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Sara N Koenig
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michael J Wallace
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Daniel Gratz
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Elisa Bradley
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.)
| | - Katherina M Alsina
- Department of Molecular Physiology and Biophysics (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Medicine (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Pediatrics (K.M.A.), Baylor College of Medicine, Houston, TX
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.H.T.W.)
| | - Thomas J Hund
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Peter J Mohler
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| |
Collapse
|
18
|
Polycystin-1 Inhibits Cell Proliferation through Phosphatase PP2A/B56 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2582401. [PMID: 31641668 PMCID: PMC6770331 DOI: 10.1155/2019/2582401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 01/15/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with a number of cellular defects such as hyperproliferation, apoptosis, and dedifferentiation. Mutations in polycystin-1 (PC1) account for ∼85% of ADPKD. Here, we showed that wild-type (WT) or mutant PC1 composed of the last five transmembrane (TM) domains and the C-terminus (termed PC1-5TMC) inhibits cell proliferation and protein translation, as well as the downstream effectors of mTOR, consistent with previous reports. Knockdown of B56α, a subunit of the protein phosphatase 2A (PP2A) complex, or application of PP2A inhibitor okadaic acid or calyculin A, abolished the inhibitory effect of PC1 and PC1-5TMC on proliferation, indicating that PP2A/B56α mediates the regulation of cell proliferation by PC1. In addition to the phosphorylated S6 and 4EBP1, B56α was also downregulated by PC1 and PC1-5TMC. Furthermore, the downregulation of B56α, which may be mediated by mTOR but not AKT, can account for the dependence of PC1-inhibited proliferation on PP2A.
Collapse
|
19
|
Roberts JD, Murphy NP, Hamilton RM, Lubbers ER, James CA, Kline CF, Gollob MH, Krahn AD, Sturm AC, Musa H, El-Refaey M, Koenig S, Aneq MÅ, Hoorntje ET, Graw SL, Davies RW, Rafiq MA, Koopmann TT, Aafaqi S, Fatah M, Chiasson DA, Taylor MR, Simmons SL, Han M, van Opbergen CJ, Wold LE, Sinagra G, Mittal K, Tichnell C, Murray B, Codima A, Nazer B, Nguyen DT, Marcus FI, Sobriera N, Lodder EM, van den Berg MP, Spears DA, Robinson JF, Ursell PC, Green AK, Skanes AC, Tang AS, Gardner MJ, Hegele RA, van Veen TA, Wilde AA, Healey JS, Janssen PM, Mestroni L, van Tintelen JP, Calkins H, Judge DP, Hund TJ, Scheinman MM, Mohler PJ. Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. J Clin Invest 2019; 129:3171-3184. [PMID: 31264976 PMCID: PMC6668697 DOI: 10.1172/jci125538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal β-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and β-catenin. A pharmacological activator of the WNT/β-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and β-catenin, and evidence for targeted activation of the WNT/β-catenin pathway as a potential treatment for this disease.
Collapse
Affiliation(s)
- Jason D. Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Nathaniel P. Murphy
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M. Hamilton
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Ellen R. Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Crystal F. Kline
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael H. Gollob
- Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D. Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy C. Sturm
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Hassan Musa
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El-Refaey
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sara Koenig
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Meriam Åström Aneq
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Edgar T. Hoorntje
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sharon L. Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Robert W. Davies
- Program in Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Muhammad Arshad Rafiq
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
- Department of Bioscience, COMSATS University, Islamabad, Pakistan
| | - Tamara T. Koopmann
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Shabana Aafaqi
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Meena Fatah
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - David A. Chiasson
- Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew R.G. Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Samantha L. Simmons
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mei Han
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chantal J.M. van Opbergen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Utrecht, Netherlands
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Kirti Mittal
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alberto Codima
- Department of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Babak Nazer
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Duy T. Nguyen
- Section of Cardiac Electrophysiology, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Frank I. Marcus
- Division of Cardiology, Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| | - Nara Sobriera
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elisabeth M. Lodder
- Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Maarten P. van den Berg
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Danna A. Spears
- Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John F. Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Anna K. Green
- Departments of Clinical Genetics and Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Allan C. Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony S. Tang
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Martin J. Gardner
- Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Toon A.B. van Veen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Utrecht, Netherlands
| | - Arthur A.M. Wilde
- Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Jeff S. Healey
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul M.L. Janssen
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado, USA
| | - J. Peter van Tintelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, Netherlands
- Department of Genetics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel P. Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas J. Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Melvin M. Scheinman
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Peter J. Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Departments of Physiology and Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
20
|
Elgenaidi IS, Spiers JP. Hypoxia modulates protein phosphatase 2A through HIF-1α dependent and independent mechanisms in human aortic smooth muscle cells and ventricular cardiomyocytes. Br J Pharmacol 2019; 176:1745-1763. [PMID: 30825189 DOI: 10.1111/bph.14648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Although protein phosphatases regulate multiple cellular functions, their modulation under hypoxia remains unclear. We investigated expression of the protein phosphatase system under normoxic/hypoxic conditions and the mechanism by which hypoxia alters protein phosphatase 2A (PP2A) activity. EXPERIMENTAL APPROACH Human cardiovascular cells were cultured in cell type specific media under normoxic or hypoxic conditions (1% O2 ). Effects on mRNA expression, phosphatase activity, post-translational modification, and involvement of hypoxia inducible factor 1α (HIF-1α) were assessed using RT-PCR, immunoblotting, an activity assay, and siRNA silencing. KEY RESULTS All components of the protein phosphatase system studied were expressed in each cell line. Hypoxia attenuated mRNA expression of the transcripts in a cell line- and time-dependent manner. In human aortic smooth muscle cells (HASMC) and AC16 cells, hypoxia decreased PP2Ac activity and mRNA expression without altering PP2Ac abundance. Hypoxia increased demethylated PP2Ac (DPP2Ac) and phosphatase methylesterase 1 (PME-1) abundance but decreased leucine carboxyl methyltransferase 1 (LCMT-1) abundance. HIF-1α siRNA prevented the hypoxia-mediated decrease in phosphatase activity and expression of the catalytic subunit of protein phosphatase 2A (PPP2CA), independently of altering pPP2Ac, DPP2Ac, LCMT-1, or PME-1 abundance. CONCLUSION AND IMPLICATIONS Cardiovascular cells express multiple components of the PP2A system. In HASMC and AC16 cells, hypoxia inhibits PP2A activity through HIF-1α-dependent and -independent mechanisms, with the latter being consistent with altered PP2A holoenzyme assembly. This indicates a complex inhibitory effect of hypoxia on the PP2A system, and highlights PP2A as a therapeutic target for diseases associated with dysregulated protein phosphorylation.
Collapse
Affiliation(s)
| | - James Paul Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
O'Connor CM, Hoffa MT, Taylor SE, Avelar RA, Narla G. Protein phosphatase 2A Aα regulates Aβ protein expression and stability. J Biol Chem 2019; 294:5923-5934. [PMID: 30796164 PMCID: PMC6463732 DOI: 10.1074/jbc.ra119.007593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) represses many oncogenic signaling pathways and is an important tumor suppressor. PP2A comprises three distinct subunits and forms through a highly regulated biogenesis process, with the scaffolding A subunit existing as two highly related isoforms, Aα and Aβ. PP2A's tumor-suppressive functions have been intensely studied, and PP2A inactivation has been shown to be a prerequisite for tumor formation. Interestingly, although partial loss of the Aα isoform is growth promoting, complete Aα loss has no transformative properties. Additionally, in cancer patients, Aα is found to be inactivated in a haploinsufficient manner. Using both cellular and in vivo systems, colorectal and endometrial cancer cell lines, and biochemical and cellular assays, here we examined why the complete loss of Aα does not promote tumorigenesis. CRISPR/Cas9-mediated homozygous Aα deletion resulted in decreased colony formation and tumor growth across multiple cell lines. Protein expression analysis of PP2A family members revealed that the Aα deletion markedly up-regulates Aβ protein expression by increasing Aβ protein stability. Aβ knockdown in control and Aα knockout cell lines indicated that Aβ is necessary for cell survival in the Aα knockout cells. In the setting of Aα deficiency, co-immunoprecipitation analysis revealed increased binding of specific PP2A regulatory subunits to Aβ, and knockdown of these regulatory subunits restored colony-forming ability. Taken together, our results uncover a mechanism by which PP2A Aα regulates Aβ protein stability and activity and suggests why homozygous loss of Aα is rarely seen in cancer patients.
Collapse
Affiliation(s)
- Caitlin M O'Connor
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Matthew T Hoffa
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Rita A Avelar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Goutham Narla
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
22
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
23
|
Balligand JL. Phosphatase regulatory subunits in beta-adrenergic signalling: a delicate balancing act. Cardiovasc Res 2018; 115:477-478. [DOI: 10.1093/cvr/cvy275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
24
|
Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, Ma J, Guo L, Ge J, Qiu Y, Chen L, Liu H, Yan X, Liu X, Ye J, He W, Shen Y, Wang C, Mohler PJ, Hong K. Ankyrin-B Q1283H Variant Linked to Arrhythmias Via Loss of Local Protein Phosphatase 2A Activity Causes Ryanodine Receptor Hyperphosphorylation. Circulation 2018; 138:2682-2697. [PMID: 30571258 PMCID: PMC6276866 DOI: 10.1161/circulationaha.118.034541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human loss-of-function variants of ANK2 (ankyrin-B) are linked to arrhythmias and sudden cardiac death. However, their in vivo effects and specific arrhythmogenic pathways have not been fully elucidated. METHODS We identified new ANK2 variants in 25 unrelated Han Chinese probands with ventricular tachycardia by whole-exome sequencing. The potential pathogenic variants were validated by Sanger sequencing. We performed functional and mechanistic experiments in ankyrin-B knockin (KI) mouse models and in single myocytes isolated from KI hearts. RESULTS We detected a rare, heterozygous ANK2 variant (p.Q1283H) in a proband with recurrent ventricular tachycardia. This variant was localized to the ZU5C region of ANK2, where no variants have been previously reported. KI mice harboring the p.Q1283H variant exhibited an increased predisposition to ventricular arrhythmias after catecholaminergic stress in the absence of cardiac structural abnormalities. Functional studies illustrated an increased frequency of delayed afterdepolarizations and Ca2+ waves and sparks accompanied by decreased sarcoplasmic reticulum Ca2+ content in KI cardiomyocytes on isoproterenol stimulation. The immunoblotting results showed increased levels of phosphorylated ryanodine receptor Ser2814 in the KI hearts, which was further amplified on isoproterenol stimulation. Coimmunoprecipitation experiments demonstrated dissociation of protein phosphatase 2A from ryanodine receptor in the KI hearts, which was accompanied by a decreased binding of ankyrin-B to protein phosphatase 2A regulatory subunit B56α. Finally, the administration of metoprolol or flecainide decreased the incidence of stress-induced ventricular arrhythmias in the KI mice. CONCLUSIONS ANK2 p.Q1283H is a disease-associated variant that confers susceptibility to stress-induced arrhythmias, which may be prevented by the administration of metoprolol or flecainide. This variant is associated with the loss of protein phosphatase 2A activity, increased phosphorylation of ryanodine receptor, exaggerated delayed afterdepolarization-mediated trigger activity, and arrhythmogenesis.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Cen Wang
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianyong Ma
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Linjuan Guo
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ge
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yumin Qiu
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Leifeng Chen
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Hualong Liu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Peter J. Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, College of Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Departments of Physiology and Cell Biology and Internal Medicine, Columbus (P.J.M.)
| | - Kui Hong
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
25
|
Fischer TH, Eiringhaus J, Dybkova N, Saadatmand A, Pabel S, Weber S, Wang Y, Köhn M, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Maier LS, Hasenfuß G, El-Armouche A, Sossalla S. Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca 2+ leak in human heart failure. Eur J Heart Fail 2018; 20:1673-1685. [PMID: 30191648 DOI: 10.1002/ejhf.1297] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Disruption of Ca2+ homeostasis is a key pathomechanism in heart failure. CaMKII-dependent hyperphosphorylation of ryanodine receptors in the sarcoplasmic reticulum (SR) increases the arrhythmogenic SR Ca2+ leak and depletes SR Ca2+ stores. The contribution of conversely acting serine/threonine phosphatases [protein phosphatase 1 (PP1) and 2A (PP2A)] is largely unknown. METHODS AND RESULTS Human myocardium from three groups of patients was investigated: (i) healthy controls (non-failing, NF, n = 8), (ii) compensated hypertrophy (Hy, n = 16), and (iii) end-stage heart failure (HF, n = 52). Expression of PP1 was unchanged in Hy but greater in HF compared to NF while its endogenous inhibitor-1 (I-1) was markedly lower expressed in both compared to NF, suggesting increased total PP1 activity. In contrast, PP2A expression was lower in Hy and HF compared to NF. Ca2+ homeostasis was severely disturbed in HF compared to Hy signified by a higher SR Ca2+ leak, lower systolic Ca2+ transients as well as a decreased SR Ca2+ load. Inhibition of PP1/PP2A by okadaic acid increased SR Ca2+ load and systolic Ca2+ transients but severely aggravated diastolic SR Ca2+ leak and cellular arrhythmias in Hy. Conversely, selective activation of PP1 by a PP1-disrupting peptide (PDP3) in HF potently reduced SR Ca2+ leak as well as cellular arrhythmias and, importantly, did not compromise systolic Ca2+ release and SR Ca2+ load. CONCLUSION This study is the first to functionally investigate the role of PP1/PP2A for Ca2+ homeostasis in diseased human myocardium. Our data indicate that a modulation of phosphatase activity potently impacts Ca2+ cycling properties. An activation of PP1 counteracts increased kinase activity in heart failure and successfully seals the arrhythmogenic SR Ca2+ leak. It may thus represent a promising future antiarrhythmic therapeutic approach.
Collapse
Affiliation(s)
- Thomas H Fischer
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Medizinische Klinik II, Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Jörg Eiringhaus
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Nataliya Dybkova
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Alireza Saadatmand
- Abt. Molekulare Kardiologie und Epigenetik, Universitätsklinikum Heidelberg, Germany
| | - Steffen Pabel
- Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Silvio Weber
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Yansong Wang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Germany
| | - Theodor Tirilomis
- Klinik für Thorax-, Herz-, Gefäßchirurgie, Georg-August-Universität Göttingen, Germany
| | - Senka Ljubojevic
- Abteilung für Kardiologie, Medizinische Universität Graz, Austria
| | - André Renner
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Jan Gummert
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Gerd Hasenfuß
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Ali El-Armouche
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Samuel Sossalla
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| |
Collapse
|
26
|
Yoon S, Kook T, Min HK, Kwon DH, Cho YK, Kim M, Shin S, Joung H, Jeong SH, Lee S, Kang G, Park Y, Kim YS, Ahn Y, McMullen JR, Gergs U, Neumann J, Kim KK, Kim J, Nam KI, Kim YK, Kook H, Eom GH. PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Exp Mol Med 2018; 50:1-14. [PMID: 30050113 PMCID: PMC6062565 DOI: 10.1038/s12276-018-0121-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
Cardiac hypertrophy occurs in response to increased hemodynamic demand and can progress to heart failure. Identifying the key regulators of this process is clinically important. Though it is thought that the phosphorylation of histone deacetylase (HDAC) 2 plays a crucial role in the development of pathological cardiac hypertrophy, the detailed mechanism by which this occurs remains unclear. Here, we performed immunoprecipitation and peptide pull-down assays to characterize the functional complex of HDAC2. Protein phosphatase (PP) 2 A was confirmed as a binding partner of HDAC2. PPP2CA, the catalytic subunit of PP2A, bound to HDAC2 and prevented its phosphorylation. Transient overexpression of PPP2CA specifically regulated both the phosphorylation of HDAC2 S394 and hypertrophy-associated HDAC2 activation. HDAC2 S394 phosphorylation was increased in a dose-dependent manner by PP2A inhibitors. Hypertrophic stresses, such as phenylephrine in vitro or pressure overload in vivo, caused PPP2CA to dissociate from HDAC2. Forced expression of PPP2CA negatively regulated the hypertrophic response, but PP2A inhibitors provoked hypertrophy. Adenoviral delivery of a phosphomimic HDAC2 mutant, adenovirus HDAC2 S394E, successfully blocked the anti-hypertrophic effect of adenovirus-PPP2CA, implicating HDAC2 S394 phosphorylation as a critical event for the anti-hypertrophic response. PPP2CA transgenic mice were protected against isoproterenol-induced cardiac hypertrophy and subsequent cardiac fibrosis, whereas simultaneous expression of HDAC2 S394E in the heart did induce hypertrophy. Taken together, our results suggest that PP2A is a critical regulator of HDAC2 activity and pathological cardiac hypertrophy and is a promising target for future therapeutic interventions.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Taewon Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyun-Ki Min
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Mira Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hosouk Joung
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seung Hoon Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sumin Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Yunchul Park
- Division of Trauma Surgery, Department of Surgery, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Ulrich Gergs
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06097, Halle, Germany
| | - Joachim Neumann
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06097, Halle, Germany
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jungchul Kim
- Division of Trauma Surgery, Department of Surgery, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Kwang-Il Nam
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea. .,Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea. .,Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
27
|
Mao Z, Liu C, Lin X, Sun B, Su C. PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development. Cancer Lett 2018; 414:222-229. [DOI: 10.1016/j.canlet.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
|
28
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
29
|
Ranieri A, Kemp E, Burgoyne JR, Avkiran M. β-Adrenergic regulation of cardiac type 2A protein phosphatase through phosphorylation of regulatory subunit B56δ at S573. J Mol Cell Cardiol 2017; 115:20-31. [PMID: 29294329 PMCID: PMC5823843 DOI: 10.1016/j.yjmcc.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
Abstract
Background Type 2A protein phosphatase (PP2A) enzymes are serine/threonine phosphatases which comprise a scaffold A subunit, a regulatory B subunit and a catalytic C subunit, and have been implicated in the dephosphorylation of multiple cardiac phosphoproteins. B subunits determine subcellular targeting, substrate specificity and catalytic activity, and can themselves be regulated by post-translational modifications. We explored potential β-adrenergic regulation of PP2A in cardiomyocytes through phosphorylation of the regulatory B subunit isoform B56δ. Methods and results Phosphate affinity SDS-PAGE and immunoblot analysis revealed increased phosphorylation of B56δ in adult rat ventricular myocytes (ARVM) exposed to the β-adrenergic receptor (βAR) agonist isoprenaline (ISO). Phosphorylation of B56δ occurred at S573, primarily through stimulation of the β1AR subtype, and was dependent on PKA activity. The functional role of the phosphorylation was explored in ARVM transduced with adenoviruses expressing wild type (WT) or non-phosphorylatable (S573A) B56δ, fused to GFP at the N-terminus. C subunit expression was increased in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A, both of which co-immunoprecipitated with endogenous C and A subunits. PP2A activity in cell lysates was increased in response to ISO in ARVM expressing GFP-B56δ-WT but not GFP-B56δ-S573A. Immunoblot analysis of the phosphoproteome in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A with antibodies detecting (i) phospho-serine/threonine residues in distinct kinase substrate motifs or (ii) specific phosphorylated residues of functional importance in selected proteins revealed a comparable phosphorylation profile in the absence or presence of ISO stimulation. Conclusions In cardiomyocytes, βAR stimulation induces PKA-mediated phosphorylation of the PP2A regulatory subunit isoform B56δ at S573, which increases associated PP2A catalytic activity. This is likely to regulate the phosphorylation status of specific B56δ-PP2A substrates, which remain to be identified. PP2A subunit B56δ is phosphorylated on β-adrenergic stimulation of cardiomyocytes. Phosphorylation occurs at Ser573 and increases B56δ-PP2A catalytic activity. Response is mediated by the β1-adrenoceptor subtype and protein kinase A. Phosphorylated B56δ abundance is increased in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Antonella Ranieri
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Elizabeth Kemp
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Joseph R Burgoyne
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
30
|
Janghorban M, Langer EM, Wang X, Zachman D, Daniel CJ, Hooper J, Fleming WH, Agarwal A, Sears RC. The tumor suppressor phosphatase PP2A-B56α regulates stemness and promotes the initiation of malignancies in a novel murine model. PLoS One 2017; 12:e0188910. [PMID: 29190822 PMCID: PMC5708644 DOI: 10.1371/journal.pone.0188910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed Serine-Threonine phosphatase mediating 30–50% of protein phosphatase activity. PP2A functions as a heterotrimeric complex, with the B subunits directing target specificity to regulate the activity of many key pathways that control cellular phenotypes. PP2A-B56α has been shown to play a tumor suppressor role and to negatively control c-MYC stability and activity. Loss of B56α promotes cellular transformation, likely at least in part through its regulation of c-MYC. Here we report generation of a B56α hypomorph mouse with very low B56α expression that we used to study the physiologic activity of the PP2A-B56α phosphatase. The predominant phenotype we observed in mice with B56α deficiency in the whole body was spontaneous skin lesion formation with hyperproliferation of the epidermis, hair follicles and sebaceous glands. Increased levels of c-MYC phosphorylation on Serine62 and c-MYC activity were observed in the skin lesions of the B56αhm/hm mice. B56α deficiency was found to increase the number of skin stem cells, and consistent with this, papilloma initiation was accelerated in a carcinogenesis model. Further analysis of additional tissues revealed increased inflammation in spleen, liver, lung, and intestinal lymph nodes as well as in the skin lesions, resembling elevated extramedullary hematopoiesis phenotypes in the B56αhm/hm mice. We also observed an increase in the clonogenicity of bone marrow stem cells in B56αhm/hm mice. Overall, this model suggests that B56α is important for stem cells to maintain homeostasis and that B56α loss leading to increased activity of important oncogenes, including c-MYC, can result in aberrant cell growth and increased stem cells that can contribute to the initiation of malignancy.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ellen M. Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Derek Zachman
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jody Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Fleming
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
31
|
El Refaey MM, Mohler PJ. Ankyrins and Spectrins in Cardiovascular Biology and Disease. Front Physiol 2017; 8:852. [PMID: 29163198 PMCID: PMC5664424 DOI: 10.3389/fphys.2017.00852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a complex array of electrical and structural phenotypes now termed “ankyrin-B syndrome,” whereas alterations in the ankyrin-G pathway for Nav channel targeting are associated with human Brugada syndrome. Further, both ankyrin-G and -B are now linked with acquired forms of cardiovascular disease including myocardial infarction and atrial fibrillation. Spectrins are ankyrin-associated proteins and recent studies support the critical role of ankyrin-spectrin interactions in normal cardiac physiology as well as regulation of key ion channel and signaling complexes. This review will highlight the roles of ankyrins and spectrins in cardiovascular physiology as well as illustrate the link between the dysfunction in ankyrin- and spectrin-based pathways and disease.
Collapse
Affiliation(s)
- Mona M El Refaey
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Hood AR, Ai X, Pogwizd SM. Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 2017; 107:52-57. [PMID: 28478048 DOI: 10.1016/j.yjmcc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Sufficient connexin-mediated intercellular coupling is critical to maintain gap junctional communication for proper cardiac function. Alterations in connexin phosphorylation state, particularly dephosphorylation of connexin 43 (Cx43), may impact cell coupling and conduction in disease states. Cx43 dephosphorylation may be carried out by protein phosphatase activity. Here, we present an overview of the key phosphatases known to interact with Cx43 or modulators of Cx43, as well as some possible therapeutic targets to regulate phosphatase activity in the heart.
Collapse
Affiliation(s)
- Ashleigh R Hood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xun Ai
- Department of Biophysics and Physiology, Rush University, Chicago, IL, United States
| | - Steven M Pogwizd
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
34
|
Heijman J, Ghezelbash S, Wehrens XHT, Dobrev D. Serine/Threonine Phosphatases in Atrial Fibrillation. J Mol Cell Cardiol 2017; 103:110-120. [PMID: 28077320 DOI: 10.1016/j.yjmcc.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Serine/threonine protein phosphatases control dephosphorylation of numerous cardiac proteins, including a variety of ion channels and calcium-handling proteins, thereby providing precise post-translational regulation of cardiac electrophysiology and function. Accordingly, dysfunction of this regulation can contribute to the initiation, maintenance and progression of cardiac arrhythmias. Atrial fibrillation (AF) is the most common heart rhythm disorder and is characterized by electrical, autonomic, calcium-handling, contractile, and structural remodeling, which include, among other things, changes in the phosphorylation status of a wide range of proteins. Here, we review AF-associated alterations in the phosphorylation of atrial ion channels, calcium-handling and contractile proteins, and their role in AF-pathophysiology. We highlight the mechanisms controlling the phosphorylation of these proteins and focus on the role of altered dephosphorylation via local type-1, type-2A and type-2B phosphatases (PP1, PP2A, and PP2B, also known as calcineurin, respectively). Finally, we discuss the challenges for phosphatase research, potential therapeutic significance of altered phosphatase-mediated protein dephosphorylation in AF, as well as future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
35
|
Yang J, Li Z, Gan X, Zhai G, Gao J, Xiong C, Qiu X, Wang X, Yin Z, Zheng F. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish. Int J Mol Sci 2016; 17:ijms17111746. [PMID: 27845735 PMCID: PMC5133774 DOI: 10.3390/ijms17111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR), plays an important role in the excitation-contraction (EC) coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening). Hematoxylin and eosin (H&E) staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT). Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function.
Collapse
Affiliation(s)
- Jie Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zuhua Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xuedong Gan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Gang Zhai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jiajia Gao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chenling Xiong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
36
|
Lubbers ER, Mohler PJ. Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol 2016; 101:127-133. [PMID: 27832939 DOI: 10.1016/j.yjmcc.2016.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023]
Abstract
Reversible protein phosphorylation is central to a variety of cardiac processes including excitation-contraction coupling, Ca2+ handling, cell metabolism, myofilament regulation, and cell-cell communication. While kinase pathways linked with elevated adrenergic signaling have been a major focus for the cardiovascular field over the past half century, new findings support the critical role of protein phosphatases in both health and disease. Protein phosphatase 2A (PP2A) is a central cardiac phosphatase that regulates diverse myocyte functions through a host of target molecules. Notably, multiple mechanisms have evolved to dynamically tune PP2A function, including modulation of the composition, phosphorylation, methylation, and localization of PP2A holoenzyme populations. Further, aberrations in this regulation of PP2A function may contribute to cardiac pathophysiology. In summary, PP2A is a critical regulatory molecule in both health and disease, with a myriad of targets in heart. Based on their unique structure, localization, and regulatory properties, PP2A subunits represent exciting therapeutic targets to modulate altered adrenergic signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Ellen R Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
37
|
Hund TJ, Mohler PJ. Atrial-specific pathways for control of intracellular signaling and myocyte function. J Clin Invest 2016; 126:3731-3734. [PMID: 27643440 DOI: 10.1172/jci90348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is a cardiac arrhythmia that arises from electrical and contractile dysfunction in the atria. Atrial function is regulated by a variety of intracellular signaling networks that facilitate rapid communication and coordinate responses of atrial myocytes. In this issue of the JCI, Brandenburg and colleagues describe the identification and characterization of "super-hub" signaling nodes located on atrial axial tubules that regulate atrial contraction. Together, the results of this study provide important insight into the regulation of atrial contraction and describe potential therapeutic targets to be explored in future studies.
Collapse
|
38
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
39
|
Popescu I, Galice S, Mohler PJ, Despa S. Elevated local [Ca2+] and CaMKII promote spontaneous Ca2+ release in ankyrin-B-deficient hearts. Cardiovasc Res 2016; 111:287-94. [PMID: 27131508 DOI: 10.1093/cvr/cvw093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
AIMS Loss-of-function mutations in the cytoskeletal protein ankyrin-B (AnkB) cause ventricular tachyarrhythmias in humans. Previously, we found that a larger fraction of the sarcoplasmic reticulum (SR) Ca(2+) leak occurs through Ca(2+) sparks in AnkB-deficient (AnkB(+/-)) mice, which may contribute to arrhythmogenicity via Ca(2+) waves. Here, we investigated the mechanisms responsible for increased Ca(2+) spark frequency in AnkB(+/-) hearts. METHODS AND RESULTS Using immunoblots and phospho-specific antibodies, we found that phosphorylation of ryanodine receptors (RyRs) by CaMKII is enhanced in AnkB(+/-) hearts. In contrast, the PKA-mediated RyR phosphorylation was comparable in AnkB(+/-) and wild-type (WT) mice. CaMKII inhibition greatly reduced Ca(2+) spark frequency in myocytes from AnkB(+/-) mice but had little effect in the WT. Global activities of the major phosphatases PP1 and PP2A were similar in AnkB(+/-) and WT hearts, while CaMKII autophosphorylation, a marker of CaMKII activation, was increased in AnkB(+/-) hearts. Thus, CaMKII-dependent RyR hyperphosphorylation in AnkB(+/-) hearts is caused by augmented CaMKII activity. Intriguingly, CaMKII activation is limited to the sarcolemma-SR junctions since non-junctional CaMKII targets (phospholamban, HDAC4) are not hyperphosphorylated in AnkB(+/-) myocytes. This local CaMKII activation may be the consequence of elevated [Ca(2+)] in the junctional cleft caused by reduced Na(+)/Ca(2+) exchange activity. Indeed, using the RyR-targeted Ca(2+) sensor GCaMP2.2-FBKP12.6, we found that local junctional [Ca(2+)] is significantly elevated in AnkB(+/-) myocytes. CONCLUSIONS The increased incidence of pro-arrhythmogenic Ca(2+) sparks and waves in AnkB(+/-) hearts is due to enhanced CaMKII-mediated RyR phosphorylation, which is caused by higher junctional [Ca(2+)] and consequent local CaMKII activation.
Collapse
Affiliation(s)
- Iuliana Popescu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA
| | - Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA
| |
Collapse
|
40
|
Unudurthi SD, Wu X, Qian L, Amari F, Onal B, Li N, Makara MA, Smith SA, Snyder J, Fedorov VV, Coppola V, Anderson ME, Mohler PJ, Hund TJ. Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability. J Am Heart Assoc 2016; 5:e002865. [PMID: 27098968 PMCID: PMC4859279 DOI: 10.1161/jaha.115.002865] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Two‐pore K+ channels have emerged as potential targets to selectively regulate cardiac cell membrane excitability; however, lack of specific inhibitors and relevant animal models has impeded the effort to understand the role of 2‐pore K+ channels in the heart and their potential as a therapeutic target. The objective of this study was to determine the role of mechanosensitive 2‐pore K+ channel family member TREK‐1 in control of cardiac excitability. Methods and Results Cardiac‐specific TREK‐1–deficient mice (αMHC‐Kcnkf/f) were generated and found to have a prevalent sinoatrial phenotype characterized by bradycardia with frequent episodes of sinus pause following stress. Action potential measurements from isolated αMHC‐Kcnk2f/f sinoatrial node cells demonstrated decreased background K+ current and abnormal sinoatrial cell membrane excitability. To identify novel pathways for regulating TREK‐1 activity and sinoatrial node excitability, mice expressing a truncated allele of the TREK‐1–associated cytoskeletal protein βIV‐spectrin (qv4J mice) were analyzed and found to display defects in cell electrophysiology as well as loss of normal TREK‐1 membrane localization. Finally, the βIV‐spectrin/TREK‐1 complex was found to be downregulated in the right atrium from a canine model of sinoatrial node dysfunction and in human cardiac disease. Conclusions These findings identify a TREK‐1–dependent pathway essential for normal sinoatrial node cell excitability that serves as a potential target for selectively regulating sinoatrial node cell function.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Xiangqiong Wu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Lan Qian
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Foued Amari
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Ning Li
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael A Makara
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sakima A Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jedidiah Snyder
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Vadim V Fedorov
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| |
Collapse
|
41
|
Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 2015; 89:160-7. [PMID: 26475411 PMCID: PMC5075238 DOI: 10.1016/j.yjmcc.2015.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
Abstract
CaMKII is activated by oxidation of methionine residues residing in the regulatory domain. Oxidized CaMKII (ox-CaMKII) is now thought to participate in cardiovascular and pulmonary diseases and cancer. This invited review summarizes current evidence for the role of ox-CaMKII in disease, considers critical knowledge gaps and suggests new areas for inquiry.
Collapse
Affiliation(s)
- Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
42
|
Biesiadecki BJ, Ziolo MT. Should we treat heart failure with phosphatase inhibitors? Better to start at the end. J Mol Cell Cardiol 2015; 89:116-8. [PMID: 26497613 DOI: 10.1016/j.yjmcc.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|