1
|
Mansat M, Kpotor AO, Mazars A, Chicanne G, Payrastre B, Viaud J. PI3KC2β depletion rescues endosomal trafficking defects in Mtm1 knockout skeletal muscle cells. J Lipid Res 2025; 66:100756. [PMID: 39952567 PMCID: PMC11930147 DOI: 10.1016/j.jlr.2025.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Phosphoinositides constitute a class of seven phospholipids found in cell membranes, regulating various cellular processes like trafficking and signaling. Mutations in their metabolizing enzymes are implicated in several pathologies, including X-linked myotubular myopathy, a severe myopathy caused by mutations in the MTM1 gene. MTM1 (myotubularin 1) acts as a phosphoinositide 3-phosphatase, targeting PI3P (phosphatidylinositol 3-phosphate) and phosphatidylinositol 3,5-bisphosphate, crucial for endolysosomal trafficking. Studies in X-linked myotubular myopathy animal models have demonstrated that loss of MTM1 results in PI3P accumulation in muscle. Moreover, inactivating the class II phosphoinositide 3-kinase beta rescues the pathological phenotype and decreases PI3P levels, suggesting that the normalization of PI3P levels could be responsible for that rescue mechanism. In this study, using an Mtm1-KO skeletal muscle cell line, we investigated the localization of the PI3P pool metabolized by MTM1 in endosomal compartments. Our findings reveal that MTM1 metabolizes a pool of PI3P on EEA1 (early endosome antigen 1)-positive endosomes, leading to impaired Rab4 recycling vesicle biogenesis in the absence of MTM1. Furthermore, depletion of class II phosphoinositide 3-kinase beta rescued Mtm1-KO cell phenotype, normalized PI3P level on EEA1-positive endosomes, and restored Rab4-positive vesicle biogenesis. These results indicate that MTM1 is critical for the homeostasis of endosomal trafficking, and that depletion of MTM1 potentially alters cargo recycling through Rab4-positive vesicle trafficking.
Collapse
Affiliation(s)
- Mélanie Mansat
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - Afi Oportune Kpotor
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - Anne Mazars
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - Gaëtan Chicanne
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
| | - Bernard Payrastre
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France; University Hospital of Toulouse, Hematology Laboratory, Toulouse, France
| | - Julien Viaud
- INSERM UMR1297, University of Toulouse 3, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France.
| |
Collapse
|
2
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Mujalli A, Viaud J, Severin S, Gratacap MP, Chicanne G, Hnia K, Payrastre B, Terrisse AD. Exploring the Role of PI3P in Platelets: Insights from a Novel External PI3P Pool. Biomolecules 2023; 13:biom13040583. [PMID: 37189331 DOI: 10.3390/biom13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
Phosphoinositides (PIs) play a crucial role in regulating intracellular signaling, actin cytoskeleton rearrangements, and membrane trafficking by binding to specific domains of effector proteins. They are primarily found in the membrane leaflets facing the cytosol. Our study demonstrates the presence of a pool of phosphatidylinositol 3-monophosphate (PI3P) in the outer leaflet of the plasma membrane of resting human and mouse platelets. This pool of PI3P is accessible to exogenous recombinant myotubularin 3-phosphatase and ABH phospholipase. Mouse platelets with loss of function of class III PI 3-kinase and class II PI 3-kinase α have a decreased level of external PI3P, suggesting a contribution of these kinases to this pool of PI3P. After injection in mouse, or incubation ex vivo in human blood, PI3P-binding proteins decorated the platelet surface as well as α-granules. Upon activation, these platelets were able to secrete the PI3P-binding proteins. These data sheds light on a previously unknown external pool of PI3P in the platelet plasma membrane that recognizes PI3P-binding proteins, leading to their uptake towards α-granules. This study raises questions about the potential function of this external PI3P in the communication of platelets with the extracellular environment, and its possible role in eliminating proteins from the plasma.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Karim Hnia
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
- Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432 Toulouse Cedex, France
| | - Anne-Dominique Terrisse
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297, Université Paul Sabatier, F-31432 Toulouse Cedex, France
| |
Collapse
|
4
|
Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death Differ 2022; 29:1423-1432. [PMID: 35017647 PMCID: PMC9287416 DOI: 10.1038/s41418-022-00931-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Apoptotic cells are rapidly engulfed and removed by phagocytes after displaying cell surface eat-me signals. Among many phospholipids, only phosphatidylserine (PS) is known to act as an eat-me signal on apoptotic cells. Using unbiased proteomics, we identified externalized phosphatidylinositides (PIPs) as apoptotic eat-me signals recognized by CD14+ phagocytes. Exofacial PIPs on the surfaces of early and late-apoptotic cells were observed in patches and blebs using anti-PI(3,4,5)P3 antibody, AKT- and PLCδ PH-domains, and CD14 protein. Phagocytosis of apoptotic cells was blocked either by masking exofacial PIPs or by CD14 knockout in phagocytes. We further confirmed that exofacial PIP+ thymocytes increased dramatically after in vivo irradiation and that exofacial PIP+ cells represented more significant populations in tissues of Cd14−/− than WT mice, especially after induction of apoptosis. Our findings reveal exofacial PIPs to be previously unknown cell death signals recognized by CD14+ phagocytes.
Collapse
|
5
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
6
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
7
|
Peng L, Guo J, Lu J, Jin S, Wang P, Shen H. Risk Factors and Scoring System of Cage Retropulsion after Posterior Lumbar Interbody Fusion: A Retrospective Observational Study. Orthop Surg 2021; 13:855-862. [PMID: 33749137 PMCID: PMC8126950 DOI: 10.1111/os.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To investigate risk factors of cage retropulsion after posterior lumbar interbody fusion (PLIF) in China and to establish a scoring system of cage retropulsion. METHODS The retrospective analysis was based on two hospital databases. The medical data records of posterior lumbar interbody fusion with cage retropulsion were selected from August 2009 to August 2019. Inclusion and exclusion criteria were set in advance. Risk factors including patients' baseline demographics (age, gender, operation diagnosis time difference), preoperative neurological symptoms, whether the fusion involves single or double segments, screw type, intraoperative compression, preoperative bone mineral density, whether there are neurological symptoms before surgery, whether there is urine dysfunction before surgery, disease type, complete removal of the endplate, and patient's education level. The research endpoint was the retropulsion of fusion cages. The Kaplan-Meier (K-M) method was used to analyze potential risk factors, and multivariate Cox regression was used to identify independent risk factors (P < 0.05). The Statistical Package for the Social Sciences (version 22.0; SPSS, IBM, Chicago, IL, USA) software was used for statistical analysis, and univariate analysis was used to screen out the factors related to cage retropulsion. All independent risk factors were included to predict the survival time of the retropulsion of cage. RESULTS This study included a total of 32 patients with PLIF between 2009 to 2019. All patients were residents of China. Univariate analysis showed that there were 13 patients over 60 years old and 19 patients under 60 years old. There were 20 male patients and 12 female patients. The surgical diagnosis time was seven patients within 1 month, 17 patients within 1 to 3 months, and eight patients over 3 months. The disease type was 18 cases of lumbar disc herniation, 10 cases of lumbar spinal stenosis, four cases of lumbar spondylolisthesis. The fusion segment was 18 cases of single segment, 14 cases of double segment. The intraoperative compression was seven cases of compression, 25 cases of no compression. The preoperative bone mineral density was 10 cases of low density, 18 cases of normal, four cases of osteoporosis. The screw type was 27 cases of universal screw, five cases of one-way screw. Preoperative neurological symptoms were found in 25 cases and not in seven cases. Preoperative urination dysfunction occurred in 8 cases, whereas 24 cases did not have this dysfunction. The endplate was completely removed in 10 cases and not in 22 cases. Education level was nine cases of primary school education, 10 cases of secondary school, 13 cases of university level. Cox regression analysis showed that intraoperative pressure (hazard ratio [HR] = 4.604, P = 0.015) and complete removal of the endplate (HR = 0.205, P = 0.027) are associated with the time of cage retropulsion. According to the HR of each factor, the scoring rules were formulated, and the patients were divided into the low-risk group, moderate-risk group, and high-risk group according to the final score. The three median survival times of the three groups were 66 days in the low-risk group, 55 days in the moderate-risk group, and 45 days in the high-risk group, with statistical significance (P < 0.05). CONCLUSION Intraoperative pressure and complete removal of the intraoperative endplate can be helpful to evaluating the expected time of cage retropulsion in patients with PLIF, and this clinical model guided the selection of postoperative prevention and follow-up treatment.
Collapse
Affiliation(s)
- Lei Peng
- Department of OrthopaedicsThe Eighth Affiliated Hospital, Sun Yat‐Sen UniversityShenzhenChina
- Departmentof OrthopaedicsThe Second Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of OrthopaedicsThe Second Affiliated Hospital of Hunan Normal University, The 921rd Central Hospital of the People's Liberation ArmyChangshaChina
| | - Jiang Guo
- Department of OrthopaedicsThe Eighth Affiliated Hospital, Sun Yat‐Sen UniversityShenzhenChina
- Departmentof OrthopaedicsThe Second Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ji‐ping Lu
- Department of OrthopaedicsThe Second Affiliated Hospital of Hunan Normal University, The 921rd Central Hospital of the People's Liberation ArmyChangshaChina
| | - Song Jin
- Department of OrthopaedicsThe Eighth Affiliated Hospital, Sun Yat‐Sen UniversityShenzhenChina
| | - Peng Wang
- Department of OrthopaedicsThe Eighth Affiliated Hospital, Sun Yat‐Sen UniversityShenzhenChina
- Departmentof OrthopaedicsThe Second Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Hui‐yong Shen
- Department of OrthopaedicsThe Eighth Affiliated Hospital, Sun Yat‐Sen UniversityShenzhenChina
- Departmentof OrthopaedicsThe Second Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Mansat M, Picot M, Chicanne G, Nahoum V, Gaits-Iacovoni F, Payrastre B, Hnia K, Viaud J. Liposome-Based Methods to Study Protein-Phosphoinositide Interaction. Methods Mol Biol 2021; 2251:177-184. [PMID: 33481239 DOI: 10.1007/978-1-0716-1142-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Following their generation by lipid kinases and phosphatases, phosphoinositides regulate important biological processes such as cytoskeleton rearrangement, membrane remodeling/trafficking, and gene expression through the interaction of their phosphorylated inositol head group with a variety of protein domains such as PH, PX, and FYVE. Therefore, it is important to determine the specificity of phosphoinositides toward effector proteins to understand their impact on cellular physiology. Several methods have been developed to identify and characterize phosphoinositide effectors, and liposomes-based methods are preferred because the phosphoinositides are incorporated in a membrane, the composition of which can mimic cellular membranes. In this report, we describe the experimental setup for liposome flotation assay and a recently developed method called protein-lipid interaction by fluorescence (PLIF) for the characterization of phosphoinositide-binding specificities of proteins.
Collapse
Affiliation(s)
- Mélanie Mansat
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Mélanie Picot
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Gaëtan Chicanne
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Virginie Nahoum
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | | | - Bernard Payrastre
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
- CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, Toulouse Cedex, France
| | - Karim Hnia
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France
| | - Julien Viaud
- INSERM U1048 and Université Toulouse 3, Toulouse Cedex, France.
| |
Collapse
|
9
|
Sansen T, Sanchez-Fuentes D, Rathar R, Colom-Diego A, El Alaoui F, Viaud J, Macchione M, de Rossi S, Matile S, Gaudin R, Bäcker V, Carretero-Genevrier A, Picas L. Mapping Cell Membrane Organization and Dynamics Using Soft Nanoimprint Lithography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29000-29012. [PMID: 32464046 DOI: 10.1021/acsami.0c05432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane shape is a key feature of many cellular processes, including cell differentiation, division, migration, and trafficking. The development of nanostructured surfaces allowing for the in situ manipulation of membranes in living cells is crucial to understand these processes, but this requires complicated and limited-access technologies. Here, we investigate the self-organization of cellular membranes by using a customizable and benchtop method allowing one to engineer 1D SiO2 nanopillar arrays of defined sizes and shapes on high-performance glass compatible with advanced microscopies. As a result of this original combination, we provide a mapping of the morphology-induced modulation of the cell membrane mechanics, dynamics and steady-state organization of key protein complexes implicated in cellular trafficking and signal transduction.
Collapse
Affiliation(s)
- T Sansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - D Sanchez-Fuentes
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - R Rathar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - A Colom-Diego
- Biochemistry Department and School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - F El Alaoui
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - J Viaud
- Institute of Cardiovascular and Metabolic Diseases (I2MC-UMR1048), Inserm and Université Toulouse 3, Avenue Jean Poulhès BP84225, 31432 Cedex 04 Toulouse, France
| | - M Macchione
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - S de Rossi
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - S Matile
- School of Chemistry and Biochemistry and Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - R Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| | - V Bäcker
- MRI Imaging Facility, UMS BioCampus Montpellier, 34000 Montpellier, France
| | - A Carretero-Genevrier
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214-Université de Montpellier, 34097 Montpellier, France
| | - L Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004-Université de Montpellier, 34293 Montpellier, France
| |
Collapse
|
10
|
Jose GP, Gopan S, Bhattacharyya S, Pucadyil TJ. A facile, sensitive and quantitative membrane-binding assay for proteins. Traffic 2019; 21:297-305. [PMID: 31846132 DOI: 10.1111/tra.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
Abstract
Soluble proteins that bind membranes function in numerous cellular pathways yet facile, sensitive and quantitative methods that complement and improve sensitivity of widely used liposomes-based assays remain unavailable. Here, we describe the utility of a photoactivable fluorescent lipid as a generic reporter of protein-membrane interactions. When incorporated into liposomes and exposed to ultraviolet (UV), proteins bound to liposomes become crosslinked with the fluorescent lipid and can be readily detected and quantitated by in-gel fluorescence analysis. This modification obviates the requirement for high-speed centrifugation spins common to most liposome-binding assays. We refer to this assay as Proximity-based Labeling of Membrane-Associated Proteins (PLiMAP).
Collapse
Affiliation(s)
- Gregor P Jose
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Shilpa Gopan
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Soumya Bhattacharyya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Thomas J Pucadyil
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
11
|
Wang Y, Hou S, Tong Y, Li H, Hua Y, Fan Y, Chen X, Yang Y, Liu H, Lu T, Chen Y, Zhang Y. Discovery of potent apoptosis signal-regulating kinase 1 inhibitors via integrated computational strategy and biological evaluation. J Biomol Struct Dyn 2019; 38:4385-4396. [PMID: 31612792 DOI: 10.1080/07391102.2019.1680439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis signal-regulating Kinase 1 (ASK1) has been confirmed as a potential therapeutic target for the treatment of non-alcoholic steatohepatitis (NASH) disorder and the discovery of ASK1 inhibitors has attracted increasing attention. In this work, a series of in silico methods including pharmacophore screening, docking binding site analysis, protein-ligand interaction fingerprint (PLIF) similarity investigation and molecular docking were applied to find the potential hits from commercial compound databases. Five compounds with potential inhibitory activity were purchased and submitted to biological activity validation. Thus, one hit compound was discovered with micromolar IC50 value (10.59 μM) against ASK1. Results demonstrated that the integration of computation methods and biological test was quite reliable for the discovery of potent ASK1 inhibitors and the strategy could be extended to other similar targets of interest.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaohua Hou
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Tong
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Hua
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanrong Fan
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xingye Chen
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Yang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haichun Liu
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanmin Zhang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Ebrahimzadeh Z, Mukherjee A, Crochetière MÈ, Sergerie A, Amiar S, Thompson LA, Gagnon D, Gaumond D, Stahelin RV, Dacks JB, Richard D. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. EMBO Rep 2019; 20:e47102. [PMID: 31097469 PMCID: PMC6549027 DOI: 10.15252/embr.201847102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is an essential step in the development of the disease. Consequently, the molecular players involved in host cell invasion represent important targets for inhibitor design and vaccine development. The process of merozoite invasion is a succession of steps underlined by the sequential secretion of the organelles of the apical complex. However, little is known with regard to how their contents are exocytosed. Here, we identify a phosphoinositide-binding protein conserved in apicomplexan parasites and show that it is important for the attachment and subsequent invasion of the erythrocyte by the merozoite. Critically, removing the protein from its site of action by knock sideways preferentially prevents the secretion of certain types of micronemes. Our results therefore provide evidence for a role of phosphoinositide lipids in the malaria invasion process and provide further insight into the secretion of microneme organelle populations, which is potentially applicable to diverse apicomplexan parasites.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Crochetière
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Audrey Sergerie
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dominic Gagnon
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - David Gaumond
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
De Franceschi N, Miihkinen M, Hamidi H, Alanko J, Mai A, Picas L, Guzmán C, Lévy D, Mattjus P, Goult BT, Goud B, Ivaska J. ProLIF - quantitative integrin protein-protein interactions and synergistic membrane effects on proteoliposomes. J Cell Sci 2018; 132:jcs.214270. [PMID: 30072441 DOI: 10.1242/jcs.214270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/07/2018] [Indexed: 01/23/2023] Open
Abstract
Integrin transmembrane receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. Diverse methods have been used to investigate interactions between integrins and intracellular proteins, and predominantly include peptide-based pulldowns and biochemical immuno-isolations from detergent-solubilised cell lysates. However, quantitative methods to probe integrin-protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here, we describe 'protein-liposome interactions by flow cytometry' (denoted ProLIF), a technique to reconstitute recombinant integrin transmembrane domains (TMDs) and cytoplasmic tail (CT) fragments in liposomes as individual subunits or as αβ heterodimers and, via flow cytometry, allow rapid and quantitative measurement of protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. Moreover, the effect of membrane composition, such as PI(4,5)P2 incorporation, on protein recruitment to the integrin CTs can be analysed. ProLIF requires no specific instrumentation and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses.This article has associated First Person interviews with the first authors of the paper (see doi: 10.1242/jcs.223644 and doi: 10.1242/jcs.223719).
Collapse
Affiliation(s)
- Nicola De Franceschi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR 168, 75005 Paris, France.,Sorbonne Universités, UPMC, 75005 Paris, France
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anja Mai
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Picas
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Camilo Guzmán
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Daniel Lévy
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Bruno Goud
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland .,Department of Biochemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
14
|
Del Vecchio K, Stahelin RV. Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 2018; 50:1-10. [PMID: 29426977 DOI: 10.1007/s10863-018-9745-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
16
|
Kim SO, Jackman JA, Elazar M, Cho SJ, Glenn JS, Cho NJ. Quantitative Evaluation of Viral Protein Binding to Phosphoinositide Receptors and Pharmacological Inhibition. Anal Chem 2017; 89:9742-9750. [PMID: 28809547 PMCID: PMC5724528 DOI: 10.1021/acs.analchem.7b01568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is significant interest in developing analytical methods to characterize molecular recognition events between proteins and phosphoinositides, which are a medically important class of carbohydrate-functionalized lipids. Within this scope, one area of high priority involves quantitatively evaluating drug candidates that pharmacologically inhibit protein-phosphoinositide interactions. As full-length proteins are often difficult to produce, establishing methods to study these interactions with shorter, bioactive peptides would be advantageous. Herein, we report an atomic force microscopy (AFM)-based force spectroscopic approach to detect the specific interaction between an amphipathic, α-helical (AH) peptide derived from the hepatitis C virus NS5A protein and its biological target, the phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] phosphoinositide receptor. After optimization of the peptide tethering strategy and measurement parameters, the binding specificity of AH peptide for PI(4,5)P2 receptors was comparatively evaluated across a panel of phosphoinositides and the influence of ionic strength on AH-PI(4,5)P2 binding strength was tested. Importantly, these capabilities were translated into the development of a novel experimental methodology to determine the inhibitory activity of a small-molecule drug candidate acting against the AH-PI(4,5)P2 interaction, and extracted kinetic parameters agree well with literature values obtained by conventional biochemical methods. Taken together, our findings provide a nanomechanical basis for explaining the high binding specificity of the NS5A AH to PI(4,5)P2 receptors, in turn establishing an analytical framework to study phosphoinositide-binding viral peptides and proteins as well as a broadly applicable approach to evaluate candidate inhibitors of protein-phosphoinositide interactions.
Collapse
Affiliation(s)
- Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Drive, 637553 Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Drive, 637553 Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine , Stanford, California 94305, United States
| | - Sang-Joon Cho
- Advanced Institute of Convergence Technology, Seoul National University , Suwon 443-270, South Korea
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine , Stanford, California 94305, United States.,Veterans Administration Medical Center , Palo Alto, California 94304, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Drive, 637553 Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
17
|
Ceccato L, Mansat M, Payrastre B, Gaits-Iacovoni F, Viaud J. Protein-Lipid Interaction by Fluorescence (PLIF) to Characterize and Screen for Inhibitors of Protein-Phosphoinositide Interactions. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:19.31.1-19.31.10. [PMID: 28762494 DOI: 10.1002/cpps.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phosphoinositides are key signaling and regulatory phospholipids that mediate important pathophysiological processes. This is achieved through the interaction of their phosphorylated inositol head group with a wide range of protein domains. Therefore, being able to determine the phosphoinositide specificity for effector protein is essential to the understanding of its cellular function. This unit describes a novel method named Protein-Lipid Interaction by Fluorescence, or PLIF. PLIF is a fast, reliable and high throughput assay that allows determination of the phosphoinositide specificity of proteins, simultaneously providing relative affinities. In addition, PLIF is suitable for screening inhibitors of protein- phosphoinositide interaction, allowing identification of potential pharmacological compounds. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurie Ceccato
- INSERM U1048 and Université Toulouse 3, Toulouse, France
| | - Mélanie Mansat
- INSERM U1048 and Université Toulouse 3, Toulouse, France
| | - Bernard Payrastre
- INSERM U1048 and Université Toulouse 3, Toulouse, France.,CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, France
| | | | - Julien Viaud
- INSERM U1048 and Université Toulouse 3, Toulouse, France
| |
Collapse
|
18
|
Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc Natl Acad Sci U S A 2017; 114:1566-1571. [PMID: 28154130 DOI: 10.1073/pnas.1611096114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid-protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo-cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann-Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner.
Collapse
|
19
|
Viaud J, Chicanne G, Solinhac R, Hnia K, Gaits-Iacovoni F, Payrastre B. Mass Assays to Quantify Bioactive PtdIns3P and PtdIns5P During Autophagic Responses. Methods Enzymol 2016; 587:293-310. [PMID: 28253962 DOI: 10.1016/bs.mie.2016.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autophagy is a cellular process whereby cytoplasmic substrates are targeted for degradation in the lysosome via the membrane structures autophagosomes. This process is initiated by specific phosphoinositides, PtdIns3P and PtdIns5P, which play a key role in autophagy by recruiting effectors such as Atg18/WIPI2. Therefore, quantifying those lipids is important to better understand the assembly of the complex autophagic machinery. Herein, we describe in detail methods to quantify PtdIns3P and PtdIns5P by specific mass assays feasible in most laboratories.
Collapse
Affiliation(s)
- J Viaud
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - G Chicanne
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - R Solinhac
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - K Hnia
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | | | - B Payrastre
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France; CHU (Centre Hospitalier Universitaire) de Toulouse, Laboratoire d'Hématologie, Toulouse, France.
| |
Collapse
|
20
|
Shirey CM, Scott JL, Stahelin RV. Notes and tips for improving quality of lipid-protein overlay assays. Anal Biochem 2016; 516:9-12. [PMID: 27742211 DOI: 10.1016/j.ab.2016.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 11/13/2022]
Abstract
To reduce costs of lipid-binding assays, allow for multiple lipids to be screened for protein binding simultaneously, and to make lipid binding more user friendly, lipids have been dotted onto membranes to investigate lipid-protein interactions. These assays are similar to a western blot where the membrane is blocked, incubated with a protein of interest and detected using antibodies. Although the assay is inexpensive and straightforward, problems with promiscuous or poor binding, as well as insufficient blocking occur frequently. In this technical note, we share several specific improvements to ensure lipid-protein overlay assays are of high quality and contain proper controls.
Collapse
Affiliation(s)
- Carolyn M Shirey
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jordan L Scott
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA.
| |
Collapse
|