1
|
Papadakis GE, Favre L, Zouaghi Y, Vionnet N, Niederländer NJ, Adamo M, Acierno JS, Berdous D, Boizot A, Meylan J, Ivanisevic J, Paccou E, Gallart-Ayala H, Reyns T, Van Caeneghem E, Lapauw B, Pasquier J, Aleman Y, Mantziari S, Salamin O, Nicoli R, Kuuranne T, Fiers T, Hagmann P, Santoni F, Messina A, Pitteloud N. Multiomics unravels the complexity of male obesity: a prospective observational study. J Transl Med 2025; 23:138. [PMID: 39885510 PMCID: PMC11783726 DOI: 10.1186/s12967-024-06040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach. METHODS Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed. Nine healthy adults served as controls. Deep phenotyping, including targeted metabolomics, transcriptomics, and brain magnetic resonance imaging (MRI), was performed. RESULTS Testosterone emerged as a key contributor to phenotypic variability via principal component analysis and was therefore used to further categorize obese patients as having or not having hypogonadotropic hypogonadism (HH). Despite having comparable body mass indices, obese individuals with HH presented with worse metabolic defects than obese individuals without HH, including higher insulin resistance, as well as MRI signs of hypothalamic inflammation and a specific blood transcriptomics signature. The upregulated genes were involved mainly in inflammation, mitochondrial function, and protein translation. Integration of gene expression and clinical data revealed high FGF21 and low cortisol levels as the top markers correlated with the transcriptomic signature of metabolic risk. Following RYGB-induced substantial weight loss, testosterone levels markedly increased in both obese individuals with and without HH, challenging the current definition of hypogonadism. A longitudinal study in a subset of men with obesity following bariatric surgery revealed a unique FGF21 trajectory with a sharp peak at one month post-RYGB that correlated with metabolic and reproductive improvements. CONCLUSIONS Combining clinical, biochemical, and molecular markers allows adequate stratification of metabolic risk in men with obesity and provides novel tools for personalized care.
Collapse
Affiliation(s)
- Georgios E Papadakis
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Lucie Favre
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Yassine Zouaghi
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Nicolas J Niederländer
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Michela Adamo
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - James S Acierno
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Dassine Berdous
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Alexia Boizot
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Jenny Meylan
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, CH-1005, Lausanne, Switzerland
| | - Emmanuelle Paccou
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, CH-1005, Lausanne, Switzerland
| | - Tim Reyns
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Elise Van Caeneghem
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bruno Lapauw
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Yasser Aleman
- Division of Radio-Diagnostics and Interventional Radiology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Styliani Mantziari
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
- Department of Visceral Surgery, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Salamin
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne University Hospital and University of Geneva, Chemin de La Vulliette 4, CH-1000, Lausanne, Switzerland
| | - Tom Fiers
- Department of Clinical Chemistry, Ghent University Hospital, 9000, Ghent, Belgium
| | - Patric Hagmann
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
- Division of Radio-Diagnostics and Interventional Radiology, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federico Santoni
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 21, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
2
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
3
|
Sun G, Wang Y, Yang L, Zhang Z, Zhao Y, Shen Z, Han X, Du X, Jin H, Li C, Wang S, Zhang Z, Zhang D. Rebalancing liver-infiltrating CCR3 + and CD206 + monocytes improves diet-induced NAFLD. Cell Rep 2023; 42:112753. [PMID: 37421620 DOI: 10.1016/j.celrep.2023.112753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023] Open
Abstract
Melatonin has been reported to improve nonalcoholic fatty liver disease (NAFLD), and exploring the underlying mechanisms will be beneficial for better treatment of NAFLD. Choline-deficient high-fat diet (CDHFD)- and methionine/choline-deficient diet (MCD)-fed mice with melatonin intervention exhibit significantly decreased liver steatosis, lobular inflammation, and focal liver necrosis. Single-cell RNA sequencing reveals that melatonin selectively inhibits pro-inflammatory CCR3+ monocyte-derived macrophages (MoMFs) and upregulates anti-inflammatory CD206+ MoMFs in NAFLD mice. Liver-infiltrating CCR3+CD14+ MoMFs are also significantly increased in patients with NAFLD. Mechanistically, melatonin receptor-independent BTG2-ATF4 signaling plays a role in the regulation of CCR3+ MoMF endoplasmic reticulum stress, survival, and inflammation. In contrast, melatonin upregulates CD206+ MoMF survival and polarization via MT1/2 receptors. Melatonin stimulation also regulates human CCR3+ MoMF and CD206+ MoMF survival and inflammation in vitro. Furthermore, CCR3 depletion antibody monotherapy inhibits liver inflammation and improves NAFLD in mice. Thus, therapies targeting CCR3+ MoMFs may have potential benefits in NAFLD treatment.
Collapse
Affiliation(s)
- Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Yaning Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Yushang Zhao
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Xiaotong Han
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Xiaonan Du
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Changying Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| |
Collapse
|
4
|
Shen P, Bai ZJ, Zhou L, Wang NN, Ni ZX, Sun DZ, Huang CS, Hu YY, Xiao CR, Zhou W, Zhang BL, Gao Y. A Scd1-mediated metabolic alteration participates in liver responses to low-dose bavachin. J Pharm Anal 2023; 13:806-816. [PMID: 37577386 PMCID: PMC10422113 DOI: 10.1016/j.jpha.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.
Collapse
Affiliation(s)
- Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Jie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhe-Xin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - De-Zhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cong-Shu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yang-Yi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cheng-Rong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
5
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Jiang X, Liu K, Jiang H, Yin H, Wang ED, Cheng H, Yuan F, Xiao F, Wang F, Lu W, Peng B, Shu Y, Li X, Chen S, Guo F. SLC7A14 imports GABA to lysosomes and impairs hepatic insulin sensitivity via inhibiting mTORC2. Cell Rep 2023; 42:111984. [PMID: 36640347 DOI: 10.1016/j.celrep.2022.111984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Lysosomal amino acid accumulation is implicated in several diseases, but its role in insulin resistance, the central mechanism to type 2 diabetes and many metabolic diseases, is unclear. In this study, we show the hepatic expression of lysosomal membrane protein solute carrier family 7 member 14 (SLC7A14) is increased in insulin-resistant mice. The promoting effect of SLC7A14 on insulin resistance is demonstrated by loss- and gain-of-function experiments. SLC7A14 is further demonstrated as a transporter resulting in the accumulation of lysosomal γ-aminobutyric acid (GABA), which induces insulin resistance via inhibiting mTOR complex 2 (mTORC2)'s activity. These results establish a causal link between lysosomal amino acids and insulin resistance and suggest that SLC7A14 inhibition may provide a therapeutic strategy in treating insulin resistance-related and GABA-related diseases and may provide insights into the upstream mechanisms for mTORC2, the master regulator in many important processes.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Kan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Fei Xiao
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Fenfen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Lu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiaoying Li
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, 131 Dong'an Road, Shanghai 200032, China; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
7
|
Qi X, Sun X, Wang M, Wang M, Qi Z, Cui C. Ginseng polysaccharides ameliorate abnormal lipid metabolism caused by acute alcoholic liver injury by promoting autophagy. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
| | - Xihan Sun
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
| | - Muyao Wang
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| | - Mei Wang
- Dalian Academy of Agricultural Sciences Dalian China
| | - Zhanwen Qi
- Yanbian Han Gongfang Health Products Co., Ltd. Yanji China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| |
Collapse
|
8
|
Bielczyk-Maczynska E, Zhao M, Zushin PJH, Schnurr TM, Kim HJ, Li J, Nallagatla P, Sangwung P, Park CY, Cornn C, Stahl A, Svensson KJ, Knowles JW. G protein-coupled receptor 151 regulates glucose metabolism and hepatic gluconeogenesis. Nat Commun 2022; 13:7408. [PMID: 36456565 PMCID: PMC9715671 DOI: 10.1038/s41467-022-35069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Human genetics has been instrumental in identification of genetic variants linked to type 2 diabetes. Recently a rare, putative loss-of-function mutation in the orphan G-protein coupled receptor 151 (GPR151) was found to be associated with lower odds ratio for type 2 diabetes, but the mechanism behind this association has remained elusive. Here we show that Gpr151 is a fasting- and glucagon-responsive hepatic gene which regulates hepatic gluconeogenesis. Gpr151 ablation in mice leads to suppression of hepatic gluconeogenesis genes and reduced hepatic glucose production in response to pyruvate. Importantly, the restoration of hepatic Gpr151 levels in the Gpr151 knockout mice reverses the reduced hepatic glucose production. In this work, we establish a previously unknown role of Gpr151 in the liver that provides an explanation to the lowered type 2 diabetes risk in individuals with nonsynonymous mutations in GPR151.
Collapse
Affiliation(s)
- Ewa Bielczyk-Maczynska
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Meng Zhao
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Theresia M Schnurr
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiehan Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratima Nallagatla
- Genetics Bioinformatics Service Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Panjamaporn Sangwung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chong Y Park
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Cornn
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Katrin J Svensson
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Raja R, Fonseka O, Ganenthiran H, Andrea-Ruiz-Velasco, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | - Andrea-Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Luan SH, Yang YQ, Ye MP, Liu H, Rao QF, Kong JL, Wu FR. ASIC1a promotes hepatic stellate cell activation through the exosomal miR-301a-3p/BTG1 pathway. Int J Biol Macromol 2022; 211:128-139. [PMID: 35561854 DOI: 10.1016/j.ijbiomac.2022.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a key cause of liver fibrosis. However, the mechanisms leading to the activation of HSCs are not fully understood. In the pathological process, acid-sensing ion channel 1a (ASIC1a) is widely involved in the development of inflammatory diseases, suggesting that ASIC1a may play an important role in liver fibrosis. We found that in an acidic environment, ASIC1a leads to HSC-T6 cell activation. Meanwhile, exosomes produced by activated HSC-T6 cells (HSC-EXOs) can be reabsorbed by quiescent HSC-T6 cells to promote their activation. Exosomes mainly carry miRNAs involved in intercellular information exchange. We performed exosome miRNA whole transcriptome sequencing. The results indicated that the acidic environment could alter the miRNA expression profile in the exosomes of HSC-T6 cells. Further studies revealed that ASIC1a promotes the activation of HSCs by regulating miR-301a-3p targeting B-cell translocation gene 1 (BTG1). In conclusion, our study found that ASIC1a may affect HSC activation through the exosomal miR-301a-3p/BTG1 axis, and inhibiting ASIC1a may be a promising treatment strategy for liver fibrosis.
Collapse
Affiliation(s)
- Shao-Hua Luan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | | | - Man-Ping Ye
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Hui Liu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Qiu-Fan Rao
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jin-Ling Kong
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Fan-Rong Wu
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
11
|
Nuclear S6K1 regulates cAMP-responsive element-dependent gene transcription through activation of mTOR signal pathway. Biochem Biophys Res Commun 2022; 594:101-108. [DOI: 10.1016/j.bbrc.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
|
12
|
Xu SS, Gao L, Shen M, Lyu F. Whole-Genome Selective Scans Detect Genes Associated With Important Phenotypic Traits in Sheep (Ovis aries ). Front Genet 2021; 12:738879. [PMID: 34868210 PMCID: PMC8637624 DOI: 10.3389/fgene.2021.738879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Sheep (Ovis aries) is one of the important livestock with diverse phenotypic traits. However, little is known about the molecular mechanism of diverse phenotypic traits in domestic sheep. Using the genome-wide high-density SNP data (600K) in 253 samples from 13 populations, we conducted the tests of selective sweeps (i.e., pairwise FST and XP-CLR) associated with several important phenotypic traits (e.g., tail types, horn morphology, prolificacy, coat pigmentation, ear size, milk production, meat production, body size and wool fineness). We identified strong selective signatures in previously reported (e.g., T, RXFP2, BMPR1B, TYRP1, MSRB3, TF, CEBPA, GPR21 and HOXC8) and novel genes associated with the traits, such as CERS6, BTG1, RYR3, SLC6A4, NNAT and OGT for fat deposition in the tails, FOXO4 for fertility, PTCH1 and EMX2 for ear size, and RMI1 and SCD5 for body size. Further gene annotation analysis showed that these genes were identified to be the most probable genes accounting for the diverse phenotypic traits. Our results provide novel insights into the genetic mechanisms underlying the traits and also new genetic markers for genetic improvement in sheep and other livestock.
Collapse
Affiliation(s)
- Song-Song Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Shenzhen Branch, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Fenghua Lyu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Cho IJ, Kim D, Kim EO, Jegal KH, Kim JK, Park SM, Zhao R, Ki SH, Kim SC, Ku SK. Cystine and Methionine Deficiency Promotes Ferroptosis by Inducing B-Cell Translocation Gene 1. Antioxidants (Basel) 2021; 10:antiox10101543. [PMID: 34679678 PMCID: PMC8532826 DOI: 10.3390/antiox10101543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (−))-mediated cell death. CST/Met (−) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (−)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (−) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (−) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (−)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (−), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (−). The results demonstrate that CST/Met (−) induces ferroptosis by activating ATF4-dependent BTG1 induction.
Collapse
Affiliation(s)
- Il-Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Doyeon Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Eun-Ok Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Kyung-Hwan Jegal
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jae-Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Sang-Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar 161006, China;
| | - Sung-Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Korea;
| | - Sang-Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
14
|
Fu Y, Chen N, Wang Z, Luo S, Ding Y, Lu B. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res 2021; 31:965-979. [PMID: 34239073 PMCID: PMC8410765 DOI: 10.1038/s41422-021-00532-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Degrading pathogenic proteins by degrader technologies such as PROTACs (proteolysis-targeting chimeras) provides promising therapeutic strategies, but selective degradation of non-protein pathogenic biomolecules has been challenging. Here, we demonstrate a novel strategy to degrade non-protein biomolecules by autophagy-tethering compounds (ATTECs), using lipid droplets (LDs) as an exemplar target. LDs are ubiquitous cellular structures storing lipids and could be degraded by autophagy. We hypothesized that compounds interacting with both the LDs and the key autophagosome protein LC3 may enhance autophagic degradation of LDs. We designed and synthesized such compounds by connecting LC3-binding molecules to LD-binding probes via a linker. These compounds were capable of clearing LDs almost completely and rescued LD-related phenotypes in cells and in two independent mouse models with hepatic lipidosis. We further confirmed that the mechanism of action of these compounds was mediated through LC3 and autophagic degradation. Our proof-of-concept study demonstrates the capability of degrading LDs by ATTECs. Conceptually, this strategy could be applied to other protein and non-protein targets.
Collapse
Affiliation(s)
- Yuhua Fu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Ningxie Chen
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziying Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Shouqing Luo
- grid.11201.330000 0001 2219 0747Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Yu Ding
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Boxun Lu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Hubel E, Fishman S, Holopainen M, Käkelä R, Shaffer O, Houri I, Zvibel I, Shibolet O. Repetitive amiodarone administration causes liver damage via adipose tissue ER stress-dependent lipolysis, leading to hepatotoxic free fatty acid accumulation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G298-G307. [PMID: 34259586 DOI: 10.1152/ajpgi.00458.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Drug-induced liver injury is an emerging form of acute and chronic liver disease that may manifest as fatty liver. Amiodarone (AMD), a widely used antiarrhythmic drug, can cause hepatic injury and steatosis by a variety of mechanisms, not all completely understood. We hypothesized that repetitive AMD administration may induce hepatic lipotoxicity not only via effects on the liver but also via effects on adipose tissue. Indeed, repetitive AMD administration induced endoplasmic reticulum (ER) stress in both liver and adipose tissue. In adipose tissue, AMD reduced lipogenesis and increased lipolysis. Moreover, AMD treatment induced ER stress and ER stress-dependent lipolysis in 3T3L1 adipocytes in vitro. In the liver, AMD caused increased expression of genes encoding proteins involved in fatty acid (FA) uptake and transfer (Cd36, Fabp1, and Fabp4), and resulted in increased hepatic accumulation of free FAs, but not of triacylglycerols. In line with this, there was increased expression of hepatic de novo FA synthesis genes. However, AMD significantly reduced the expression of the desaturase Scd1 and elongase Elovl6, detected at mRNA and protein levels. Accordingly, the FA profile of hepatic total lipids revealed increased accumulation of palmitate, an SCD1 and ELOVL6 substrate, and reduced levels of palmitoleate and cis-vaccenate, products of the enzymes. In addition, AMD-treated mice displayed increased hepatic apoptosis. The studies show that repetitive AMD induces ER stress and aggravates lipolysis in adipose tissue while inducing a lipotoxic hepatic lipid environment, suggesting that AMD-induced liver damage is due to compound insult to liver and adipose tissue.NEW & NOTEWORTHY AMD chronic administration induces hepatic lipid accumulation by several mechanisms, including induction of hepatic ER stress, impairment of β-oxidation, and inhibition of triacylglycerol secretion. Our study shows that repetitive AMD treatment induces not only hepatic ER stress but also adipose tissue ER stress and lipolysis and hepatic accumulation of free fatty acids and enrichment of palmitate in the total lipids. Understanding the toxicity mechanisms of AMD would help devise ways to limit liver damage.
Collapse
Affiliation(s)
- Einav Hubel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science and Biocenter Finland, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science and Biocenter Finland, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ortal Shaffer
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Inbal Houri
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Isabel Zvibel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Shibolet
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Zhao X, Wang M, Liu J, Su X. Stearoyl CoA Desaturase 1 and Inositol-Requiring Protein 1 α Determine the Efficiency of Oleic Acid in Alleviating Silica Nanoparticle-Induced Insulin Resistance. J Biomed Nanotechnol 2021; 17:1349-1363. [PMID: 34446138 DOI: 10.1166/jbn.2021.3109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Min Wang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| |
Collapse
|
17
|
Zhou X, Yuan Y, Teng F, Li K, Luo S, Zhang P, Liu D, Zhang H, Zhang J. Obesity-induced upregulation of microRNA-183-5p promotes hepatic triglyceride accumulation by targeting the B-cell translocation gene 1. Life Sci 2021; 268:119011. [PMID: 33421522 DOI: 10.1016/j.lfs.2020.119011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022]
Abstract
AIMS Obesity is recognized as a risk factor for many metabolic disorders, particularly nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism is still poorly understood. Several lines of evidence indicate that microRNA (miRNA) is a key regulator of lipid metabolism. In this study, we investigated the role of miR-183-5p in the development of NAFLD. METHODS The expression levels of miR-183-5p and B-cell translocation gene 1 (Btg1) were determined by quantitative real-time PCR and histological analysis in livers of obese mice and cell models induced with palmitic acid (PA), respectively. AML12 cells were treated with PA in the presence or absence of miR-183-5p mimics or inhibitor. Moreover, a Luciferase reporter assay was used to determine whether Btg1 is the direct target of miR-183-5p. Protein levels of BTG1 were estimated using western blotting. KEY FINDINGS Expression of miR-183-5p was increased in the livers of three murine models and also in the AML12 cell model. Overexpression of miR-183-5p in the cell model and mice led to hepatic triglyceride (TG) accumulation and upregulation of lipogenic genes, whereas inhibition of miR-183-5p in the cell model improved hepatic TG accumulation. Mechanistically, we further identified Btg1 as a direct target gene of miR-183-5p. SIGNIFICANCE Our findings revealed that miR-183-5p affected the regulation of hepatic TG homeostasis, which may provide a potential therapeutic target for hepatosteatosis.
Collapse
Affiliation(s)
- Xuan Zhou
- Key Laboratory of Functional and Clinical Translational Medicine, Department of General Medicine, Xiamen Medical College, Xiamen, China; The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Kangli Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China.
| | - Jinhua Zhang
- Key Laboratory of Functional and Clinical Translational Medicine, Department of General Medicine, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
18
|
Chen M, Xu J, Wang Y, Wang Z, Guo L, Li X, Huang L. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydr Res 2020; 494:108055. [DOI: 10.1016/j.carres.2020.108055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
19
|
Li J, Zhang Y, Zheng N, Li B, Yang J, Zhang C, Xia G, Zhang M. CREB activity is required for mTORC1 signaling-induced primordial follicle activation in mice. Histochem Cell Biol 2020; 154:287-299. [PMID: 32495040 DOI: 10.1007/s00418-020-01888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
In mammals, progressive activation of primordial follicles is essential for maintenance of the reproductive lifespan. Several reports have demonstrated that mitogen-activated protein kinases 3 and 1 (MAPK3/1)-mammalian target of rapamycin complex 1 (mTORC1) signaling in pre-granulosa cells promotes primordial follicle activation by increasing KIT ligand (KITL) expression and then stimulating phosphatidylinositol 3 kinase signaling in oocytes. However, the mechanism of mTORC1 signaling in the promotion of KITL expression is unclear. Immunofluorescence staining results showed that phosphorylated cyclic AMP response element-binding protein (CREB) was mainly expressed in pre-granulosa cells. The CREB inhibitor KG-501 and CREB knockdown by Creb siRNA significantly suppressed primordial follicle activation, reduced pre-granulosa cell proliferation and dramatically increased oocyte apoptosis. Western blotting results demonstrated that both the MAPK3/1 inhibitor U0126 and mTORC1 inhibitor rapamycin significantly decreased the levels of phosphorylated CREB, indicating that MAPK3/1-mTORC1 signaling is required for CREB activation. Furthermore, CREB could bind to the Kitl promoter region, and KG-501 significantly decreased the expression levels of KITL. In addition, KG-501 and CREB knockdown significantly decreased the levels of phosphorylated Akt, leading to a reduced number of oocytes with Foxo3a nuclear export. KG-501 also inhibited bpV (HOpic)-stimulated primordial follicle activation. Taken together, the results show that CREB is required for MAPK3/1-mTORC1 signaling-promoted KITL expression followed by the activation of primordial follicles.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Nana Zheng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Biao Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Chunyu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P.R. China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
20
|
Trentzsch M, Nyamugenda E, Miles TK, Griffin H, Russell S, Koss B, Cooney KA, Phelan KD, Tackett AJ, Iyer S, Boysen G, Baldini G. Delivery of phosphatidylethanolamine blunts stress in hepatoma cells exposed to elevated palmitate by targeting the endoplasmic reticulum. Cell Death Discov 2020; 6:8. [PMID: 32123584 PMCID: PMC7028721 DOI: 10.1038/s41420-020-0241-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.
Collapse
Affiliation(s)
- Marcus Trentzsch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Eugene Nyamugenda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Tiffany K. Miles
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Susan Russell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kimberly A. Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
21
|
Wheat Flour, Enriched with γ-Oryzanol, Phytosterol, and Ferulic Acid, Alleviates Lipid and Glucose Metabolism in High-Fat-Fructose-Fed Rats. Nutrients 2019; 11:nu11071697. [PMID: 31340583 PMCID: PMC6683091 DOI: 10.3390/nu11071697] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
(1) Background: Modern dietary patterns with a high intake of fat and fructose, as well as refined carbohydrates, closely relate to lipid/glucose metabolic disorders. The main objective of this study is to provide new thoughts in designing functional food with some lipid/glucose metabolism regulating effects for obese people. (2) Methods: The alleviating abilities of γ-oryzanol, phytosterol or ferulic acid-enriched wheat flour on lipid/glucose metabolic dysfunction were evaluated in male SD rats induced by a high-fat-fructose diet. The underlying mechanisms were clarified using western blot. (3) Results: In an in vitro cell model, γ-oryzanol, phytosterol and ferulic acid regulate lipid/glucose metabolism by increasing the phosphorylation of AMPK and Akt, and PI3K expression, as well as decreasing expressions of DGAT1 and SCD. The in vivo study shows that ferulic acid and γ-oryzanol-enriched flours are beneficial for managing body weight, improving glucose metabolism, hyperlipidemia and hepatic lipid accumulation. Phytosterol-enriched flour exerted remarkable effects in regulating hyperinsulinemia, insulin resistance and hyperuricemia. Western blot analysis of proteins from liver samples reveals that these enriched flours alleviated hepatic lipid accumulation and insulin resistance through their elevation in the phosphorylation of AMPK and Akt. (4) Conclusions: Our study indicates that these enriched flours can serve as a health-promoting functional food to regulate obesity-related lipid/glucose metabolic dysfunction in rats.
Collapse
|
22
|
Deng J, Guo Y, Yuan F, Chen S, Yin H, Jiang X, Jiao F, Wang F, Ji H, Hu G, Ying H, Chen Y, Zhai Q, Xiao F, Guo F. Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening. Autophagy 2019; 16:451-465. [PMID: 31184563 DOI: 10.1080/15548627.2019.1628537] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor.Abbreviations: ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.
Collapse
Affiliation(s)
- Jiali Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fenfen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Liraglutide alters hepatic metabolism in high-fat fed obese mice: A bioinformatic prediction and functional analysis. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Zhang ZZ, Qin XH, Zhang J. MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway. Am J Physiol Endocrinol Metab 2019; 316:E1050-E1060. [PMID: 30835506 DOI: 10.1152/ajpendo.00444.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is a serious diabetic complication caused by both environmental and genetic factors. Molecular mechanisms of DR may lead to the discovery of reliable prognostic indicators. The current study aimed to clarify the mechanism of microRNA-183 (miR-183) in DR in relation to the PI3K/Akt/VEGF signaling pathway. Microarray-based gene expression profiling of DR was used to identify the differentially expressed genes. Sprague-Dawley rats were used for the establishment of DR models, and then miR-183 was altered by mimic or inhibitor or BTG1 was downregulated by siRNA to explore the regulatory mechanism of miR-183 in DR. Furthermore, the expression of miR-183, CD34, endothelial nitric oxide synthase (eNOS), BTG1 and the PI3K/Akt/VEGF signaling pathway-related genes as well as reactive oxygen species (ROS) level was determined, and the relationship between miR-183 and BTG1 was also verified. Cell growth, cell apoptosis, and angiogenesis were determined. Microarray analysis revealed the involvement of miR-183 in DR via the PI3K/Akt/VEGF signaling pathway by targeting BTG1. Upregulated miR-183 and downregulated BTG1 were observed in retinal tissues of DR rats. miR-183 overexpression activated the PI3K/Akt/VEGF signaling pathway, upregulated CD34, eNOS, and ROS, and inhibited BTG1. BTG1 was confirmed as a target gene of miR-183. miR-183 overexpression or BTG1 knockdown promoted cell growth and tube formation while it suppressed cell apoptosis of vascular endothelial cells in DR rats. In this study, we demonstrated that miR-183 silencing inhibiting cell growth and tube formation in vascular endothelial cells of DR rats via the PI3K/Akt/VEGF signaling pathway by upregulating BTG1.
Collapse
Affiliation(s)
- Zhen-Zhen Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Xiu-Hong Qin
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University , Dalian , People's Republic of China
| | - Jing Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
25
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
26
|
Rial SA, Ravaut G, Malaret TB, Bergeron KF, Mounier C. Hexanoic, Octanoic and Decanoic Acids Promote Basal and Insulin-Induced Phosphorylation of the Akt-mTOR Axis and a Balanced Lipid Metabolism in the HepG2 Hepatoma Cell Line. Molecules 2018; 23:molecules23092315. [PMID: 30208604 PMCID: PMC6225498 DOI: 10.3390/molecules23092315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance.
Collapse
Affiliation(s)
- Sabri Ahmed Rial
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Gaetan Ravaut
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Tommy B Malaret
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Karl-F Bergeron
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| | - Catherine Mounier
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
27
|
Jia D, Li Z, Gao Y, Feng Y, Li W. A novel triazine ring compound (MD568) exerts in vivo and in vitro effects on lipid metabolism. Biomed Pharmacother 2018; 103:790-799. [DOI: 10.1016/j.biopha.2018.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
|
28
|
Luo WJ, Cheng TY, Wong KI, Fang WH, Liao KM, Hsieh YT, Su KY. Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept. Eur J Pharm Sci 2018; 121:106-117. [PMID: 29800612 DOI: 10.1016/j.ejps.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a problem in obese people caused by increasing intake of high-calorie food such as fructose implicated in the elevated prevalence. It is necessary to identify novel drugs to develop effective therapies. In this study, we combined LOPAC® (The Library of Pharmacologically Active Compounds) and High-Content screening to identify compounds that significantly reduced intracellular lipid droplets (LD) after high fat medium (HFM) treatment. Among 1280 compounds, we identified 239 compounds that reduced LD by >50%. Of these, 17 maintained cell viability. Nine of them were selected for validation using normal primary hepatocytes, of which five compounds showed dose-dependent efficacy. Whole genome transcriptomic network analysis was performed to construct the underlying regulatory network. There were 831 (711 up-regulated and 120 down-regulated genes) and 3480 (2009 up-regulated and 1471 down-regulated genes) genes that showed a significant change (>2-fold; p < 0.05) after 12 and 24 h HFM treatment, respectively. Gene enrichment and pathway analysis showed several immune responses mediated by MIF, IL-17, TLR, and IL-6. These compounds modulate lipogenesis via GSK3β and CREB1, which is followed by an alteration in the expression of several downstream genes related to hepatocellular carcinoma and hepatitis. CREB1 is a core transcription factor and may be a potential therapeutic target for liver disease. In conclusion, this proof of concept provides a strategy for identifying novel drugs for treatment of fatty liver disease as well as elucidates their underlying mechanisms. This research provides opportunity for developing future pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Ieng Wong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Mao Liao
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
29
|
Xiao F, Wang C, Yin H, Yu J, Chen S, Fang J, Guo F. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2018; 7:63679-63689. [PMID: 27579768 PMCID: PMC5325395 DOI: 10.18632/oncotarget.11626] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/08/2016] [Indexed: 01/02/2023] Open
Abstract
Substantial studies on fatty acid synthase (FASN) have focused on its role in regulating lipid metabolism and researchers have a great interest in treating cancer with dietary manipulation of amino acids. In the current study, we found that leucine deprivation caused the FASN-dependent anticancer effect. Here we showed that leucine deprivation inhibited cell proliferation and induced apoptosis of MDA-MB-231 and MCF-7 breast cancer cells. In an in vivo tumor xenograft model, the leucine-free diet suppressed the growth of human breast cancer tumors and triggered widespread apoptosis of the cancer cells. Further study indicated that leucine deprivation decreased expression of lipogenic gene FASN in vitro and in vivo. Over-expression of FASN or supplementation of palmitic acid (the product of FASN action) blocked the effects of leucine deprivation on cell proliferation and apoptosis in vitro and in vivo. Moreover, leucine deprivation suppressed the FASN expression via regulating general control non-derepressible (GCN)2 and sterol regulatory element-binding protein 1C (SREBP1C). Taken together, our study represents proof of principle that anticancer effects can be obtained with strategies to deprive tumors of leucine via suppressing FASN expression, which provides important insights in prevention of breast cancer via metabolic intervention.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunxia Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongkun Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Ren C, Wang L, Fan Y, Jia R, Zhang G, Deng M, Deng K, Wang F. Scd1 Contributes to Lipid Droplets Formation in GMEC via Transcriptional Regulation of Tip47 and Adrp. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Lizhong Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Ruoxin Jia
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
31
|
Zuo Q, Jin K, Song J, Zhang Y, Li B. Cloning, expression pattern analysis, and subcellular localization of Capra hircus SCD1 gene with production of transgenic mice. J Cell Biochem 2017; 119:2240-2247. [PMID: 28914467 DOI: 10.1002/jcb.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/23/2017] [Indexed: 11/07/2022]
Abstract
This study aimed to clone the Stearoyl-CoA desaturase 1 (SCD1) gene derived from Xuhuai goat (Capra hircus), and analyze the sub-cellular localization in cells and tissues. The cDNA was cloned by reverse transcription polymerase chain reaction (RT-PCR). pEGFP-SCD1 vector was constructed to detect sub-cellular localization and tissue distribution. pEGFP-SCD1 was transfected into NIH-3T3 cells using polyethylene imine (PEI) and observed under fluorescence inversion microscope system 48 h after transfection. The expression level of SCD1 was detected by RT-PCR. Testicular injection was used to produce transgenic mice with goat SCD1 gene. DNA and protein were extracted from the tail tissue of F1 mice. The expression of exogenous gene in the F1 generation was detected in both DNA and protein. The results showed that the coding sequence (CDS) fragments of C. hircus SCD1 gene was 1074 bp and encodes 360 amino acids. RT-PCR results showed that SCD1 could be expressed successfully in NIH-3T3 cells in vitro. Sub-cellular localization analysis showed that pEGFP-SCD1 fusion protein located in the cytoplasm. It can be concluded that transgenic mice with goat SCD1 expressed in sperm and tail tissue was successfully produced in the F1 mice generation.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Zhang SQ, Yang Z, Cai XL, Zhao M, Sun MM, Li J, Feng GX, Feng JY, Ye LH, Niu JQ, Zhang XD. miR-511 promotes the proliferation of human hepatoma cells by targeting the 3'UTR of B cell translocation gene 1 (BTG1) mRNA. Acta Pharmacol Sin 2017; 38:1161-1170. [PMID: 28603285 DOI: 10.1038/aps.2017.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Aberrant expression of miR-511 is involved in the development of cancer, but the role of miR-511 in hepatocellular carcinoma (HCC) is not well documented. In this study, we explored the molecular mechanisms of miR-511 in hepatocarcinogenesis. Our results of bioinformatics analysis suggested that B cell translocation gene 1 (BTG1), a member of anti-proliferative gene family, was one of the putative targets of miR-511. The expression levels of miR-511 were significantly higher in 30 clinical HCC tissues than in corresponding peritumor tissues, and were negatively correlated with those of BTG1 in the HCC tissues (r=-0.6105, P<0.01). In human hepatoma cell lines HepG2 and H7402, overexpression of miR-511 dose-dependently inhibited the expression of BTG1, whereas knockdown of miR-511 dose-dependently increased the expression of BTG1. Luciferase reporter gene assays verified that miR-511 targeted the 3'UTR of BTG1 mRNA. In the hepatoma cells, overexpression of miR-511 significantly decreased BTG1-induced G1 phase arrest, which was rescued by overexpression of BTG1. Furthermore, overexpression of miR-511 promoted the proliferation of the hepatoma cells, which was rescued by overexpression of BTG1. Conversely, knockdown of miR-511 inhibited cell proliferation, which was reversed by knockdown of BTG1. In conclusion, miR-511 promotes the proliferation of human hepatoma cells in vitro by targeting the 3'UTR of BTG1 mRNA.
Collapse
|
33
|
Glycycoumarin prevents hepatic steatosis through activation of adenosine 5,-monophosphate (AMP)-activated protein kinase signaling pathway and up-regulation of BTG1/Tob-1. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Depletion of TM6SF2 disturbs membrane lipid composition and dynamics in HuH7 hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:676-685. [PMID: 28434889 DOI: 10.1016/j.bbalip.2017.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023]
Abstract
A polymorphism of TM6SF2 associates with hepatic lipid accumulation and reduction of triacylglycerol (TAG) secretion, but the function of the encoded protein has remained enigmatic. We studied the effect of stable TM6SF2 knock-down on the lipid content and composition, mitochondrial fatty acid oxidation and organelle structure of HuH7 hepatoma cells. Knock-down of TM6SF2 resulted in intracellular accumulation of TAGs, cholesterol esters, phosphatidylcholine (PC) and phosphatidylethanolamine. In all of these lipid classes, polyunsaturated lipid species were significantly reduced while saturated and monounsaturated species increased their proportions. The PCs encountered relative and absolute arachidonic acid (AA, 20:4n-6) depletion, and AA was also reduced in the total cellular fatty acid pool. Synthesis and turnover of the hepatocellular glycerolipids was enhanced. The TM6SF2 knock-down cells secreted lipoprotein-like particles with a smaller diameter than in the controls, and more lysosome/endosome structures appeared in the knock-down cells. The mitochondrial capacity for palmitate oxidation was significantly reduced. These observations provide novel clues to TM6SF2 function and raise altered mebrane lipid composition and dynamics among the mechanism(s) by which the protein deficiency disturbs hepatic TAG secretion.
Collapse
|
35
|
Deng J, Yuan F, Guo Y, Xiao Y, Niu Y, Deng Y, Han X, Guan Y, Chen S, Guo F. Deletion of ATF4 in AgRP Neurons Promotes Fat Loss Mainly via Increasing Energy Expenditure. Diabetes 2017; 66:640-650. [PMID: 27993927 DOI: 10.2337/db16-0954] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022]
Abstract
Although many functions of activating transcription factor 4 (ATF4) are identified, a role of ATF4 in the hypothalamus in regulating energy homeostasis is unknown. Here, we generated adult-onset agouti-related peptide neuron-specific ATF4 knockout (AgRP-ATF4 KO) mice and found that these mice were lean, with improved insulin and leptin sensitivity and decreased hepatic lipid accumulation. Furthermore, AgRP-ATF4 KO mice showed reduced food intake and increased energy expenditure, mainly because of enhanced thermogenesis in brown adipose tissue. Moreover, AgRP-ATF4 KO mice were resistant to high-fat diet-induced obesity, insulin resistance, and liver steatosis and maintained at a higher body temperature under cold stress. Interestingly, the expression of FOXO1 was directly regulated by ATF4 via binding to the cAMP-responsive element site on its promoter in hypothalamic GT1-7 cells. Finally, Foxo1 expression was reduced in the arcuate nucleus (ARC) of the hypothalamus of AgRP-ATF4 KO mice, and adenovirus-mediated overexpression of FOXO1 in ARC increased the fat mass in AgRP-ATF4 KO mice. Collectively, our data demonstrate a novel function of ATF4 in AgRP neurons of the hypothalamus in energy balance and lipid metabolism and suggest hypothalamic ATF4 as a potential drug target for treating obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yuguo Niu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, People's Republic of China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Wong W. New connections: New targets for fighting hepatic steatosis. Sci Signal 2017; 10:10/467/eaam9988. [DOI: 10.1126/scisignal.aam9988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Insight into the signaling pathways that regulate de novo lipogenesis may lead to new treatments for hepatic steatosis.
Collapse
Affiliation(s)
- Wei Wong
- Science Signaling, AAAS, Washington, DC 20005, USA
| |
Collapse
|