1
|
Jiang S, Zhang Y, Zheng H, Zhao K, Yang Y, Lai B, Deng X, Wei Y. Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403627. [PMID: 39535354 DOI: 10.1002/advs.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Indexed: 11/16/2024]
Abstract
The remarkable evolution of teeth morphological complexity represents a giant leap for vertebrate. Despite its importance in life history, the understanding of spatiotemporal organization of teeth remains rudimentary. Herein, a high-resolution genome-wide molecular patterning of lineage allocation and cellular organization in tooth morphogenesis is described, constructed by integrating spatial transcriptome and single-cell RNA sequencing. Twelve spatial compartments and seventeen heterogeneous cell clusters linked to tooth morphogenic milestones are identified. Eighty-eight percent of total lineage species has already appeared in the initial tooth bud rather than the generally considered sequential emergence. A previously unrecognized sprouting-like patterning mode of the dental papilla is discovered, that the inner compartment can break through the outer shell compartment to build up the final papilla cusp. Meanwhile, the continuum differentiation hierarchies of enamel knots in time and space are revealed. Furthermore, the regulatory network directing tooth morphogenesis is established, whereby a series of mechanotransduction signals are spatiotemporally involved beyond the well-established classical odontogenesis signals. Finally, genes underlying tooth dysplasia are successfully tracked to highly specific time points and cell types. The results raise the idea that tooth morphogenesis is orchestrated by mechanical niches combined with biochemical signaling.
Collapse
Affiliation(s)
- Shengjie Jiang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Huimin Zheng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kai Zhao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Binbin Lai
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Chen Y, Petho A, Ganapathy A, George A. DPP an extracellular matrix molecule induces Wnt5a mediated signaling to promote the differentiation of adult stem cells into odontogenic lineage. Sci Rep 2024; 14:26187. [PMID: 39478025 PMCID: PMC11525562 DOI: 10.1038/s41598-024-76069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Dentin phosphophoryn (DPP) an extracellular matrix protein activates Wnt signaling in DPSCs (dental pulp stem cells). Wnt/β catenin signaling is essential for tooth development but the role of DPP-mediated Wnt5a signaling in odontogenesis is not well understood. Wnt5a is typically considered as a non-canonical Wnt ligand that elicits intracellular signals through association with a specific cohort of receptors and co-receptors in a cell and context-dependent manner. In this study, DPP facilitated the interaction of Wnt5a with Frizzled 5 and LRP6 to induce nuclear translocation of β-catenin. β-catenin has several nuclear binding partners that promote the activation of Wnt target genes responsible for odontogenic differentiation. Interestingly, steady increase in the expression of Vangl2 receptor suggest planar cell polarity signaling during odontogenic differentiation. In vitro observations were further strengthened by the low expression levels of Wnt5a and β-catenin in the teeth of DSPP KO mice which exhibit impaired odontoblast differentiation and defective dentin mineralization. Together, this study suggests that the DPP-mediated Wnt5a signaling could be exploited as a therapeutic approach for the differentiation of dental pulp stem cells into functional odontoblasts and dentin regeneration.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Adrienn Petho
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Amudha Ganapathy
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Pagella P, Lai CF, Pirenne L, Cantù C, Schwab ME, Mitsiadis TA. An unexpected role of neurite outgrowth inhibitor A as regulator of tooth enamel formation. Int J Oral Sci 2024; 16:60. [PMID: 39426966 PMCID: PMC11490607 DOI: 10.1038/s41368-024-00323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel. Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fl transgenic mice, we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel. This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production, such as amelogenin, ameloblastin and enamelin. By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals, we found that Nogo-A directly interacts with molecules important for regulating gene expression, and its deletion disturbs their cellular localisation. Furthermore, we demonstrated that inhibition of the intracellular, but not cell-surface, Nogo-A is responsible for gene expression modulation in ameloblasts. Taken together, these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden
| | - Chai Foong Lai
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Laurence Pirenne
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Satta JP, Lan Q, Taketo MM, Mikkola ML. Stabilization of Epithelial β-Catenin Compromises Mammary Cell Fate Acquisition and Branching Morphogenesis. J Invest Dermatol 2024; 144:1223-1237.e10. [PMID: 38159590 DOI: 10.1016/j.jid.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/β-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial β-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/β-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high β-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of β-catenin, suggesting that the level of epithelial Wnt/β-catenin signaling activity may contribute to the choice between skin appendage identities.
Collapse
Affiliation(s)
- Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Makoto Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Li Y, Jiang Z, Xu Y, Yan J, Wu Q, Huang S, Wang L, Xie Y, Wu X, Wang Y, Li Y, Fan X, Li F, Yuan W. Pygo-F773W Mutation Reveals Novel Functions beyond Wnt Signaling in Drosophila. Int J Mol Sci 2024; 25:5998. [PMID: 38892188 PMCID: PMC11172468 DOI: 10.3390/ijms25115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Pygopus (Pygo) has been identified as a specific nuclear co-activator of the canonical Wingless (Wg)/Wnt signaling pathway in Drosophila melanogaster. Pygo proteins consist of two conserved domains: an N-terminal homologous domain (NHD) and a C-terminal plant homologous domain (PHD). The PHD's ability to bind to di- and trimethylated lysine 4 of histone H3 (H3K4me2/3) appears to be independent of Wnt signaling. There is ongoing debate regarding the significance of Pygo's histone-binding capacity. Drosophila Pygo orthologs have a tryptophan (W) > phenylalanine (F) substitution in their histone pocket-divider compared to vertebrates, leading to reduced histone affinity. In this research, we utilized CRISPR/Cas9 technology to introduce the Pygo-F773W point mutation in Drosophila, successfully establishing a viable homozygous Pygo mutant line for the first time. Adult mutant flies displayed noticeable abnormalities in reproduction, locomotion, heart function, and lifespan. RNA-seq and cluster analysis indicated that the mutation primarily affected pathways related to immunity, metabolism, and posttranslational modification in adult flies rather than the Wnt signaling pathway. Additionally, a reduction in H3K9 acetylation levels during the embryonic stage was observed in the mutant strains. These findings support the notion that Pygo plays a wider role in chromatin remodeling, with its involvement in Wnt signaling representing only a specific aspect of its chromatin-related functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Fang Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (Y.L.); (Z.J.); (X.F.)
| | - Wuzhou Yuan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China; (Y.L.); (Z.J.); (X.F.)
| |
Collapse
|
6
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
7
|
Ming NR, Noble D, Chussid S, Ziegler A, Chung WK. Caregiver-reported dental manifestations in individuals with genetic neurodevelopmental disorders. Int J Paediatr Dent 2024; 34:145-152. [PMID: 37655712 DOI: 10.1111/ipd.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Children with neurodevelopmental disorders (NDDs) often have poor oral health and dental abnormalities. An increasing number of genes have been associated with neurodevelopmental conditions affecting the oral cavity, but the specific dental features associated with many genes remain unknown. AIM To report the types and frequencies of dental manifestations in children with neurodevelopmental conditions of known genetic cause. DESIGN A 30-question survey assesing ectodermal and dental features was administered through Simons Searchlight, with which formed a recontactable cohort of individuals with genetic NDDs often associated with autism spectrum disorder (ASD). RESULTS Data were collected from a largely paediatric population with 620 affected individuals across 39 genetic conditions and 145 unaffected siblings without NDDs for comparison. Drooling, difficulty accessing dental care, late primary teeth eruption, abnormal primary and permanent teeth formation, misshapen nails, and hair loss were more frequent in individuals with NDDs. Additionally, we evidenced an association between three new pathogenic gene variant/oral manifestation pairs: CSNK2A1/unusual primary teeth, DYRK1A/late primary teeth eruption, and PPP2R5D/sialorrhea. CONCLUSION Our results demonstrate that genetic NDDs caused by mutations in CSNK2A1, DYRK1A, and PP2R5D are associated with unique dental manifestations, and knowledge of these features can be helpful to personalize dental care.
Collapse
Affiliation(s)
- Neil R Ming
- College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Deanna Noble
- College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven Chussid
- Department of Paediatric Dentistry, Columbia University Irving Medical Center, New York, New York, USA
| | - Alban Ziegler
- Department of Paediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Department of Paediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
9
|
Wei R, Guo S, Meng Z, Li Z, Liu J, Hu L, Sui L. Mediator1 involved in functional integration of Smad3 and Notch1 promoting enamel mineralization. Biochem Biophys Res Commun 2023; 663:47-53. [PMID: 37119765 DOI: 10.1016/j.bbrc.2023.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Enamel hypoplasia is a tooth development defection due to the disruption of enamel matrix mineralization, manifesting as chalky white phenotype. Multiple genes may be involved in this tooth agenesis. It has been proved that ablation of coactivator Mediator1 (Med1) switches the cell fate of dental epithelia, resulting in abnormal tooth development via Notch1 signaling. Smad3 (-/-) mice displays the similar chalky white incisors. However, the expression of Smad3 in Med1 ablation mice and the impact of Med1 on functional integration between Smad3 and Notch1 remains unclear. Cre-loxP-based C57/BL6 mice with epithelial-specific Med1 knockout (Med1 KO) backgrounds were generated. Mandibles and dental epithelial stem cells (DE-SCs) from incisors cervical loop (CL) were isolated from wild-type (CON) mice and Med1 KO mice. Transcriptome sequencing was used to analyze the differences of CL tissue between KO and CON mice. The results revealed the enrichment of TGF-β signaling pathway. qRT-PCR and western blot were performed to show the gene and protein expression of Smad3, pSmad3, Notch1 and NICD, the key regulators of TGF-β and Notch1 signaling pathway. Expression of Notch1 and Smad3 was confirmed to be down-regulated in Med1 KO cells. Using activators of Smad3 and Notch1 on Med1 KO cells, both pSmad3 and NICD were rescued. Moreover, adding inhibitors and activators of Smad3 and Notch1 to cells of CON groups respectively, the protein expressions of Smad3, pSmad3, Notch1 and NICD were synergistically affected. In summary, Med1 participates in the functional integration of Smad3 and Notch1, thus promoting enamel mineralization.
Collapse
Affiliation(s)
- Ran Wei
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| | - Shuling Guo
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| | - Zhaosong Meng
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| | - Zhe Li
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| | - Jiacheng Liu
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin Medical University, Tianjin, 300014, China.
| | - Lei Sui
- School of Stomatology, Tianjin Medical University, Tianjin, 300014, China.
| |
Collapse
|
10
|
Diaz-Vegas A, Norris DM, Jall-Rogg S, Cooke KC, Conway OJ, Shun-Shion AS, Duan X, Potter M, van Gerwen J, Baird HJ, Humphrey SJ, James DE, Fazakerley DJ, Burchfield JG. A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology. Life Sci Alliance 2023; 6:e202201585. [PMID: 36283703 PMCID: PMC9595207 DOI: 10.26508/lsa.202201585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes. This method enables high fidelity analysis of GLUT4 responses to specific perturbations, multiplexing of other trafficking proteins and other features including lipid droplet morphology. Using this multiplexed approach we showed that Vps45 and Rab14 are selective regulators of GLUT4, but Trarg1, Stx6, Stx16, Tbc1d4 and Rab10 knockdown affected both GLUT4 and TfR translocation. Thus, GLUT4 and TfR translocation machinery likely have some overlap upon insulin-stimulation. In addition, we identified Kif13A, a Rab10 binding molecular motor, as a novel regulator of GLUT4 traffic. Finally, comparison of endogenous to overexpressed GLUT4 highlights that the endogenous GLUT4 methodology has an enhanced sensitivity to genetic perturbations and emphasises the advantage of studying endogenous protein trafficking for drug discovery and genetic analysis of insulin action in relevant cell types.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sigrid Jall-Rogg
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Xiaowen Duan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Adam10-dependent Notch signaling establishes dental epithelial cell boundaries required for enamel formation. iScience 2022; 25:105154. [PMID: 36193048 PMCID: PMC9526176 DOI: 10.1016/j.isci.2022.105154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The disintegrin and metalloproteinase Adam10 is a membrane-bound sheddase that regulates Notch signaling and ensures epidermal integrity. To address the function of Adam10 in the continuously growing incisors, we used Keratin14Cre/+;Adam10fl/fl transgenic mice, in which Adam10 is conditionally deleted in the dental epithelium. Keratin14Cre/+;Adam10fl/fl mice exhibited severe abnormalities, including defective enamel formation reminiscent of human enamel pathologies. Histological analyses of mutant incisors revealed absence of stratum intermedium, and severe disorganization of enamel-secreting ameloblasts. In situ hybridization and immunostaining analyses in the Keratin14Cre/+;Adam10fl/fl incisors showed strong Notch1 downregulation in dental epithelium and ectopic distribution of enamel-specific molecules, including ameloblastin and amelogenin. Lineage tracing studies using Notch1CreERT2;R26mT/mG mice demonstrated that loss of the stratum intermedium cells was due to their fate switch toward the ameloblast lineage. Overall, our data reveal that in the continuously growing incisors the Adam10/Notch axis controls dental epithelial cell boundaries, cell fate switch and proper enamel formation. ADAM10 deletion in the dental epithelium causes the formation of defective enamel ADAM10 deletion leads to loss of stratum intermedium and Notch1 expression ADAM10 deletion leads to stratum intermedium-to-ameloblast cell fate switch
Collapse
|
12
|
Overexpression of PYGO1 promotes early cardiac lineage development in human umbilical cord mesenchymal stromal/stem cells by activating the Wnt/β-catenin pathway. Hum Cell 2022; 35:1722-1735. [PMID: 36085540 DOI: 10.1007/s13577-022-00777-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular disease still has the highest mortality. Gene-modified mesenchymal stromal/stem cells could be a promising therapy. Pygo plays an important role in embryonic development and regulates life activities with a variety of regulatory mechanisms. Therefore, this study aimed to investigate whether the overexpression of the PYGO1 gene can promote the differentiation of human umbilical cord-derived mesenchymal stromal/stem cells (HUC-MSCs) into early cardiac lineage cells and to preliminary explore the relevant mechanisms. In this study, HUC-MSCs were isolated by the explant method and were identified by flow cytometry and differentiation assay, followed by transfected with lentivirus carrying the PYGO1 plasmid. In PYGO1 group (cells were incubated with lentiviral-PYGO1), the mRNA expressions of cardiac differentiation-specific markers (MESP1, NKX2.5, GATA4, MEF2C, ISL1, TBX5, TNNT2, ACTC1, and MYH6 genes) and the protein expressions of NKX2.5 and cTnT were significantly up-regulated compared with the NC group (cells were incubated with lentiviral-empty vector). In addition, the proportion of NKX2.5, GATA4, and cTnT immunofluorescence-positive cells increased with the inducement time. Overexpression of PYGO1 statistically significantly increased the relative luciferase expression level of Topflash plasmid, the protein expression level of β-catenin and the mRNA expression level of CYCLIND1. Compared with the control group, decreased protein levels of NKX2.5 and cTnT were detected in PYGO1 group after application of XAV-939, the specific inhibitor of the canonical Wnt/β-catenin pathway. Our study suggests that overexpression of PYGO1 significantly promotes the differentiation of HUC-MSCs into early cardiac lineage cells, which is regulated by the canonical Wnt/β-catenin signaling.
Collapse
|
13
|
Zhang Y, Li JH, Yuan QG, Yang WB. Restraint of FAM60A has a cancer-inhibiting role in pancreatic carcinoma via the effects on the Akt/GSK-3β/β-catenin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1432-1444. [PMID: 35213078 DOI: 10.1002/tox.23496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Family with sequence similarity 60A (FAM60A) has been reported as a new cancer-related protein that affects the malignant progression of some cancers. However, whether FAM60A plays a part in pancreatic carcinoma is undetermined. This work was designed to examine the impact of FAM60A in pancreatic carcinoma. Abundant expression of FAM60A was observed in the primary tumor tissue of pancreatic carcinoma. Moreover, a high FAM60A level was related to a poor overall survival in pancreatic carcinoma patients. Malignant behaviors of pancreatic carcinoma cells, such as proliferation and invasiveness, were markedly affected by FAM60A depletion. In addition, FAM60A depletion enhanced the drug sensitivity of pancreatic carcinoma cells to gemcitabine. Further study revealed that FAM60A depletion impaired the activities of Akt and β-catenin. Inhibiting the activity of Akt abolished FAM60A-mediated β-catenin activation. Re-expression of β-catenin partially diminished the FAM60A-depletion-mediated cancer suppressive effect in pancreatic carcinoma cells. In vivo experiments demonstrated that FAM60A depletion prohibited the xenograft formation of pancreatic carcinoma cells, with concurrent reductions of Akt and β-catenin activities. Collectively, our findings indicate that FAM60A exerts a cancer-promoting role in pancreatic carcinoma through affection of the Akt/β-catenin pathway. This work indicates that FAM60A acts as a tumor promoter in pancreatic carcinoma and can be utilized as a potential target for anti-pancreatic carcinoma therapy development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi' an, China
| | - Jun-Hui Li
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi' an, China
| | - Qing-Gong Yuan
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi' an, China
| | - Wen-Bin Yang
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi' an, China
| |
Collapse
|
14
|
Wnt/β-Catenin Signalling and Its Cofactor BCL9L Have an Oncogenic Effect in Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms23105319. [PMID: 35628130 PMCID: PMC9141496 DOI: 10.3390/ijms23105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is characterised by a high recurrence and progression rate. However, the molecular mechanisms of BC progression remain poorly understood. BCL9L, a coactivator of β-catenin was mutated in the 5′ and 3′ untranslated regions (UTRs). We assessed the influence of UTRs mutations on BCL9L, and the role of BCL9L and Wnt/β-catenin signalling in BC cells. UTR mutations were analysed by a luciferase reporter. BCL9L protein was assessed by immunohistochemistry in BC tissues. Cell proliferation was examined by crystal violet staining and by the spheroid model. Moreover, migration and invasion were analysed in real-time using the xCelligence RTCA system. The A > T mutation at 3′ UTR of BCL9L reduces the luciferase reporter mRNA expression and activity. BCL9L is predominantly increased in dysplastic urothelial cells and muscle-invasive BC. Knockdown of BCL9L and inhibition of Wnt/β-catenin signalling significantly repress the proliferation, migration and invasion of Cal29 and T24. In addition, BCL9L knockdown reduces mRNA level of Wnt/β-catenin target genes in Cal29 but not in T24 cells. BCL9L and Wnt/β-catenin signalling play an oncogenic role in bladder cancer cells and seems to be associated with BC progression. Nevertheless, the involvement of BCL9L in Wnt/β-catenin signalling is cell-line specific.
Collapse
|
15
|
Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Dis 2022; 8:151. [PMID: 35368023 PMCID: PMC8976844 DOI: 10.1038/s41420-022-00941-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
Endometriosis (EMs) is a benign gynecological disorder showing some tumor-like migratory and invasive phenotypes. This study intended to investigate the role of microRNA-30c (miR-30c) in EMs, which is involved with B-cell lymphoma 9 (BCL9), an activator of the Wnt/β-catenin signaling pathway. EMs specimens were clinically collected for determination of miR-30c and BCL9 expression. Exosomes were isolated from endometrial epithelial cells (EECs), and the uptake of exosomes by ectopic EECs (ecto-EECs) was characterized using fluorescence staining and confocal microscopy. The binding of miR-30c to BCL9 was validated by dual-luciferase reporter assay. Artificial modulation (up- and down-regulation) of the miR-30c/BCL9/Wnt/CD44 regulatory cascade was performed to evaluate its effect on ecto-EEC invasion and migration, as detected by Transwell and wound healing assays. A mouse model of EMs was further established for in vivo substantiation. Reduced miR-30c expression and elevated BCL9 expression was revealed in EMs ectopic tissues and ecto-EECs. Normal EECs-derived exosomes delivered miR-30c to ecto-EECs to suppress their invasive and migratory potentials. Then, miR-30c was observed to inhibit biological behaviors of ecto-EECs by targeting BCL9, and the miR-30c-induced inhibitory effect was reversed by BCL9 overexpression. Further, miR-30c diminished the invasion and migration of ecto-EECs by blocking the BCL9/Wnt/CD44 axis. Moreover, miR-30c-loaded exosomes attenuated the metastasis of ecto-EEC ectopic nodules. miR-30c delivered by EECs-derived exosomes repressed BCL9 expression to block the Wnt/β-catenin signaling pathway, thus attenuating the tumor-like behaviors of ecto-EECs in EMs.
Collapse
|
16
|
Orikasa S, Kawashima N, Tazawa K, Hashimoto K, Sunada-Nara K, Noda S, Fujii M, Akiyama T, Okiji T. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 2022; 12:682. [PMID: 35027586 PMCID: PMC8758693 DOI: 10.1038/s41598-021-04453-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Accelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.
Collapse
Affiliation(s)
- Shion Orikasa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mayuko Fujii
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
17
|
Htun MW, Shibata Y, Soe K, Koji T. Nuclear Expression of Pygo2 Correlates with Poorly Differentiated State Involving c-Myc, PCNA and Bcl9 in Myanmar Hepatocellular Carcinoma. Acta Histochem Cytochem 2021; 54:195-206. [PMID: 35023882 PMCID: PMC8727843 DOI: 10.1267/ahc.21-00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
In Myanmar, hepatocellular carcinoma (HCC) is commonly seen in young adult and associated with poor prognosis, while the molecular mechanisms that characterize HCC in Myanmar are unknown. As co-activation of Wnt/β-catenin signaling and c-Myc (Myc) are reported to associate with malignancy of HCC, we immunohistochemically investigated the expression of Pygo2 and Bcl9, the co-activators of the Wnt/β-catenin signaling, Myc and PCNA in 60 cases of Myanmar HCC. Pygo2 expression was confirmed by in situ hybridization. The signal intensity was measured by image analyzer and then statistically analyzed. As a result, the expression of Pygo2 was significantly higher in HCC compared to normal liver tissue and the nuclear signal was the most intense in poorly differentiated HCC. Cytoplasmic Bcl9 was expressed in the normal liver tissue but decreased in HCC with the progression of histopathological grade. Myc was significantly higher in poorly differentiated HCC, whereas PCNA labeling index increased with the progression of histopathological grade. Nuclear Pygo2 showed strong correlation with nuclear Myc (P < 0.01) and PCNA (P < 0.001), and inversely correlated with cytoplasmic Bcl9 (P < 0.01). Our results suggested Wnt/β-catenin and Myc signaling is commonly activated in Myanmar HCC and that the correlative upregulation of nuclear Pygo2 and Myc characterizes the malignant features of HCC in Myanmar.
Collapse
Affiliation(s)
- Myo Win Htun
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | | | - Takehiko Koji
- Office for Research Initiative and Development, Nagasaki University
| |
Collapse
|
18
|
Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, Saxena M, Valenta T, Hausmann G, Cantù C, Basler K, Christofori G. The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene 2021; 40:6195-6209. [PMID: 34545187 PMCID: PMC8553620 DOI: 10.1038/s41388-021-02016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Canonical Wnt/β-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of β-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with β-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of β-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the β-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFβ treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the “just-right” hypothesis of Wnt-driven tumor progression.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - David Buechel
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Natalia Rubinstein
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lorenzo Bazzani
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
19
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
20
|
Borrelli C, Valenta T, Handler K, Vélez K, Gurtner A, Moro G, Lafzi A, Roditi LDV, Hausmann G, Arnold IC, Moor AE, Basler K. Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells. Nat Commun 2021; 12:1368. [PMID: 33649334 PMCID: PMC7921392 DOI: 10.1038/s41467-021-21591-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, 4, Czech Republic.
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Karelia Vélez
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Giulia Moro
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Tao B, Song Y, Wu Y, Yang X, Peng T, Peng L, Xia K, Xia X, Chen L, Zhong C. Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling. Aging (Albany NY) 2021; 13:5284-5296. [PMID: 33535177 PMCID: PMC7950305 DOI: 10.18632/aging.202449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Matrix stiffness is a key physical characteristic of the tumor microenvironment and correlates tightly with tumor progression. Here, we explored the association between matrix stiffness and glioma development. Using atomic force microscopy, we observed higher matrix stiffness in highly malignant glioma tissues than in low-grade/innocent tissues. In vitro and in vivo analyses revealed that culturing glioma cells on stiff polyacrylamide hydrogels enhanced their proliferation, tumorigenesis and CD133 expression. Greater matrix stiffness could obviously up-regulated the expression of BCL9L, thereby promoting the activation of Wnt/β-catenin signaling and ultimately increasing the stemness of glioma cells. Inhibiting Wnt/β-catenin signaling using gigantol consistently improved the anticancer effects of chemotherapy and radiotherapy in mice with subcutaneous glioma tumors. These findings demonstrate that a stiffer matrix increases the stemness of glioma cells by activating BCL9L/Wnt/β-catenin signaling. Moreover, we have provided a potential strategy for clinical glioma treatment by demonstrating that gigantol can improve the effectiveness of traditional chemotherapy/radiotherapy by suppressing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Bei Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yao Wu
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiaobo Yang
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tangming Peng
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiguo Xia
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiangguo Xia
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chuanhong Zhong
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|
23
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
24
|
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother 2020; 132:110851. [PMID: 33080466 DOI: 10.1016/j.biopha.2020.110851] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway is a highly conserved and tightly controlled molecular mechanism that regulates embryonic development, cellular proliferation and differentiation. Of note, accumulating evidence has shown that the aberrant of WNT/β-catenin signaling promotes the development and/or progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults. There are two different WNT signaling pathways have been identified, which were termed non-canonical and canonical pathways, the latter involving the activation of β-catenin. β-catenin, acting as an intracellular signal transducer in the WNT signaling pathway, is encoded by CTNNB1 and plays a critical role in tumorigenesis. In the past research, most liver tumors have mutations in genes encoding key components of the WNT/β-catenin signaling pathway. In addition, several of other signaling pathways also can crosswalk with β-catenin. In this review, we discuss the most relevant molecular mechanisms of action and regulation of WNT/β-catenin signaling in the development and pathophysiology of liver cancers, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Shuai He
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
25
|
Zhang S, Chen H, Liu W, Fang L, Qian Z, Kong R, Zhang Q, Li J, Cao X. miR-766-3p Targeting BCL9L Suppressed Tumorigenesis, Epithelial-Mesenchymal Transition, and Metastasis Through the β-Catenin Signaling Pathway in Osteosarcoma Cells. Front Cell Dev Biol 2020; 8:594135. [PMID: 33117820 PMCID: PMC7575756 DOI: 10.3389/fcell.2020.594135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that abnormal microRNAs (miRNAs) serve critical roles in carcinogenesis and development of osteosarcoma (OS). The purpose of the present study was to elucidate the relationship between miR-766-3p and development of osteosarcoma and explore the potential mechanism. In this study, we found that miR-766-3p was the most downregulated miRNA by analyzing GSE65071 from the GEO database. miR-766-3p was lowly expressed in OS tissue samples and cells, and high miR-766-3p expression repressed the malignant level of OS, including cell proliferation, EMT, migration, and invasion in vitro and in vivo. B-Cell Lymphoma 9-Like Protein (BCL9L) was negatively associated with miR-766-3p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiment indicated that BCL9L could restore the influence of miR-766-3p on OS cells. In addition, the β-Catenin/TCF-4 signal pathway was demonstrated to be related to the miR-766-3p/BCL9L axis. In summary, miR-766-3p, a negative regulator of BCL9L, plays the role of tumor metastasis suppressor via the β-catenin signaling pathway in the progression of OS.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanshun Liu
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanyang Qian
- Department of Orthopedics, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Painology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Juming Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojian Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans 2020; 48:1781-1794. [PMID: 32677664 DOI: 10.1042/bst20200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
Pygo is a nuclear protein containing two conserved domains, NHD and PHD, which play important roles in embryonic development and carcinogenesis. Pygo was first identified as a core component of the Wnt/β-catenin signalling pathway. However, it has also been reported that the function of Pygo is not always Wnt/β-catenin signalling dependent. In this review, we summarise the functions of both domains of Pygo and show that their functions are synergetic. The PHD domain mainly combines with transcription co-factors, including histone 3 and Bcl9/9l. The NHD domain mainly recruits histone methyltransferase/acetyltransferase (HMT/HAT) to modify lysine 4 of the histone 3 tail (H3K4) and interacts with Chip/LIM-domain DNA-binding proteins (ChiLS) to form enhanceosomes to regulate transcriptional activity. Furthermore, we summarised chromatin modification differences of Pygo in Drosophila (dPygo) and vertebrates, and found that Pygo displayes a chromatin silencing function in Drosophila, while in vertebates, Pygo has a chromatin-activating function due to the two substitution of two amino acid residues. Next, we confirmed the relationship between Pygo and Bcl9/9l and found that Pygo-Bcl/9l are specifically partnered both in the nucleus and in the cytoplasm. Finally, we discuss whether transcriptional activity of Pygo is Wnt/β-catenin dependent during embryonic development. Available information indications that the transcriptional activity of Pygo in embryonic development is either Wnt/β-catenin dependent or independent in both tissue-specific and cell-specific-modes.
Collapse
|
27
|
Zimmerli D, Borrelli C, Jauregi-Miguel A, Söderholm S, Brütsch S, Doumpas N, Reichmuth J, Murphy-Seiler F, Aguet MI, Basler K, Moor AE, Cantù C. TBX3 acts as tissue-specific component of the Wnt/β-catenin transcriptional complex. eLife 2020; 9:58123. [PMID: 32808927 PMCID: PMC7434441 DOI: 10.7554/elife.58123] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
BCL9 and PYGO are β-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of β-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the β-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a β-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/β-catenin-dependent transcriptional complex.
Collapse
Affiliation(s)
- Dario Zimmerli
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| | - Salome Brütsch
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jan Reichmuth
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Fabienne Murphy-Seiler
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Lausanne, Switzerland
| | - MIchel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Lausanne, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Saxena M, Kalathur RKR, Rubinstein N, Vettiger A, Sugiyama N, Neutzner M, Coto-Llerena M, Kancherla V, Ercan C, Piscuoglio S, Fischer J, Fagiani E, Cantù C, Basler K, Christofori G. A Pygopus 2-Histone Interaction Is Critical for Cancer Cell Dedifferentiation and Progression in Malignant Breast Cancer. Cancer Res 2020; 80:3631-3648. [PMID: 32586983 DOI: 10.1158/0008-5472.can-19-2910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
Pygopus 2 (Pygo2) is a coactivator of Wnt/β-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me2/3) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me2/3 association has a functional relevance in breast cancer progression in vivo. To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me2/3 was rendered ineffective. Loss of Pygo2-histone interaction resulted in smaller, differentiated, and less metastatic tumors, due, in part, to decreased canonical Wnt/β-catenin signaling. RNA- and ATAC-sequencing analyses of tumor-derived cell lines revealed downregulation of TGFβ signaling and upregulation of differentiation pathways such as PDGFR signaling. Increased differentiation correlated with a luminal cell fate that could be reversed by inhibition of PDGFR activity. Mechanistically, the Pygo2-histone interaction potentiated Wnt/β-catenin signaling, in part, by repressing the expression of Wnt signaling antagonists. Furthermore, Pygo2 and β-catenin regulated the expression of miR-29 family members, which, in turn, repressed PDGFR expression to promote dedifferentiation of wild-type Pygo2 mammary epithelial tumor cells. Collectively, these results demonstrate that the histone binding function of Pygo2 is important for driving dedifferentiation and malignancy of breast tumors, and loss of this binding activates various differentiation pathways that attenuate primary tumor growth and metastasis formation. Interfering with the Pygo2-H3K4me2/3 interaction may therefore serve as an attractive therapeutic target for metastatic breast cancer. SIGNIFICANCE: Pygo2 represents a potential therapeutic target in metastatic breast cancer, as its histone-binding capability promotes β-catenin-mediated Wnt signaling and transcriptional control in breast cancer cell dedifferentiation, EMT, and metastasis.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | - Andrea Vettiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nami Sugiyama
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Melanie Neutzner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Caner Ercan
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Jonas Fischer
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ernesta Fagiani
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Wallenberg Centre for Molecular Medicine Linköping; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
29
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
30
|
Moghe A, Monga SP. BCL9/BCL9L in hepatocellular carcinoma: will it or Wnt it be the next therapeutic target? Hepatol Int 2020; 14:460-462. [PMID: 32488834 PMCID: PMC7368815 DOI: 10.1007/s12072-020-10059-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/23/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Akshata Moghe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA
| | - Satdarshan P Monga
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA. .,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 2020; 52:183-191. [PMID: 32037398 PMCID: PMC7062731 DOI: 10.1038/s12276-020-0380-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling is implicated in many physiological processes, including development, tissue homeostasis, and tissue regeneration. In human cancers, Wnt/β-catenin signaling is highly activated, which has led to the development of various Wnt signaling inhibitors for cancer therapies. Nonetheless, the blockade of Wnt signaling causes side effects such as impairment of tissue homeostasis and regeneration. Recently, several studies have identified cancer-specific Wnt signaling regulators. In this review, we discuss the Wnt inhibitors currently being used in clinical trials and suggest how additional cancer-specific regulators could be utilized to treat Wnt signaling-associated cancer.
Collapse
Affiliation(s)
- Youn-Sang Jung
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jae-Il Park
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
32
|
Abstract
The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.
Collapse
Affiliation(s)
- Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Jiang M, Kang Y, Sewastianik T, Wang J, Tanton H, Alder K, Dennis P, Xin Y, Wang Z, Liu R, Zhang M, Huang Y, Loda M, Srivastava A, Chen R, Liu M, Carrasco RD. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins. Nat Commun 2020; 11:19. [PMID: 31911584 PMCID: PMC6946813 DOI: 10.1038/s41467-019-13842-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, which despite recent advances in treatment, remains incurable due to molecular heterogeneity of tumor cells. The B-cell lymphoma 9 (BCL9) oncogene functions as a transcriptional co-activator of the Wnt/β-catenin pathway, which plays critical roles in CRC pathogenesis. Here we have identified a β-catenin-independent function of BCL9 in a poor-prognosis subtype of CRC tumors characterized by expression of stromal and neural associated genes. In response to spontaneous calcium transients or cellular stress, BCL9 is recruited adjacent to the interchromosomal regions, where it stabilizes the mRNA of calcium signaling and neural associated genes by interacting with paraspeckle proteins. BCL9 subsequently promotes tumor progression and remodeling of the tumor microenvironment (TME) by sustaining the calcium transients and neurotransmitter-dependent communication among CRC cells. These data provide additional insights into the role of BCL9 in tumor pathogenesis and point towards additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Yue Kang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, 02776, Poland
| | - Jiao Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith Alder
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Xin
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongqiu Wang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Depatment of Radiation Oncology and Cyberknife Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruiyang Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Mengyun Zhang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
35
|
Huge N, Sandbothe M, Schröder AK, Stalke A, Eilers M, Schäffer V, Schlegelberger B, Illig T, Vajen B, Skawran B. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma. Hepatol Int 2019; 14:373-384. [PMID: 31440992 PMCID: PMC7220899 DOI: 10.1007/s12072-019-09977-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022]
Abstract
Background Activation of Wnt/β-catenin pathway is a frequent event in hepatocellular carcinoma and is associated with enhanced cell survival and proliferation. Therefore, targeting this signaling pathway is discussed as an attractive therapeutic approach for HCC treatment. BCL9 and BCL9L, two homologous coactivators of the β-catenin transcription factor complex, have not yet been comprehensively characterized in HCC. We aimed to elucidate the roles of BCL9 and BCL9L, especially regarding Wnt/β-catenin signaling and their prognostic value in HCC. Methods Expression of BCL9/BCL9L was determined in HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B, and Huh6) and normal liver cell lines (THLE-2 and THLE-3). To analyze proliferation and apoptosis, BCL9 and/or BCL9L were knocked down in Wnt-inactive HLE and Wnt-active HepG2 and Huh6 cells using siRNA. Subsequently, Wnt reporter assays were performed in HepG2 and Huh6 cells. BCL9 and BCL9L expression, clinicopathological and survival data of public HCC datasets were analyzed, taking the Wnt signaling status into account. Results Knockdown of BCL9L, but not of BCL9, reduced Wnt signaling activity. Knockdown of BCL9 and/or BCL9L reduced cell viability and increased apoptosis of Wnt-inactive HCC cells, but had no effect in Wnt-active cells. Expression of BCL9 and BCL9L was upregulated in human HCC and increased with progressing dedifferentiation. For BCL9L, higher expression was observed in tumors of larger size. Overexpression of BCL9 and BCL9L correlated with poor overall survival, especially in HCC without activated Wnt signaling. Conclusion Oncogenic BCL9 proteins represent promising targets for cancer therapy and inhibiting them may be particularly beneficial in Wnt-inactive HCCs. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s12072-019-09977-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Huge
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Maria Sandbothe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Anna K Schröder
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| |
Collapse
|
36
|
Soe MT, Shibata Y, Win Htun M, Abe K, Soe K, Win Than N, Lwin T, Phone Kyaw M, Koji T. Immunohistochemical Mapping of Bcl9 Using Two Antibodies that Recognize Different Epitopes Is Useful to Characterize Juvenile Development of Hepatocellular Carcinoma in Myanmar. Acta Histochem Cytochem 2019; 52:9-17. [PMID: 30923411 PMCID: PMC6434316 DOI: 10.1267/ahc.18045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
B-cell lymphoma 9 (Bcl9) is the core component of Wnt/β-catenin signaling and overexpressed in nuclei of various tumors, including hepatocellular carcinoma (HCC). However, the extent of Bcl9 expression relative to HCC differentiation stage and its functional aspects are poorly understood. In this study, we examined the expression pattern of Bcl9 immunohistochemically, using two anti-Bcl9 antibodies; one was a conventional polyclonal-antibody (anti-Bcl9ABC) against amino acid no.800-900 of human-Bcl9, while the other (anti-Bcl9BIO) was against amino acid no.50-200, covering Pygopus-binding sites of Bcl9. Immunohistochemistry using anti-Bcl9BIO demonstrated distinctive staining in the cytoplasm, while the anti-Bcl9ABC signal was detected in both cytoplasm and nuclei of HCC cells, reflecting different states of Bcl9 function because Pygopus-binding to Bcl9 is essential to exert its function together with β-catenin in nucleus. Quantitative analysis revealed a significantly higher immunohistochemical-score by anti-Bcl9BIO in normal liver comparing various differentiation grades of HCC (P < 0.004), whereas no significant difference was noted with anti-Bcl9ABC. Interestingly, immunohistochemical-score of anti-Bcl9BIO in patients aged < 40 years was significantly lower than that of ≥ 40 years group (P < 0.01). The results indicated that anti-Bcl9BIO detected cytoplasmic Bcl9, which does not bind to Pygopus suggesting it could be a useful indicator for development of HCC in young Myanmar patients.
Collapse
Affiliation(s)
- Myat Thu Soe
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Myo Win Htun
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Atomic Bomb Hospital
| | | | - Nay Win Than
- Department of Hepatobiliary and Pancreatic Surgery, Yangon Specialty Hospital
| | - Thann Lwin
- Department of Hepatobiliary and Pancreatic Surgery, Yangon Specialty Hospital
| | | | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
37
|
Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. eLife 2019; 8:42386. [PMID: 30735122 PMCID: PMC6386520 DOI: 10.7554/elife.42386] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Luciane P Capelo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Cantù
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.,Wallenberg Centre for Molecular Medicine, Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Dario Zimmerli
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Steven Pregizer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Satoshi Ohte
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, United States
| | | | | | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| |
Collapse
|
38
|
Warwar AH, Abdullah M, Sami W. The incidence of enamel hypoplasia in children between 8 and 15 years in Anbar Governorate, Iraq. J Int Oral Health 2019. [DOI: 10.4103/jioh.jioh_308_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Cantù C, Felker A, Zimmerli D, Prummel KD, Cabello EM, Chiavacci E, Méndez-Acevedo KM, Kirchgeorg L, Burger S, Ripoll J, Valenta T, Hausmann G, Vilain N, Aguet M, Burger A, Panáková D, Basler K, Mosimann C. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev 2018; 32:1443-1458. [PMID: 30366904 PMCID: PMC6217730 DOI: 10.1101/gad.315531.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Bcl9 and Pygopus (Pygo) are obligate Wnt/β-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, β-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the β-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective β-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Karin D Prummel
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Elena M Cabello
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Kevin M Méndez-Acevedo
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin-Buch, Germany
| | - Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Nathalie Vilain
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin-Buch, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, 10115 Berlin, Germany
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
40
|
Chen J, Rajasekaran M, Xia H, Kong SN, Deivasigamani A, Sekar K, Gao H, Swa HL, Gunaratne J, Ooi LL, Xie T, Hong W, Hui KM. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. EMBO J 2018; 37:e99395. [PMID: 30217955 PMCID: PMC6187222 DOI: 10.15252/embj.201899395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Uncontrolled cell division is a hallmark of cancer. Deregulation of Wnt components has been linked to aberrant cell division by multiple mechanisms, including Wnt-mediated stabilisation of proteins signalling, which was notably observed in mitosis. Analysis of Wnt components revealed an unexpected role of B-cell CLL/lymphoma 9 (BCL9) in maintaining mitotic Wnt signalling to promote precise cell division and growth of cancer cell. Mitotic interactome analysis revealed a mechanistic role of BCL9 in inhibiting clathrin-mediated degradation of LRP6 signalosome components by interacting with clathrin and the components in Wnt destruction complex; this function was further controlled by CDK1-driven phosphorylation of BCL9 N-terminal, especially T172. Interestingly, T172 phosphorylation was correlated with cancer patient prognosis and enriched in tumours. Thus, our results revealed a novel role of BCL9 in controlling mitotic Wnt signalling to promote cell division and growth.
Collapse
Affiliation(s)
- Jianxiang Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hongping Xia
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Shik Nie Kong
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Amudha Deivasigamani
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Karthik Sekar
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hengjun Gao
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hannah Lf Swa
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - London Lucien Ooi
- Division of Surgery, Singapore General Hospital, Singapore City, Singapore
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Kam Man Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore City, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
41
|
Orsini G, Pagella P, Putignano A, Mitsiadis TA. Novel Biological and Technological Platforms for Dental Clinical Use. Front Physiol 2018; 9:1102. [PMID: 30135661 PMCID: PMC6092501 DOI: 10.3389/fphys.2018.01102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
Abstract
Human teeth have a limited capacity to regenerate and thus biological reconstruction of damaged or lost dental tissues remains a significant challange in modern dentistry. Recent efforts focus on alternative therapeutic approaches for partial or whole tooth regeneration that complement traditional dental treatments using sophisticated materials and dental implants. These multidisciplinary approaches are based on the combination of stem cells with advanced tissue engineer products and computing technology, and they hold great promise for future applications in dentistry. The administration to patients of dynamic biological agents composed by stem cells and scaffolds will certainly increase the regenerative capacity of dental pathological tissues. The design of innovative materials for tissue restoration, diagnostics, imaging, and targeted pharmaceutical treatment will significantly improve the quality of dental care and will have a major societal impact. This review depicts the current challenges in dentistry and describes the possibilities for novel and succesful therapeutic applications in the near future.
Collapse
Affiliation(s)
- Giovanna Orsini
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Clinical Sciences and Stomatology, Marche Polytechnic University, Ancona, Italy
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Angelo Putignano
- Department of Clinical Sciences and Stomatology, Marche Polytechnic University, Ancona, Italy
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Ogata K, Tsumuraya T, Oka K, Shin M, Okamoto F, Kajiya H, Katagiri C, Ozaki M, Matsushita M, Okabe K. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci Rep 2017; 7:18099. [PMID: 29273814 PMCID: PMC5741708 DOI: 10.1038/s41598-017-18291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin-7 (TRPM7) is a bi-functional protein containing a kinase domain fused to an ion channel. TRPM7 is highly expressed in ameloblasts during tooth development. Here we show that TRPM7 kinase-inactive knock-in mutant mice (TRPM7 KR mice) exhibited small enamel volume with opaque white-colored incisors. The TRPM7 channel function of ameloblast-lineage cells from TRPM7 KR mice was normal. Interestingly, phosphorylation of intracellular molecules including Smad1/5/9, p38 and cAMP response element binding protein (CREB) was inhibited in ameloblasts from TRPM7 KR mice at the pre-secretory stage. An immunoprecipitation assay showed that CREB was bound to TRPM7, suggesting that direct phosphorylation of CREB by TRPM7 was inhibited in ameloblast-lineage cells from TRPM7 KR mice. These results indicate that the function of the TRPM7 kinase domain plays an important role in ameloblast differentiation, independent of TRPM7 channel activity, via phosphorylation of CREB.
Collapse
Affiliation(s)
- Kayoko Ogata
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Tomoyuki Tsumuraya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan.
| | - Masashi Shin
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masao Ozaki
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
43
|
Pagella P, Cantù C, Mitsiadis TA. Linking dental pathologies and cancer via Wnt signalling. Oncotarget 2017; 8:99213-99214. [PMID: 29245891 PMCID: PMC5725082 DOI: 10.18632/oncotarget.22281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Pierfrancesco Pagella
- Thimios A. Mitsiadis: Orofacial Development & Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| | - Claudio Cantù
- Thimios A. Mitsiadis: Orofacial Development & Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| | - Thimios A Mitsiadis
- Thimios A. Mitsiadis: Orofacial Development & Regeneration, Institute of Oral Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Mitsiadis TA, Pagella P, Cantù C. Early Determination of the Periodontal Domain by the Wnt-Antagonist Frzb/Sfrp3. Front Physiol 2017; 8:936. [PMID: 29209231 PMCID: PMC5702314 DOI: 10.3389/fphys.2017.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Odontogenesis results from the continuous and reciprocal interaction between cells of the oral epithelium and cranial neural crest-derived mesenchyme. The canonical Wnt signaling pathway plays a fundamental role in mediating these interactions from the earliest stages of tooth development. Here we analyze by in situ hybridization the expression patterns of the extracellular Wnt antagonist Frzb/Sfrp3. Although Frzb is expressed in dental mesenchymal cells from the earliest stages of odontogenesis, its expression is absent from a tiny population of mesenchymal cells immediately adjacent to the invaginating dental epithelium. Cell proliferation studies using BrdU showed that the Frzb expressing and Frzb non-expressing cell populations display different proliferative behavior during the initial stages of odontogenesis. DiI-mediated cell-fate tracing studies demonstrated that the Frzb expressing cells contribute to the formation of the dental follicle, the future periodontium. In contrast, the Frzb non-expressing cells give rise to the dental pulp. The present results indicate that Frzb is discriminating the presumptive periodontal territory from the rest of the dental mesenchyme from the very beginning of odontogenesis, where it might act as a barrier for the diffusion of Wnt molecules, thus regulating the activation of Wnt-dependent transcription within dental tissues.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Kao KR, Popadiuk P, Thoms J, Aoki S, Anwar S, Fitzgerald E, Andrews P, Voisey K, Gai L, Challa S, He Z, Gonzales-Aguirre P, Simmonds A, Popadiuk C. PYGOPUS2 expression in prostatic adenocarcinoma is a potential risk stratification marker for PSA progression following radical prostatectomy. J Clin Pathol 2017; 71:402-411. [PMID: 28924059 DOI: 10.1136/jclinpath-2017-204718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
AIMS Prostate cancer (PrCa) is the most frequently diagnosed non-cutaneous cancer in men. Without clear pathological indicators of disease trajectory at diagnosis, management of PrCa is challenging, given its wide-ranging manifestation from indolent to highly aggressive disease. This study examines the role in PrCa of the Pygopus (PYGO)2 chromatin effector protein as a risk stratification marker in PrCa. METHODS RNA expression was performed in PrCa cell lines using Northern and RT-PCR analyses. Protein levels were assessed using immunoblot and immunofluorescence. Immunohistochemistry was performed on tissue microarrays constructed from radical prostatectomies with 5-year patient follow-up data including Gleason score tumour staging, margin and lymph node involvement and prostate serum antigen (PSA) levels. Biochemical recurrence (BR) was defined as a postoperative PSA level of >0.2 nL. Univariate and multivariate analyses were performed using SAS and Kaplan-Meier curves using graphPad (Prism). RESULTS In vitro depletion of PYGO2 by RNAi in both androgen receptor positive and negative PrCa cell lines attenuated growth and reduced Ki67 and 47S rRNA expression, while PYGO2 protein was localised to the nuclei of tumours as determined by immunohistochemistry. High expression levels of PYGO2 in tumours (n=156) were correlated with BR identified as PSA progression, after 7-year follow-up independent of other traditional risk factors. Most importantly, high PYGO2 levels in intermediate grade tumours suggested increased risk of recurrence over those with negative or weak expression. CONCLUSION Our data suggest that elevated PYGO2 expression in primary prostate adenocarcinoma is a potential risk factor for BR.
Collapse
Affiliation(s)
- Kenneth R Kao
- Division of Anatomical Pathology, Laboratory Medicine Program, Eastern Health, St. John's, Canada.,Biomedical Sciences, Memorial University, St. John's, NL, Canada
| | - Paul Popadiuk
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - John Thoms
- Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Satoko Aoki
- Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Shahgul Anwar
- Division of Anatomical Pathology, Laboratory Medicine Program, Eastern Health, St. John's, Canada
| | - Emily Fitzgerald
- Biomedical Sciences, Memorial University, St. John's, NL, Canada
| | - Phillip Andrews
- Biomedical Sciences, Memorial University, St. John's, NL, Canada
| | - Kim Voisey
- Division of Anatomical Pathology, Laboratory Medicine Program, Eastern Health, St. John's, Canada
| | - Luis Gai
- Division of Anatomical Pathology, Laboratory Medicine Program, Eastern Health, St. John's, Canada
| | - Satya Challa
- Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Zhijian He
- Biomedical Sciences, Memorial University, St. John's, NL, Canada
| | | | - Andrea Simmonds
- Division of Anatomical Pathology, Laboratory Medicine Program, Eastern Health, St. John's, Canada
| | - Catherine Popadiuk
- Division of Gynecologic Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
46
|
Zimmerli D, Hausmann G, Cantù C, Basler K. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol 2017; 174:4600-4610. [PMID: 28521071 DOI: 10.1111/bph.13864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Mutations in components of the Wnt pathways are a frequent cause of many human diseases, particularly cancer. Despite the fact that a causative link between aberrant Wnt signalling and many types of human cancers was established more than a decade ago, no Wnt signalling inhibitors have made it into the clinic so far. One reason for this is that no pathway-specific kinase is known. Additionally, targeting the protein-protein interactions needed to transduce the signal has not met with success so far. Complicating the search for and use of inhibitors is the complexity of the cascades triggered by the Wnts and their paramount biological importance. Wnt/β-catenin signalling is involved in virtually all aspects of embryonic development and in the control of the homeostasis of adult tissues. Encouragingly, however, in recent years, first successes with Wnt-pathway inhibitors have been reported in mouse models of disease. In this review, we summarize possible roads to follow during the quest to pharmacologically modulate the Wnt signalling pathway in cancer. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
VanHook AM. New connections: Protein trafficking for strong bones and teeth. Sci Signal 2017; 10:10/465/eaam8579. [DOI: 10.1126/scisignal.aam8579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Distinct mechanisms of dysregulated protein secretion result in weak bones or teeth.
Collapse
|
48
|
Defective tooth enamel is conducive to caries development. Br Dent J 2017; 222:229. [DOI: 10.1038/sj.bdj.2017.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|