1
|
Zhang X, Vlkolinsky R, Wu C, Dolatabadi N, Scott H, Prikhodko O, Zhang A, Blanco M, Lang N, Piña-Crespo J, Nakamura T, Roberto M, Lipton SA. S-Nitrosylation of CRTC1 in Alzheimer's disease impairs CREB-dependent gene expression induced by neuronal activity. Proc Natl Acad Sci U S A 2025; 122:e2418179122. [PMID: 40014571 PMCID: PMC11892585 DOI: 10.1073/pnas.2418179122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
cAMP response element-binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) plays an important role in synaptic plasticity, learning, and long-term memory formation through the regulation of neuronal activity-dependent gene expression, and CRTC1 dysregulation is implicated in Alzheimer's disease (AD). Here, we show that increased S-nitrosylation of CRTC1 (forming SNO-CRTC1), as seen in cell-based, animal-based, and human-induced pluripotent stem cell (hiPSC)-derived cerebrocortical neuron-based AD models, disrupts its binding with CREB and diminishes the activity-dependent gene expression mediated by the CRTC1/CREB pathway. We identified Cys216 of CRTC1 as the primary target of S-nitrosylation by nitric oxide (NO)-related species. Using CRISPR/Cas9 techniques, we mutated Cys216 to Ala in hiPSC-derived cerebrocortical neurons bearing one allele of the APPSwe mutation (AD-hiPSC neurons). Introduction of this nonnitrosylatable CRTC1 mutant rescued defects in AD-hiPSC neurons, including decreased neurite length and increased neuronal cell death. Additionally, expression of nonnitrosylatable CRTC1 in vivo in the hippocampus rescued synaptic plasticity in the form of long-term potentiation in 5XFAD mice. Taken together, these results demonstrate that formation of SNO-CRTC1 contributes to the pathogenesis of AD by attenuating the neuronal activity-dependent CREB transcriptional pathway, and suggests a therapeutic target for AD.
Collapse
Affiliation(s)
- Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Roman Vlkolinsky
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Chongyang Wu
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Henry Scott
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Olga Prikhodko
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| | - Andrew Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Mayra Blanco
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nhi Lang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Juan Piña-Crespo
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Marisa Roberto
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| |
Collapse
|
2
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Kurokawa K, Sogawa K, Suzuki T, Miyazaki Y, Tanaka K, Usami M, Takizawa T. Protein S-nitrosylation is involved in valproic acid-promoted neuronal differentiation of adipose tissue-derived stem cells. Nitric Oxide 2024; 145:21-32. [PMID: 38382865 DOI: 10.1016/j.niox.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is greatly promoted by valproic acid (VPA) with cAMP elevating agents thorough NO signaling pathways, but its mechanism is not fully understood. In the present study, we investigate the involvement of protein S-nitrosylation in the VPA-promoted neuronal differentiation of ASCs. The whole amount of S-nitrosylated protein was increased by the treatment with VPA alone for three days in ASCs. An inhibitor of thioredoxin reductase (TrxR), auranofin, further increased the amount of S-nitrosylated protein and enhances the VPA-promoted neuronal differentiation in ASCs. On the contrary, another inhibitor of TrxR, dinitrochlorobenzene, inhibited the VPA-promoted neuronal differentiation in ASCs even with cAMP elevating agents, which was accompanied by unexpectedly decreased S-nitrosylated protein. It was considered from these results that increased protein S-nitrosylation is involved in VPA-promoted neuronal differentiation of ASCs. By the proteomic analysis of S-nitrosylated protein in VPA-treated ASCs, no identified proteins could be specifically related to VPA-promoted neuronal differentiation. The identified proteins, however, included those involved in the metabolism of substances regulating neuronal differentiation, such as aspartate and glutamate.
Collapse
Affiliation(s)
- Kenta Kurokawa
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Kazuyuki Sogawa
- School of Life and Environmental Science, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Takehito Suzuki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Yoko Miyazaki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Kazuaki Tanaka
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Makoto Usami
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Tatsuya Takizawa
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan.
| |
Collapse
|
5
|
Wang Z, Li J, Yang Q, Sun X. Global Proteome-Wide Analysis of Cysteine S-Nitrosylation in Toxoplasma gondii. Molecules 2023; 28:7329. [PMID: 37959749 PMCID: PMC10649196 DOI: 10.3390/molecules28217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Toxoplasma gondii transmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. T. gondii can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of T. gondii remains mystery. In this study, we reported the first S-nitrosylated proteome of T. gondii using mass spectrometry in combination with resin-assisted enrichment. We found that 637 proteins were S-nitrosylated, more than half of which were localized in the nucleus or cytoplasm. Motif analysis identified seven motifs. Of these motifs, five and two contained lysine and isoleucine, respectively. Gene Ontology enrichment revealed that S-nitrosylated proteins were primarily located in the inner membrane of mitochondria and other organelles. These S-nitrosylated proteins participated in diverse biological and metabolic processes, including organic acid binding, carboxylic acid binding ribose and phosphate biosynthesis. T. gondii S-nitrosylated proteins significantly contributed to glycolysis/gluconeogenesis and aminoacyl-tRNA biosynthesis. Moreover, 27 ribosomal proteins and 11 microneme proteins were identified as S-nitrosylated proteins, suggesting that proteins in the ribosome and microneme were predominantly S-nitrosylated. Protein-protein interaction analysis identified three subnetworks with high-relevancy ribosome, RNA transport and chaperonin complex components. These results imply that S-nitrosylated proteins of T. gondii are associated with protein translation in the ribosome, gene transcription, invasion and proliferation of T. gondii. Our research is the first to identify the S-nitrosylated proteomic profile of T. gondii and will provide direction to the ongoing investigation of the functions of S-nitrosylated proteins in T. gondii.
Collapse
Affiliation(s)
- Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.)
| | | | | | | |
Collapse
|
6
|
Boulasiki P, Tan XW, Spinelli M, Riccio A. The NuRD Complex in Neurodevelopment and Disease: A Case of Sliding Doors. Cells 2023; 12:cells12081179. [PMID: 37190088 DOI: 10.3390/cells12081179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to "open" the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system.
Collapse
Affiliation(s)
- Paraskevi Boulasiki
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Xiao Wei Tan
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matteo Spinelli
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Neuroscience Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Mechanisms of NO-Mediated Protein S-Nitrosylation in the Lens-Induced Myopia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8296043. [DOI: 10.1155/2022/8296043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
Background. Myopia is a chronic ocular disease, emerging as the most common type of refractive error. This study intends to preliminarily explore the roles of protein S-nitrosylation of nitric oxide (NO) in the regulation of myopia by detecting the expression of neuronal nitric oxide synthase (nNOS) and downstream S-nitrosylation, using the animal model of lens-induced myopia (LIM) in mice. Methods. The 3-week-old C57BL/6 J mice were divided into three groups: group I, lens-induced 0-week group (take eyeballs at the age of 3 weeks); group II, self-control eyes of experimental group (take eyeballs at the age of 7 weeks); and group III, lens-induced 4-week group (take eyeballs at the age of 7 weeks). The diopter and axial length of each group were measured by streak retinoscopes and optical coherence tomography (OCT) before and after model establishment. The protein expressions and locations of nNOS and S-nitrosylated proteins (PSNOs) were measured by western blot and immunofluorescence staining. Site-specific proteomic for protein S-nitrolysation was used to detect the existence and location of S-nitrosylation proteins in the retina of myopic and nonmyopic mice. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and motif enrichment analyses were performed. The differential sites were analyzed by GO, KEGG, and motif. Irreversible biotinylation procedure combined with protein purification and western blot was used to detect the protein expression of α-enolase (ENO1), a key player in the hypoxia-related signal pathway. Results. The expressions of nNOS and PSNOs were significantly lower in the retina of experimental eyes than that in self-control eyes and 3-week-old baseline group. A total of 595 S-nitrosylated proteins, 709 S-nitrosylated peptides, and 708 S-nitrosylated sites were identified by site-specific S-nitrolysation proteomics in the retina of myopic and control eyes. A total of 19 differentiation loci were screened, of which 13 sites were downregulated and 6 sites were upregulated in experimental eyes compared with the self-control group. Specifically, the expression of SNO-ENO1 was significantly lower in the retina of experimental eyes than that in self-control eyes and 3-week-old baseline group. Conclusion. LIM induces the decrease of nNOS and PSNO protein levels in the retina of myopic mice. NO-mediated nonclassical protein S-nitrosylation modification may play an important role in the regulation of lens-induced myopia. ENO1 may be a key factor in the regulation of S-nitrosylation modification of myopia.
Collapse
|
8
|
Mass spectrometry analysis of S-nitrosylation of proteins and its role in cancer, cardiovascular and neurodegenerative diseases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
10
|
Kim J, Islam SMT, Qiao F, Singh AK, Khan M, Won J, Singh I. Regulation of B cell functions by S-nitrosoglutathione in the EAE model. Redox Biol 2021; 45:102053. [PMID: 34175668 PMCID: PMC8246645 DOI: 10.1016/j.redox.2021.102053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
B cells play both protective and pathogenic roles in T cell-mediated autoimmune diseases by releasing regulatory vs. pathogenic cytokines. B cell-depleting therapy has been attempted in various autoimmune diseases but its efficacy varies and can even worsen symptoms due to depletion of B cells releasing regulatory cytokines along with B cells releasing pathogenic cytokines. Here, we report that S-nitrosoglutathione (GSNO) and GSNO-reductase (GSNOR) inhibitor N6022 drive upregulation of regulatory cytokine (IL-10) and downregulation of pathogenic effector cytokine (IL-6) in B cells and protected against the neuroinflammatory disease of experimental autoimmune encephalomyelitis (EAE). In human and mouse B cells, the GSNO/N6022-mediated regulation of IL-10 vs. IL-6 was not limited to regulatory B cells but also to a broad range of B cell subsets and antibody-secreting cells. Adoptive transfer of B cells from N6022 treated EAE mice or EAE mice deficient in the GSNOR gene also regulated T cell balance (Treg > Th17) and reduced clinical disease in the recipient EAE mice. The data presented here provide evidence of the role of GSNO in shifting B cell immune balance (IL-10 > IL-6) and the preclinical relevance of N6022, a first-in-class drug targeting GSNOR with proven human safety, as therapeutics for autoimmune disorders including multiple sclerosis. GSNO and GSNOR inhibitor (N6022) upregulates IL-10 and downregulates IL-6 in B cells. GSNO/N6022-mediated cytokine regulation occurs in a broad range of B cell subsets. GSNO/N6022 treatment ameliorates autoimmune disease of EAE. B cell transfer from N6022-treated or GSNOR null EAE mice to EAE mice shifts T cell balance (Treg > Th17) and alleviates EAE. The data provide the first insight into the therapeutic potential of GSNO/N6022 targeting B cells in multiple sclerosis.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
11
|
van Gelder CAGH, Altelaar M. Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Mol Cell Proteomics 2021; 20:100087. [PMID: 33933679 PMCID: PMC8167277 DOI: 10.1016/j.mcpro.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the most fascinating features of the brain is its ability to adapt to its surroundings. Synaptic plasticity, the dynamic mechanism of functional and structural alterations in synaptic strength, is essential for brain functioning and underlies a variety of processes such as learning and memory. Although the molecular mechanisms underlying such rapid plasticity are not fully understood, a consensus exists on the important role of proteins. The study of these neuronal proteins using neuroproteomics has increased rapidly in the last decades, and advancements in MS-based proteomics have broadened our understanding of neuroplasticity exponentially. In this review, we discuss the trends in MS-based neuroproteomics for the study of synaptic protein-protein interactions and protein signaling dynamics, with a focus on sample types, different labeling and enrichment approaches, and data analysis and interpretation. We highlight studies from the last 5 years, with a focus on synapse structure, composition, functioning, or signaling and finally discuss some recent developments that could further advance the field of neuroproteomics.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Wang P, Zhang Q, Li S, Cheng B, Xue H, Wei Z, Shao T, Liu ZX, Cheng H, Wang Z. iCysMod: an integrative database for protein cysteine modifications in eukaryotes. Brief Bioinform 2021; 22:6066620. [PMID: 33406221 DOI: 10.1093/bib/bbaa400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023] Open
Abstract
As important post-translational modifications, protein cysteine modifications (PCMs) occurring at cysteine thiol group play critical roles in the regulation of various biological processes in eukaryotes. Due to the rapid advancement of high-throughput proteomics technologies, a large number of PCM events have been identified but remain to be curated. Thus, an integrated resource of eukaryotic PCMs will be useful for the research community. In this work, we developed an integrative database for protein cysteine modifications in eukaryotes (iCysMod), which curated and hosted 108 030 PCM events for 85 747 experimentally identified sites on 31 483 proteins from 48 eukaryotes for 8 types of PCMs, including oxidation, S-nitrosylation (-SNO), S-glutathionylation (-SSG), disulfide formation (-SSR), S-sulfhydration (-SSH), S-sulfenylation (-SOH), S-sulfinylation (-SO2H) and S-palmitoylation (-S-palm). Then, browse and search options were provided for accessing the dataset, while various detailed information about the PCM events was well organized for visualization. With human dataset in iCysMod, the sequence features around the cysteine modification sites for each PCM type were analyzed, and the results indicated that various types of PCMs presented distinct sequence recognition preferences. Moreover, different PCMs can crosstalk with each other to synergistically orchestrate specific biological processes, and 37 841 PCM events involved in 119 types of PCM co-occurrences at the same cysteine residues were finally obtained. Taken together, we anticipate that the database of iCysMod would provide a useful resource for eukaryotic PCMs to facilitate related researches, while the online service is freely available at http://icysmod.omicsbio.info.
Collapse
Affiliation(s)
- Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shihua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ben Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Han Xue
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
eNOS-dependent S-nitrosylation of the NF-κB subunit p65 has neuroprotective effects. Cell Death Dis 2021; 12:4. [PMID: 33414434 PMCID: PMC7790835 DOI: 10.1038/s41419-020-03338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.
Collapse
|
14
|
Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. J Proteomics 2020; 231:104020. [PMID: 33096306 DOI: 10.1016/j.jprot.2020.104020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Trypanosoma cruzi trypomastigotes adhere to extracellular matrix (ECM) to invade mammalian host cells regulating intracellular signaling pathways. Herein, resin-assisted enrichment of thiols combined with mass spectrometry were employed to map site-specific S-nitrosylated (SNO) proteins from T. cruzi trypomastigotes incubated (MTy) or not (Ty) with ECM. We confirmed the reduction of S-nitrosylation upon incubation with ECM, associated with a rewiring of the subcellular distribution and intracellular signaling pathways. Forty, 248 and 85 SNO-peptides were identified only in MTy, Ty or in both conditions, respectively. SNO proteins were enriched in ribosome, transport, carbohydrate and lipid metabolisms. Nitrosylation of histones H2B and H3 on Cys64 and Cys126, respectively, is described. Protein-protein interaction networks revealed ribosomal proteins, proteins involved in carbon and fatty acid metabolism to be among the enriched protein complexes. Kinases, phosphatases and enzymes involved in the metabolism of carbohydrates, lipids and amino acids were identified as nitrosylated and phosphorylated, suggesting a post-translational modifications crosstalk. In silico mapping of nitric oxide synthase (NOS) genes, previously uncharacterized, matched to four putative T. cruzi proteins expressing C-terminal NOS domain. Our results provide the first site-specific characterization of S-nitrosylated proteins in T. cruzi and their modulation upon ECM incubation before infection of the mammalian hosts. SIGNIFICANCE: Protein S-nitrosylation represents a major molecular mechanism for signal transduction by nitric oxide. We present for the first time a proteomic profile of S-nitrosylated proteins from infective forms of T. cruzi, showing a decrease in SNO proteins after incubation of the parasite with the extracellular matrix, a necessary step for the parasite invasion of the host mammalian cells. We also show for the first time nitrosylation of H2B (Cys64) and H3 (Cys126) histones, sites not conserved in higher eukaryotic cells, and suggest that some specific histone isoforms are sensitive to NO signaling. S-nitrosylation in H2B and H3 histones are more abundant in MTy. Moreover, proteins involved in translation, glycolytic pathway and fatty acid metabolism are enriched in the present dataset. Comparison of the SNO proteome and the phosphoproteome, obtained previously under the same experimental conditions, show that most of the proteins sharing both modifications are involved in metabolic pathways, transport and ribosome function. The data suggest that both PTMs are involved in reprogramming the metabolism of T. cruzi in response to environmental changes. Although NO synthesis was detected in T. cruzi, the identification of NOS remains elusive. Analysis in silico showed two genes similar in domains to NADPH-dependent cytochrome-P450 reductase and two putative oxidoreductases, but no oxygenase domain of NOS was mapped in the T. cruzi genome. It is tempting to speculate that NO synthase-like from T. cruzi and its early NO-mediated pathways triggered in response to host interaction constitute potential diagnostic and therapeutic targets.
Collapse
|
15
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
16
|
Patella F, Cutler DF. RGS4 controls secretion of von Willebrand factor to the subendothelial matrix. J Cell Sci 2020; 133:jcs247312. [PMID: 32576664 DOI: 10.1242/jcs.247312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
The haemostatic protein von Willebrand factor (VWF) exists in plasma and subendothelial pools. The plasma pools are secreted from endothelial storage granules, Weibel-Palade bodies (WPBs), by basal secretion with a contribution from agonist-stimulated secretion, and the subendothelial pool is secreted into the subendothelial matrix by a constitutive pathway not involving WPBs. We set out to determine whether the constitutive release of subendothelial VWF is actually regulated and, if so, what functional consequences this might have. Constitutive VWF secretion can be increased by a range of factors, including changes in VWF expression, levels of TNF and other environmental cues. An RNA-seq analysis revealed that expression of regulator of G protein signalling 4 (RGS4) was reduced in endothelial cells (HUVECs) grown under these conditions. siRNA RGS4 treatment of HUVECs increased constitutive basolateral secretion of VWF, probably by affecting the anterograde secretory pathway. In a simple model of endothelial damage, we show that RGS4-silenced cells increased platelet recruitment onto the subendothelial matrix under flow. These results show that changes in RGS4 expression alter levels of subendothelial VWF, affecting platelet recruitment. This introduces a novel control over VWF function.
Collapse
Affiliation(s)
- Francesca Patella
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Daniel F Cutler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
17
|
Nakamura T, Lipton SA. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxid Redox Signal 2020; 32:817-833. [PMID: 31657228 PMCID: PMC7074890 DOI: 10.1089/ars.2019.7916] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Significance: Most brains affected by neurodegenerative diseases manifest mitochondrial dysfunction as well as elevated production of reactive oxygen species and reactive nitrogen species (RNS), contributing to synapse loss and neuronal injury. Recent Advances: Excessive production of RNS triggers nitric oxide (NO)-mediated post-translational modifications of proteins, such as S-nitrosylation of cysteine residues and nitration of tyrosine residues. Proteins thus affected impair mitochondrial metabolism, mitochondrial dynamics, and mitophagy in the nervous system. Critical Issues: Identification and better characterization of underlying molecular mechanisms for NO-mediated mitochondrial dysfunction will provide important insights into the pathogenesis of neurodegenerative disorders. In this review, we highlight recent discoveries concerning S-nitrosylation of the tricarboxylic acid cycle enzymes, mitochondrial fission GTPase dynamin-related protein 1, and mitophagy-related proteins Parkin and phosphatase and tensin homolog-induced putative kinase protein 1. We delineate signaling cascades affected by pathologically S-nitrosylated proteins that diminish mitochondrial function in neurodegenerative diseases. Future Directions: Further elucidation of the pathological events resulting from aberrant S-nitrosothiol or nitrotyrosine formation may lead to new therapeutic approaches to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Address correspondence to: Dr. Tomohiro Nakamura, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California
- Dr. Stuart A. Lipton, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
18
|
Seth D, Hausladen A, Stamler JS. Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress. Antioxid Redox Signal 2020; 32:803-816. [PMID: 31691575 PMCID: PMC7074925 DOI: 10.1089/ars.2019.7921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: S-nitrosylation, the post-translational modification by nitric oxide (NO) to form S-nitrosothiols (SNOs), regulates diverse aspects of cellular function, and aberrant S-nitrosylation (nitrosative stress) is implicated in disease, from neurodegeneration to cancer. Essential roles for S-nitrosylation have been demonstrated in microbes, plants, and animals; notably, bacteria have often served as model systems for elucidation of general principles. Recent Advances: Recent conceptual advances include the idea of a molecular code through which proteins sense and differentiate S-nitrosothiol (SNO) from alternative oxidative modifications, providing the basis for specificity in SNO signaling. In Escherichia coli, S-nitrosylation relies on an enzymatic cascade that regulates, and is regulated by, the transcription factor OxyR under anaerobic conditions. S-nitrosylated OxyR activates an anaerobic regulon of >100 genes that encode for enzymes that both mediate S-nitrosylation and protect against nitrosative stress. Critical Issues: Mitochondria originated from endosymbiotic bacteria and generate NO under hypoxic conditions, analogous to conditions in E. coli. Nitrosative stress in mitochondria has been implicated in Alzheimer's and Parkinson's disease, among others. Many proteins that are S-nitrosylated in mitochondria are also S-nitrosylated in E. coli. Insights into enzymatic regulation of S-nitrosylation in E. coli may inform the identification of disease-relevant regulatory machinery in mammalian systems. Future Directions: Using E. coli as a model system, in-depth analysis of the anaerobic response controlled by OxyR may lead to the identification of enzymatic mechanisms regulating S-nitrosylation in particular, and hypoxic signaling more generally, providing novel insights into analogous mechanisms in mammalian cells and within dysfunctional mitochondria that characterize neurodegenerative diseases.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
19
|
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang Z, Huang H, Zhou W, Wang Y, Hu J. Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis. Cell Death Dis 2019; 10:914. [PMID: 31801946 PMCID: PMC6892852 DOI: 10.1038/s41419-019-2144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
NO (nitric oxide)-mediated protein S-nitrosylation has been established as one major signaling mechanism underlying cancer initiation and development, but its roles in PDAC (pancreatic ductal adenocarcinoma) pathogenesis still remain largely unexplored. In this study, we identified 585 unique S-nitrosylation sites among 434 proteins in PDAC patients and PANC-1 cell line by a site-specific proteomics. Larger number of S-nitrosylated proteins were identified in PDAC tissues and PANC-1 cells than adjacent non-cancerous tissues. These S-nitrosylated proteins are significantly enriched in a multitude of biological processes associated with tumorigenesis, including carbohydrate metabolism, cytoskeleton regulation, cell cycle, focal adhesion, adherent junctions, and cell migration. Components of the pancreatic cancer pathway were extensively S-nitrosylated, such as v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) and Signal transducer and activator of transcription 3 (STAT3). Moreover, NOS (NO synthase) inhibitor significantly repressed STAT3 S-nitrosylation in PANC-1 cells, which caused significant increase of STAT3 phosphorylation and PANC-1 cell viability, suggesting important roles of protein S-nitrosylation in PDAC development. These results revealed extensive protein S-nitrosylation associated with PDAC pathogenesis, which provided a basis for protein modification-based cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
- Clinical Laboratory of Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Yunfeng Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of Histology and Embryology, School of Pre-clinical Medicine, Xinjiang Medical University, Urumqi, 830011, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Palczewski MB, Petraitis H, Thomas DD. Nitric oxide is an epigenetic regulator of histone post-translational modifications in cancer. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|