1
|
Callahan A, Chua XY, Griffith AA, Hildebrandt T, Fu G, Hu M, Wen R, Salomon AR. Deep phosphotyrosine characterisation of primary murine T cells using broad spectrum optimisation of selective triggering. Proteomics 2024; 24:e2400106. [PMID: 39091061 PMCID: PMC11684461 DOI: 10.1002/pmic.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Sequencing the tyrosine phosphoproteome using MS-based proteomics is challenging due to the low abundance of tyrosine phosphorylation in cells, a challenge compounded in scarce samples like primary cells or clinical samples. The broad-spectrum optimisation of selective triggering (BOOST) method was recently developed to increase phosphotyrosine sequencing in low protein input samples by leveraging tandem mass tags (TMT), phosphotyrosine enrichment, and a phosphotyrosine-loaded carrier channel. Here, we demonstrate the viability of BOOST in T cell receptor (TCR)-stimulated primary murine T cells by benchmarking the accuracy and precision of the BOOST method and discerning significant alterations in the phosphoproteome associated with receptor stimulation. Using 1 mg of protein input (about 20 million cells) and BOOST, we identify and precisely quantify more than 2000 unique pY sites compared to about 300 unique pY sites in non-BOOST control samples. We show that although replicate variation increases when using the BOOST method, BOOST does not jeopardise quantitative precision or the ability to determine statistical significance for peptides measured in triplicate. Many pY previously uncharacterised sites on important T cell signalling proteins are quantified using BOOST, and we identify new TCR responsive pY sites observable only with BOOST. Finally, we determine that the phase-spectrum deconvolution method on Orbitrap instruments can impair pY quantitation in BOOST experiments.
Collapse
Affiliation(s)
- Aurora Callahan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903
| | - Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02903
| | - Alijah A. Griffith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903
| | - Tobias Hildebrandt
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02903
| | - Guoping Fu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226
| | - Mengzhou Hu
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02903
| | - Renren Wen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, 53226
| | - Arthur R. Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02903
| |
Collapse
|
2
|
Brownlie RJ, Salmond RJ. Regulation of T Cell Signaling and Immune Responses by PTPN22. Mol Cell Biol 2024; 44:443-452. [PMID: 39039893 PMCID: PMC11486154 DOI: 10.1080/10985549.2024.2378810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
Collapse
|
3
|
Zhuang C, Yang S, Gonzalez CG, Ainsworth RI, Li S, Kobayashi MT, Wierzbicki I, Rossitto LAM, Wen Y, Peti W, Stanford SM, Gonzalez DJ, Murali R, Santelli E, Bottini N. A novel gain-of-function phosphorylation site modulates PTPN22 inhibition of TCR signaling. J Biol Chem 2024; 300:107393. [PMID: 38777143 PMCID: PMC11237943 DOI: 10.1016/j.jbc.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.
Collapse
Affiliation(s)
- Chuling Zhuang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Richard I Ainsworth
- Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, California, USA
| | - Masumi Takayama Kobayashi
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Igor Wierzbicki
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Leigh-Ana M Rossitto
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Yutao Wen
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Stephanie M Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, California, USA; Department of Medicine, Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
4
|
Chitre AS, Wu P, Walters BT, Wang X, Bouyssou A, Du X, Lehoux I, Fong R, Arata A, Chan J, Wang D, Franke Y, Grogan JL, Mellman I, Comps-Agrar L, Wang W. HPK1 citron homology domain regulates phosphorylation of SLP76 and modulates kinase domain interaction dynamics. Nat Commun 2024; 15:3725. [PMID: 38697971 PMCID: PMC11066036 DOI: 10.1038/s41467-024-48014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed β-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.
Collapse
Affiliation(s)
| | - Ping Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangdan Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangnan Du
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Isabelle Lehoux
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Rina Fong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alisa Arata
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Die Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yvonne Franke
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jane L Grogan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- GraphiteBio, Incl., 1400 Sierra Point Parkway, Brisbane, CA, 94005, USA
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Weiru Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
5
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
6
|
Liu M, Xia N, Zha L, Yang H, Gu M, Hao Z, Zhu X, Li N, He J, Tang T, Nie S, Zhang M, Lv B, Lu Y, Jiao J, Li J, Cheng X. Increased expression of protein tyrosine phosphatase nonreceptor type 22 alters early T-cell receptor signaling and differentiation of CD4 + T cells in chronic heart failure. FASEB J 2024; 38:e23386. [PMID: 38112398 DOI: 10.1096/fj.202300663r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
CD4+ T-cell counts are increased and activated in patients with chronic heart failure (CHF), whereas regulatory T-cell (Treg) expansion is inhibited, probably due to aberrant T-cell receptor (TCR) signaling. TCR signaling is affected by protein tyrosine phosphatase nonreceptor type 22 (PTPN22) in autoimmune disorders, but whether PTPN22 influences TCR signaling in CHF remains unclear. This observational case-control study included 45 patients with CHF [18 patients with ischemic heart failure versus 27 patients with nonischemic heart failure (NIHF)] and 16 non-CHF controls. We used flow cytometry to detect PTPN22 expression, tyrosine phosphorylation levels, zeta-chain-associated protein kinase, 70 kDa (ZAP-70) inhibitory residue tyrosine 292 and 319 phosphorylation levels, and CD4+ T cell and Treg proportions. We conducted lentivirus-mediated PTPN22 RNA silencing in isolated CD4+ T cells. PTPN22 expression increased in the CD4+ T cells of patients with CHF compared with that in controls. PTPN22 expression was positively correlated with left ventricular end-diastolic diameter and type B natriuretic peptide but negatively correlated with left ventricular ejection fraction in the NIHF group. ZAP-70 tyrosine 292 phosphorylation was decreased, which correlated positively with PTPN22 overexpression in patients with NIHF and promoted early TCR signaling. PTPN22 silencing induced Treg differentiation in CD4+ T cells from patients with CHF, which might account for the reduced frequency of peripheral Tregs in these patients. PTPN22 is a potent immunomodulator in CHF and might play an essential role in the development of CHF by promoting early TCR signaling and impairing Treg differentiation from CD4+ T cells.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyi Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muyang Gu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiheng Hao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Ono E, Lenief V, Lefevre MA, Cuzin R, Guironnet-Paquet A, Mosnier A, Nosbaum A, Nicolas JF, Vocanson M. Topical corticosteroids inhibit allergic skin inflammation but are ineffective in impeding the formation and expansion of resident memory T cells. Allergy 2024; 79:52-64. [PMID: 37539746 DOI: 10.1111/all.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Tissue-resident memory T (TRM ) cells are detrimental in allergic contact dermatitis (ACD), in which they contribute to the chronicity and severity of the disease. METHODS We assessed the impact of a standard topical corticosteroid (TCS) treatment, triamcinolone acetonide (TA), on the formation, maintenance and reactivation of epidermal TRM cells in a preclinical model of ACD to 2,4-dinitrofluorobenzene. TA 0.01% was applied at different time points of ACD response and we monitored skin inflammation and tracked CD8+ CD69+ CD103+ TRM by flow cytometry and RNA sequencing. RESULTS The impact of TA on TRM formation depended on treatment regimen: (i) in a preventive mode, that is, in sensitized mice before challenge, TA transiently inhibited the infiltration of effector T cells and the accumulation of TRM upon hapten challenge. In contrast, (ii) in a curative mode, that is, at the peak of the ACD response, TA blocked skin inflammation but failed to prevent the formation of TRM . Finally, (iii) in a proactive mode, that is, on previous eczema lesions, TA had no effect on the survival of skin TRM , but transiently inhibited their reactivation program upon allergen reexposure. Indeed, specific TRM progressively regained proliferative functions upon TA discontinuation and expanded in the tissue, leading to exaggerated iterative responses. Interestingly, TRM re-expansion correlated with the decreased clearance of hapten moieties from the skin induced by repeated TA applications. CONCLUSIONS Our results demonstrate that TCS successfully treat ACD inflammation, but are mostly ineffective in impeding the formation and expansion of allergen-specific TRM , which certainly restricts the induction of lasting tolerance in patients with chronic dermatitis.
Collapse
Affiliation(s)
- Emi Ono
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Vanina Lenief
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Marine-Alexia Lefevre
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Roxane Cuzin
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Aurélie Guironnet-Paquet
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Apheresis Unit, Hôpital Lyon Sud, Pierre Bénite, France
| | - Amandine Mosnier
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Audrey Nosbaum
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | - Jean-Francois Nicolas
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | - Marc Vocanson
- CIRI-Centre International de Recherche en Infectiologie, INSERM, U1111, Université Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| |
Collapse
|
8
|
Abstract
Systemic lupus erythematosus (SLE) is a severe multisystem autoimmune disease that can cause injury in almost every body system. While considered a classic example of autoimmunity, it is still relatively poorly understood. Treatment with immunosuppressive agents is challenging, as many agents are relatively non-specific, and the underlying disease is characterized by unpredictable flares and remissions. This State of The Art Review provides a comprehensive current summary of systemic lupus erythematosus based on recent literature. In basic and translational science, this summary includes the current state of genetics, epigenetics, differences by ancestry, and updates about the molecular and immunological pathogenesis of systemic lupus erythematosus. In clinical science, the summary includes updates in diagnosis and classification, clinical features and subphenotypes, and current guidelines and strategies for treatment. The paper also provides a comprehensive review of the large number of recent clinical trials in systemic lupus erythematosus. Current knowns and unknowns are presented, and potential directions for the future are suggested. Improved knowledge of immunological pathogenesis and the molecular differences that exist between patients should help to personalize treatment, minimize side effects, and achieve better outcomes in this difficult disease.
Collapse
Affiliation(s)
- Eric F Morand
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Rheumatology, Monash Health, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
9
|
Pasha U, Nisar H, Nisar H, Abid R, Ashraf NM, Sadaf S. Molecular Dynamic Simulations Unravel the Underlying Impact of Missense Mutation in Autoimmunity Gene PTPN22 on Predisposition to Rheumatoid Arthritis. J Interferon Cytokine Res 2023; 43:121-132. [PMID: 36811459 DOI: 10.1089/jir.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Genetic mutations in various proteins have been implicated with increased risk or severity of rheumatoid arthritis (RA) in different population groups. In the present case-control study, we have investigated the risk association of single nucleotide mutations present in some of the highly reported anti-inflammatory proteins and/or cytokines, with RA susceptibility in the Pakistani subjects. The study involves 310 ethnically and demographically similar participants from whom blood samples were taken and processed for DNA extraction. Through extensive data mining, 5 hotspot mutations reported in 4 genes, that is, interleukin (IL)-4 (-590; rs2243250), IL-10 (-592; rs1800872), IL-10 (-1082; rs1800896), PTPN22 (C1858T; rs2476601), and TNFAIP3 (T380G; rs2230926), were selected for RA susceptibility analyses using genotyping assays. The results demonstrated the association of only 2 DNA variants [rs2243250 (odds ratio, OR = 2.025, 95% confidence interval, CI = 1.357-3.002, P = 0.0005 Allelic) and rs2476601 (OR = 4.25, 95% CI = 1.569-11.55, P = 0.004 Allelic)] with RA susceptibility in the local population. The former single nucleotide mutation was nonfunctional, whereas the latter, residing in the exonic region of a linkage-proven autoimmunity gene PTPN22, was involved in R620→W620 substitution. Comparative molecular dynamic simulations and free-energy calculations revealed a radical impact on the geometry/confirmation of key functional moieties in the mutant protein leading to a rather weak binding of W620 variant with the interacting receptor (SRC kinase). The interaction imbalance and binding instabilities provide convincing clues about the insufficient inhibition of T cell activation and/or ineffective clearance of autoimmune clones-a hallmark of several autoimmune disorders. In conclusion, the present research describes the association of 2 hotspot mutations in IL-4 promoter and PTPN22 gene with RA susceptibility in the Pakistani study cohort. It also details how a functional mutation in PTPN22 impacts the overall protein geometry, charge, and/or receptor interactions to contribute to RA susceptibility.
Collapse
Affiliation(s)
- Usman Pasha
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Haseeb Nisar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hajira Nisar
- Emergency and Out Patient Department, Ali Fatima Hospital, Lahore, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Brian BF, Sjaastad FV, Freedman TS. SH3-domain mutations selectively disrupt Csk homodimerization or PTPN22 binding. Sci Rep 2022; 12:5875. [PMID: 35393453 PMCID: PMC8989918 DOI: 10.1038/s41598-022-09589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, e.g., Lck, Fyn, Lyn, Hck, Fgr, Blk, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that mediates autoinhibition. Csk also binds phosphatases, including PTPN12 (PTP-PEST) and immune-cell PTPN22 (LYP/Pep), which dephosphorylate the SFK activation loop to promote autoinhibition. Csk-binding proteins (e.g., CBP/PAG1) oligomerize within membrane microdomains, and high local concentration promotes Csk function. Purified Csk homodimerizes in solution through an interface that overlaps the phosphatase binding footprint. Here we demonstrate that Csk can homodimerize in Jurkat T cells, in competition with PTPN22 binding. We designed SH3-domain mutations in Csk that selectively impair homodimerization (H21I) or PTPN22 binding (K43D) and verified their kinase activity in solution. Disruption of either interaction in cells, however, decreased the negative-regulatory function of Csk. Csk W47A, a substitution previously reported to block PTPN22 binding, had a secondary effect of impairing homodimerization. Csk H21I and K43D will be useful tools for dissecting the protein-specific drivers of autoimmunity mediated by the human polymorphism PTPN22 R620W, which impairs interaction with Csk and with the E3 ubiquitin ligase TRAF3. Future investigations of Csk homodimer activity and phosphatase interactions may reveal new facets of SFK regulation in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- Ben F Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN, 55455, USA.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94170, USA
| | - Frances V Sjaastad
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Cardiac Rhythm Management, Medtronic, Mounds View, MN, 55112, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Arkee T, Hostager BS, Houtman JCD, Bishop GA. TRAF3 in T Cells Restrains Negative Regulators of LAT to Promote TCR/CD28 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 207:322-332. [PMID: 34145060 DOI: 10.4049/jimmunol.2001220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
The adaptor protein TNFR-associated factor 3 (TRAF3) is required for in vivo T cell effector functions and for normal TCR/CD28 signaling. TRAF3-mediated enhancement of TCR function requires engagement of both CD3 and CD28, but the molecular mechanisms underlying how TRAF3 interacts with and impacts TCR/CD28-mediated complexes to enhance their signaling remains an important knowledge gap. We investigated how TRAF3 is recruited to, and regulates, CD28 as a TCR costimulator. Direct association with known signaling motifs in CD28 was dispensable for TRAF3 recruitment; rather, TRAF3 associated with the CD28-interacting protein linker of activated T cells (LAT) in human and mouse T cells. TRAF3-LAT association required the TRAF3 TRAF-C domain and a newly identified TRAF2/3 binding motif in LAT. TRAF3 inhibited function of the LAT-associated negative regulatory protein Dok1, which is phosphorylated at an inhibitory tyrosine residue by the tyrosine kinase breast tumor kinase (Brk/PTK6). TRAF3 regulated Brk activation in T cells, limiting the association of protein tyrosine phosphatase 1B (PTP1B) with the LAT complex. In TRAF3-deficient cells, LAT complex-associated PTP1B was associated with dephosphorylation of Brk at an activating tyrosine residue, potentially reducing its ability to inhibit Dok1. Consistent with these findings, inhibiting PTP1B activity in TRAF3-deficient T cells rescued basal and TCR/CD28-mediated activation of Src family kinases. These results reveal a new mechanism for promotion of TCR/CD28-mediated signaling through restraint of negative regulation of LAT by TRAF3, enhancing the understanding of regulation of the TCR complex.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA.,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA
| | - Bruce S Hostager
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA
| | - Jon C D Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA.,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA; .,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA.,Department of Internal Medicine, The University of Iowa, Iowa City, IA; and.,Iowa City VA Medical Center, Iowa City, IA
| |
Collapse
|
12
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
13
|
Armitage LH, Wallet MA, Mathews CE. Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease. Front Immunol 2021; 12:636618. [PMID: 33717184 PMCID: PMC7946861 DOI: 10.3389/fimmu.2021.636618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) regulates a panoply of leukocyte signaling pathways. A single nucleotide polymorphism (SNP) in PTPN22, rs2476601, is associated with increased risk of Type 1 Diabetes (T1D) and other autoimmune diseases. Over the past decade PTPN22 has been studied intensely in T cell receptor (TCR) and B cell receptor (BCR) signaling. However, the effect of the minor allele on PTPN22 function in TCR signaling is controversial with some reports concluding it has enhanced function and blunts TCR signaling and others reporting it has reduced function and increases TCR signaling. More recently, the core function of PTPN22 as well as functional derangements imparted by the autoimmunity-associated variant allele of PTPN22 have been examined in monocytes, macrophages, dendritic cells, and neutrophils. In this review we will discuss the known functions of PTPN22 in human cells, and we will elaborate on how autoimmunity-associated variants influence these functions across the panoply of immune cells that express PTPN22. Further, we consider currently unresolved questions that require clarification on the role of PTPN22 in immune cell function.
Collapse
Affiliation(s)
- Lucas H. Armitage
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Immuno-Oncology at Century Therapeutics, LLC, Philadelphia, PA, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|