1
|
Wu M, Zhao Y, Yang J, Yang F, Dai Y, Wang Q, Chen C, Chu X. The role of ankyrin repeat-containing proteins in epigenetic and transcriptional regulation. Cell Death Discov 2025; 11:232. [PMID: 40350474 PMCID: PMC12066720 DOI: 10.1038/s41420-025-02519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Ankyrin repeat (AR) motif is one of the most abundant repeat motifs found in eukaryotic proteins. It functions in mediating protein-protein interactions and regulating numerous biological functions. Interestingly, some AR-containing proteins are involved in epigenetic and transcriptional events. Our review aims to characterize the structure and post-translational modification of AR, summarize the prominent role of AR-containing proteins in epigenetic and transcriptional events, emphasizing the crucial functions mediated by AR motifs.
Collapse
Affiliation(s)
- Meijuan Wu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulu Zhao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fangyuan Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yeyang Dai
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Cheng Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| |
Collapse
|
2
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique functions of Runx1 in skeletal muscle maintenance and regeneration are facilitated by an ETS interaction domain. Development 2024; 151:dev202556. [PMID: 39508441 DOI: 10.1242/dev.202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The conserved Runt-related (RUNX) transcription factor family are master regulators of developmental and regenerative processes. Runx1 and Runx2 are expressed in satellite cells (SCs) and in skeletal myotubes. Here, we examined the role of Runx1 in mouse satellite cells to determine the role of Runx1 during muscle differentiation. Conditional deletion of Runx1 in adult SCs negatively impacted self-renewal and impaired skeletal muscle maintenance even though Runx2 expression persisted. Runx1 deletion in C2C12 cells (which retain Runx2 expression) identified unique molecular functions of Runx1 that could not be compensated for by Runx2. The reduced myoblast fusion in vitro caused by Runx1 loss was due in part to ectopic expression of Mef2c, a target repressed by Runx1. Structure-function analysis demonstrated that the ETS-interacting MID/EID region of Runx1, absent from Runx2, is essential for Runx1 myoblast function and for Etv4 binding. Analysis of ChIP-seq datasets from Runx1 (T cells, muscle)- versus Runx2 (preosteoblasts)-dependent tissues identified a composite ETS:RUNX motif enriched in Runx1-dependent tissues. The ETS:RUNX composite motif was enriched in peaks open exclusively in ATAC-seq datasets from wild-type cells compared to ATAC peaks unique to Runx1 knockout cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 in mouse muscle precursor cells.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew R Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Wang M, Yu F, Zhang Y, Li P. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy. Front Immunol 2024; 15:1352484. [PMID: 38444855 PMCID: PMC10912471 DOI: 10.3389/fimmu.2024.1352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Notch signaling pathway is a highly conserved system of cell-to-cell communication that participates in various biological processes, such as stem cell maintenance, cell fate decision, cell proliferation and death during homeostasis and development. Dysregulation of Notch signaling has been associated with many aspects of cancer biology, such as maintenance of cancer stem-like cells (CSCs), cancer cell metabolism, angiogenesis and tumor immunity. Particularly, Notch signaling can regulate antitumor or pro-tumor immune cells within the tumor microenvironment (TME). Currently, Notch signaling has drawn significant attention in the therapeutic development of cancer treatment. In this review, we focus on the role of Notch signaling pathway in remodeling tumor immune microenvironment. We describe the impact of Notch signaling on the efficacy of cancer immunotherapies. Furthermore, we summarize the results of relevant preclinical and clinical trials of Notch-targeted therapeutics and discuss the challenges in their clinical application in cancer therapy. An improved understanding of the involvement of Notch signaling in tumor immunity will open the door to new options in cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Guo Y, Zhang S, Wang D, Heng BC, Deng X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun Signal 2024; 22:24. [PMID: 38195565 PMCID: PMC10777628 DOI: 10.1186/s12964-023-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
6
|
Medina E, Perez DH, Antfolk D, Luca VC. New tricks for an old pathway: emerging Notch-based biotechnologies and therapeutics. Trends Pharmacol Sci 2023; 44:934-948. [PMID: 37891017 PMCID: PMC10841456 DOI: 10.1016/j.tips.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
The Notch pathway regulates a diverse array of cell fate decisions, making it an enticing target in cancer therapy and regenerative medicine. During the early stages of Notch drug development, off-target toxicity precluded the approval of Notch inhibitors for the treatment of cancer. However, recent advances in our understanding of Notch structure and signaling have led to the development of several innovative Notch-based biotechnologies. In addition to new classes of inhibitors, pharmacological Notch activators have been shown to enhance osteogenesis and various aspects of T cell function. Furthermore, the mechanosensitive negative regulatory region (NRR) of the Notch receptor has been converted into synthetic Notch (synNotch) receptors with fully customizable signaling circuits. We review emergent Notch-based compounds, biologics, and cell therapies while highlighting the challenges and opportunities they face on the path to clinical development.
Collapse
Affiliation(s)
- Elliot Medina
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - David H Perez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
7
|
Ferdous AS, Lynch TR, Costa Dos Santos SJ, Kapadia DH, Crittenden SL, Kimble J. LST-1 is a bifunctional regulator that feeds back on Notch-dependent transcription to regulate C. elegans germline stem cells. Proc Natl Acad Sci U S A 2023; 120:e2309964120. [PMID: 37729202 PMCID: PMC10523584 DOI: 10.1073/pnas.2309964120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Notch signaling regulates stem cells across animal phylogeny. C. elegans Notch signaling activates transcription of two genes, lst-1 and sygl-1, that encode potent regulators of germline stem cells. The LST-1 protein regulates stem cells in two distinct ways: It promotes self-renewal posttranscriptionally and also restricts self-renewal by a poorly understood mechanism. Its self-renewal promoting activity resides in its N-terminal region, while its self-renewal restricting activity resides in its C-terminal region and requires the Zn finger. Here, we report that LST-1 limits self-renewal by down-regulating Notch-dependent transcription. We detect LST-1 in the nucleus, in addition to its previously known cytoplasmic localization. LST-1 lowers nascent transcript levels at both lst-1 and sygl-1 loci but not at let-858, a Notch-independent locus. LST-1 also lowers levels of two key components of the Notch activation complex, the LAG-1 DNA binding protein and Notch intracellular domain (NICD). Genetically, an LST-1 Zn finger mutant increases Notch signaling strength in both gain- and loss-of-function GLP-1/Notch receptor mutants. Biochemically, LST-1 co-immunoprecipitates with LAG-1 from nematode extracts, suggesting a direct effect. LST-1 is thus a bifunctional regulator that coordinates posttranscriptional and transcriptional mechanisms in a single protein. This LST-1 bifunctionality relies on its bipartite protein architecture and is bolstered by generation of two LST-1 isoforms, one specialized for Notch downregulation. A conserved theme from worms to human is the coupling of PUF-mediated RNA repression together with Notch feedback in the same protein.
Collapse
Affiliation(s)
- Ahlan S. Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | | | - Deep H. Kapadia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Sarah L. Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
8
|
Treger TD, Lawrence JEG, Anderson ND, Coorens THH, Letunovska A, Abby E, Lee-Six H, Oliver TRW, Al-Saadi R, Tullus K, Morcrette G, Hutchinson JC, Rampling D, Sebire N, Pritchard-Jones K, Young MD, Mitchell TJ, Jones PH, Tran M, Behjati S, Chowdhury T. Targetable NOTCH1 rearrangements in reninoma. Nat Commun 2023; 14:5826. [PMID: 37749094 PMCID: PMC10519988 DOI: 10.1038/s41467-023-41118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.
Collapse
Affiliation(s)
- Taryn D Treger
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | | | - Tim H H Coorens
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Aleksandra Letunovska
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Emilie Abby
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Kjell Tullus
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Guillaume Morcrette
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - J Ciaran Hutchinson
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Dyanne Rampling
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Neil Sebire
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | | | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 OXZ, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, NW3 2QG, UK.
- Faculty of Medical Sciences, Division of Surgery and Interventional Science, University College London, London, NW3 2PS, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Tanzina Chowdhury
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK.
| |
Collapse
|
9
|
Dong Y, Ma G, Hou X, Han Y, Ding Z, Tang W, Chen L, Chen Y, Zhou B, Rao F, Lv K, Du C, Cao H. Kindlin-2 controls angiogenesis through modulating Notch1 signaling. Cell Mol Life Sci 2023; 80:223. [PMID: 37480504 PMCID: PMC11072286 DOI: 10.1007/s00018-023-04866-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaoting Hou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng Rao
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaosheng Lv
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Friedrich T, Ferrante F, Pioger L, Nist A, Stiewe T, Andrau JC, Bartkuhn M, Giaimo BD, Borggrefe T. Notch-dependent and -independent functions of transcription factor RBPJ. Nucleic Acids Res 2022; 50:7925-7937. [PMID: 35848919 PMCID: PMC9371899 DOI: 10.1093/nar/gkac601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Signal transduction pathways often involve transcription factors that promote activation of defined target gene sets. The transcription factor RBPJ is the central player in Notch signaling and either forms an activator complex with the Notch intracellular domain (NICD) or a repressor complex with corepressors like KYOT2/FHL1. The balance between these two antagonizing RBPJ-complexes depends on the activation state of the Notch receptor regulated by cell-to-cell interaction, ligand binding and proteolytic cleavage events. Here, we depleted RBPJ in mature T-cells lacking active Notch signaling and performed RNA-Seq, ChIP-Seq and ATAC-seq analyses. RBPJ depletion leads to upregulation of many Notch target genes. Ectopic expression of NICD1 activates several Notch target genes and enhances RBPJ occupancy. Based on gene expression changes and RBPJ occupancy we define four different clusters, either RBPJ- and/or Notch-regulated genes. Importantly, we identify early (Hes1 and Hey1) and late Notch-responsive genes (IL2ra). Similarly, to RBPJ depletion, interfering with transcriptional repression by squelching with cofactor KYOT2/FHL1, leads to upregulation of Notch target genes. Taken together, RBPJ is not only an essential part of the Notch co-activator complex but also functions as a repressor in a Notch-independent manner.
Collapse
Affiliation(s)
- Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.,Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Léo Pioger
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293 cedex 5, Montpellier, France
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293 cedex 5, Montpellier, France
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany.,Institute for Lung Health, Aulweg 132, 35392 Giessen, Germany
| | - Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
11
|
Katreddi RR, Taroc EZM, Hicks SM, Lin JM, Liu S, Xiang M, Forni PE. Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents. Development 2022; 149:dev200448. [PMID: 35781337 PMCID: PMC9340558 DOI: 10.1242/dev.200448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
The ability of terrestrial vertebrates to find food and mating partners, and to avoid predators, relies on the detection of chemosensory information. Semiochemicals responsible for social and sexual behaviors are detected by chemosensory neurons of the vomeronasal organ (VNO), which transmits information to the accessory olfactory bulb. The vomeronasal sensory epithelium of most mammalian species contains a uniform vomeronasal system; however, rodents and marsupials have developed a more complex binary vomeronasal system, containing vomeronasal sensory neurons (VSNs) expressing receptors of either the V1R or V2R family. In rodents, V1R/apical and V2R/basal VSNs originate from a common pool of progenitors. Using single cell RNA-sequencing, we identified differential expression of Notch1 receptor and Dll4 ligand between the neuronal precursors at the VSN differentiation dichotomy. Our experiments show that Notch signaling is required for effective differentiation of V2R/basal VSNs. In fact, Notch1 loss of function in neuronal progenitors diverts them to the V1R/apical fate, whereas Notch1 gain of function redirects precursors to V2R/basal. Our results indicate that Notch signaling plays a pivotal role in triggering the binary differentiation dichotomy in the VNO of rodents.
Collapse
Affiliation(s)
- Raghu Ram Katreddi
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sawyer M. Hicks
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jennifer M. Lin
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
12
|
Yao MD, Jiang Q, Ma Y, Zhu Y, Zhang QY, Shi ZH, Zhao C, Yan B. Targeting circular RNA-MET for anti-angiogenesis treatment via inhibiting endothelial tip cell specialization. Mol Ther 2022; 30:1252-1264. [PMID: 34999209 PMCID: PMC8899597 DOI: 10.1016/j.ymthe.2022.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022] Open
Abstract
Endothelial tip cell specialization plays an essential role in angiogenesis, which is tightly regulated by the complicated gene regulatory network. Circular RNA (circRNA) is a type of covalently closed non-coding RNA that regulates gene expression in eukaryotes. Here, we report that the levels of circMET expression are significantly upregulated in the retinas of mice with oxygen-induced retinopathy, choroidal neovascularization, and diabetic retinopathy. circMET silencing significantly reduces pathological angiogenesis and inhibits tip cell specialization in vivo. circMET silencing also decreases endothelial migration and sprouting in vitro. Mechanistically, circMET regulates endothelial sprouting and pathological angiogenesis by acting as a scaffold to enhance the interaction between IGF2BP2 and NRARP/ESM1. Clinically, circMET is significantly upregulated in the clinical samples of the patients of diabetic retinopathy. circMET silencing could reduce diabetic vitreous-induced endothelial sprouting and retinal angiogenesis in vivo. Collectively, these data identify a circRNA-mediated mechanism that coordinates tip cell specialization and pathological angiogenesis. circMET silencing is an exploitable therapeutic approach for the treatment of neovascular diseases.
Collapse
Affiliation(s)
- Mu-Di Yao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Ma
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Zhu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ze-Hui Shi
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|
13
|
Moneer J, Siebert S, Krebs S, Cazet J, Prexl A, Pan Q, Juliano C, Böttger A. Differential gene regulation in DAPT-treated Hydra reveals candidate direct Notch signalling targets. J Cell Sci 2021; 134:jcs258768. [PMID: 34346482 PMCID: PMC8353520 DOI: 10.1242/jcs.258768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.
Collapse
Affiliation(s)
- Jasmin Moneer
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stefan Krebs
- Ludwig-Maximilians-University Munich, Gene Center Munich, Feodor-Lynen-Str. 25 81377 Munich, Germany
| | - Jack Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Andrea Prexl
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Qin Pan
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Böttger
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| |
Collapse
|
14
|
Utgés JS, Tsenkov MI, Dietrich NJM, MacGowan SA, Barton GJ. Ankyrin repeats in context with human population variation. PLoS Comput Biol 2021; 17:e1009335. [PMID: 34428215 PMCID: PMC8415598 DOI: 10.1371/journal.pcbi.1009335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ankyrin protein repeats bind to a wide range of substrates and are one of the most common protein motifs in nature. Here, we collate a high-quality alignment of 7,407 ankyrin repeats and examine for the first time, the distribution of human population variants from large-scale sequencing of healthy individuals across this family. Population variants are not randomly distributed across the genome but are constrained by gene essentiality and function. Accordingly, we interpret the population variants in context with evolutionary constraint and structural features including secondary structure, accessibility and protein-protein interactions across 383 three-dimensional structures of ankyrin repeats. We find five positions that are highly conserved across homologues and also depleted in missense variants within the human population. These positions are significantly enriched in intra-domain contacts and so likely to be key for repeat packing. In contrast, a group of evolutionarily divergent positions are found to be depleted in missense variants in human and significantly enriched in protein-protein interactions. Our analysis also suggests the domain has three, not two surfaces, each with different patterns of enrichment in protein-substrate interactions and missense variants. Our findings will be of interest to those studying or engineering ankyrin-repeat containing proteins as well as those interpreting the significance of disease variants.
Collapse
Affiliation(s)
- Javier S. Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maxim I. Tsenkov
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Noah J. M. Dietrich
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Stuart A. MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
15
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
16
|
Abstract
Notch signaling is a conserved system of communication between adjacent cells, influencing numerous cell fate decisions in the development of multicellular organisms. Aberrant signaling is also implicated in many human pathologies. At its core, Notch has a mechanotransduction module that decodes receptor-ligand engagement at the cell surface under force to permit proteolytic cleavage of the receptor, leading to the release of the Notch intracellular domain (NICD). NICD enters the nucleus and acts as a transcriptional effector to regulate expression of Notch-responsive genes. In this article, we review and integrate current understanding of the detailed molecular basis for Notch signal transduction, highlighting quantitative, structural, and dynamic features of this developmentally central signaling mechanism. We discuss the implications of this mechanistic understanding for the functionality of the signaling pathway in different molecular and cellular contexts.
Collapse
Affiliation(s)
- David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
17
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
18
|
Zafir S, Zhou W, Menkhorst E, Santos L, Dimitriadis E. MAML1: a coregulator that alters endometrial epithelial cell adhesive capacity. FERTILITY RESEARCH AND PRACTICE 2021; 7:8. [PMID: 33773601 PMCID: PMC8004388 DOI: 10.1186/s40738-021-00100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Abnormalities in endometrial receptivity has been identified as a major barrier to successful embryo implantation. Endometrial receptivity refers to the conformational and biochemical changes occurring in the endometrial epithelial layer which make it adhesive and receptive to blastocyst attachment. This takes place during the mid-secretory phase of woman's menstrual cycle and is a result of a delicate interplay between numerous hormones, cytokines and other factors. Outside of this window, the endometrium is refractory to an implanting blastocyst. It has been shown that Notch ligands and receptors are dysregulated in the endometrium of infertile women. Mastermind Like Transcriptional Coactivator 1 (MAML1) is a known coactivator of the Notch signaling pathway. This study aimed to determine the role of MAML1 in regulating endometrial receptivity. METHODS The expression and localization of MAML1 in the fertile human endometrium (non-receptive proliferative phase versus receptive mid-secretory phase) were determined by immunohistochemistry. Ishikawa cells were used as an endometrial epithelial model to investigate the functional consequences of MAML1 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. After MAML1 knockdown in Ishikawa cells, the expression of endometrial receptivity markers and Notch dependent and independent pathway members were assessed by qPCR. Two-tailed unpaired or paired student's t-test were used for statistical analysis with a significance threshold of P < 0.05. RESULTS MAML1 was localized in the luminal epithelium, glandular epithelium and stroma of human endometrium and the increased expression identified in the mid-secretory phase was restricted only to the luminal epithelium (P < 0.05). Functional analysis using Ishikawa cells demonstrated that knockdown of MAML1 significantly reduced epithelial adhesive capacity (P < 0.01) to HTR8/SVneo (trophoblast cell line) spheroids compared to control. MAML1 knockdown significantly affected the expression of classical receptivity markers (SPP1, DPP4) and this response was not directly via hormone receptors. The expression level of Hippo pathway target Ankyrin repeat domain-containing protein 1 (ANKRD1) was also affected after MAML1 knockdown in Ishikawa cells. CONCLUSION Our data strongly suggest that MAML1 is involved in regulating the endometrial adhesive capacity and may facilitate embryo attachment, either directly or indirectly through the Notch signaling pathway.
Collapse
Affiliation(s)
- Sadaf Zafir
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Gynaecology Research Centre, Royal Women's Hospital, Level 7, The Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
19
|
Chen GQ, Liao ZM, Liu J, Li F, Huang D, Zhou YD. LncRNA FTX Promotes Colorectal Cancer Cells Migration and Invasion by miRNA-590-5p/RBPJ Axis. Biochem Genet 2021; 59:560-573. [PMID: 33389283 DOI: 10.1007/s10528-020-10017-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal human cancers all over the world. Moreover, it ranks fourth for cancer-related deaths among males. Although many efforts have been made to cure CRC, the effect remains limited. It has been reported that lncRNA five prime to Xist (FTX) was upregulated in CRC. However, the mechanism by which lncRNA FTX regulates the progression of CRC remains largely unknown. In this study, qRT-PCR was performed to detect the expression of FTX, miR-590-5p and Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) in CRC tissues or cells. Protein expression in cells was measured by western blot. MTT assay was used to test the cell viability. Moreover, transwell was performed to examine the cell migration and invasion. Luciferase report assay was performed to verify the relation between miR-590-5p and FTX or RBPJ. It was found that FTX was upregulated in CRC tissues and cells. Knockdown of FTX or overexpression of miR-590-5p can inhibit the proliferation, migration, and invasion of CRC cells. Besides, silencing of FTX could inhibit the expression of migration and invasion-related proteins in CRC cells. Meanwhile, miR-590-5p was the target of FTX, and RBPJ was the direct target of miR-590-5p. Inhibition of miR-590-5p could reverse the inhibitory effect of FTX on the progression of CRC. These findings suggested that knockdown of FTX could inhibit the tumorigenesis of CRC in vitro, which may serve as a potential novel strategy for treatment of CRC.
Collapse
Affiliation(s)
- Guo-Qun Chen
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Zhi-Ming Liao
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Jiao Liu
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Da Huang
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Ya-Dong Zhou
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China.
| |
Collapse
|
20
|
Pan L, Lemieux ME, Thomas T, Rogers JM, Lipper CH, Lee W, Johnson C, Sholl LM, South AP, Marto JA, Adelmant GO, Blacklow SC, Aster JC. IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation. eLife 2020; 9:e58081. [PMID: 32936072 PMCID: PMC7529455 DOI: 10.7554/elife.58081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55α subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.
Collapse
Affiliation(s)
- Li Pan
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | | | - Tom Thomas
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Winston Lee
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Carl Johnson
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Guillaume O Adelmant
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| |
Collapse
|