1
|
Mao DY, Jesse JJ, Shaye DD, Kitajewski J. Chloride intracellular channel (CLIC) protein function in S1P-induced Rac1 activation requires membrane localization of the C-terminus, but not thiol-transferase nor ion channel activities. Front Cell Dev Biol 2025; 13:1565262. [PMID: 40235733 PMCID: PMC11996907 DOI: 10.3389/fcell.2025.1565262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
We have established a novel and evolutionarily-conserved function for chloride intracellular channel proteins (CLICs) in regulating Rho/Rac GTPases downstream of G protein-coupled receptors (GPCRs). Endothelial CLIC1 and CLIC4 are rapidly and transiently re-localized from the cytoplasm to the plasma membrane in response to the GPCR ligand sphingosine-1-phosphate (S1P), and both CLICs are required to activate Rac1 in response to S1P, but how they perform this function remains unknown. Biochemical studies suggest that CLICs act as non-specific ion channels and/or as glutathione-S-transferases, dependent on N-terminal features, in vitro. Here we investigate CLIC functional domains and membrane localization requirements for their function in S1P-mediated Rac1 signaling. Structure-function analyses of CLIC function in endothelial cells demonstrate that CLIC1 and CLIC4-specific functions reside at their C-termini, and that the CLIC4 N-terminus encodes determinants required for S1P-induced re-localization to the plasma membrane but is dispensable for S1P-induced Rac1 activation when the C-terminus is localized to the plasma membrane via a heterologous signal. Our results demonstrate that the postulated ion channel and thiol-transferase activities of CLICs are not required for Rac1 activation and suggests that sequences in the CLIC C-termini are critical for this function. Given the importance of S1P signaling in vascular biology and disease, our work establishes a platform to further our understanding of the membrane-localized proteins required to link GPCR activity to Rho/Rac regulation.
Collapse
Affiliation(s)
- De Yu Mao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jordan J. Jesse
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Graduate Education in Biomedical Sciences program, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel D. Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Faber JE. Genetic determinants of insufficiency of the collateral circulation. J Cereb Blood Flow Metab 2025:271678X251317880. [PMID: 39901795 DOI: 10.1177/0271678x251317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
It has been estimated that approximately two million neurons, sixteen billion synapses and twelve kilometers of axons are lost each minute following anterior large-vessel stroke. The level of collateral blood flow has become recognized as a primary determinant of the pace of this loss and an important factor in clinical decision-making. Many of the topics in this review cover recent developments that have not been reviewed elsewhere. These include that: the number and diameter of collaterals and collateral blood flow vary greatly in the brain and other tissues of healthy individuals; a large percentage of individuals are deficient in collaterals; the underlying mechanism arises primarily from naturally occurring polymorphisms in genes/genetic loci within the pathway that drives collateral formation during development; evidence indicates collateral abundance does not exhibit sexual dimorphism; and that collaterals-besides their function as endogenous bypass vessels-may have a physiological role in optimizing oxygen delivery. Animal and human studies in brain and other tissues, where available, are reviewed. Details of many of the studies are provided so that the strength of the findings and conclusions can be assessed without consulting the original literature. Key questions that remain unanswered and strategies to address them are also discussed.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Mao DY, Jesse JJ, Shaye DD, Kitajewski J. Chloride intracellular channel (CLIC) protein function in S1P-induced Rac1 activation requires membrane localization of the C-terminus, but not thiol-transferase nor ion channel activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634370. [PMID: 39896666 PMCID: PMC11785189 DOI: 10.1101/2025.01.22.634370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We have established a novel and evolutionarily-conserved function for chloride intracellular channel proteins (CLICs) in regulating Rho/Rac GTPases downstream of G protein-coupled receptors (GPCRs). Endothelial CLIC1 and CLIC4 are rapidly and transiently re-localized from the cytoplasm to the plasma membrane in response to the GPCR ligand sphingosine-1-phosphate (S1P), and both CLICs are required to activate Rac1 in response to S1P, but how they perform this function remains unknown. Biochemical studies suggest that CLICs act as non-specific ion channels and/or as glutathione-S-transferases, dependent on N-terminal features, in vitro. Here we investigate CLIC functional domains and membrane localization requirements for their function in S1P-mediated Rac1 signaling. Structure-function analyses of CLIC function in endothelial cells demonstrate that CLIC1 and CLIC4-specific functions reside at their C-termini, and that the CLIC4 N-terminus encodes determinants required for S1P-induced re-localization to the plasma membrane but is dispensable for S1P-induced Rac1 activation when the C-terminus is localized to the plasma membrane via a heterologous signal. Our results demonstrate that the postulated ion channel and thiol-transferase activities of CLICs are not required for Rac1 activation and suggests that sequences in the CLIC C-termini are critical for this function. Given the importance of S1P signaling in vascular biology and disease, our work establishes a platform to further our understanding of the membrane-localized proteins required to link GPCR activity to Rho/Rac regulation.
Collapse
Affiliation(s)
- De Yu Mao
- Department of Physiology and Biophysics, University of Illinois at Chicago
| | - Jordan J. Jesse
- Department of Physiology and Biophysics, University of Illinois at Chicago
- Graduate Education in Biomedical Sciences program, University of Illinois at Chicago
| | - Daniel D. Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago
- Center for Cardiovascular Research, University of Illinois at Chicago
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago
- University of Illinois Cancer Center. 1853 W Polk St. Room 522 (MC 512), Chicago IL 60612
| |
Collapse
|
4
|
Luo J, Wang J, Liu H, Jiang W, Pan L, Huang W, Liu C, Qu X, Liu C, Qin X, Xiang Y. Chloride intracellular channel 4 participates in the regulation of lipopolysaccharide-induced inflammatory responses in human bronchial epithelial cells. Respir Physiol Neurobiol 2024; 327:104303. [PMID: 39029565 DOI: 10.1016/j.resp.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The airway epithelium is located at the interactional boundary between the external and internal environments of the organism and is often exposed to harmful environmental stimuli. Inflammatory response that occurs after airway epithelial stress is the basis of many lung and systemic diseases. Chloride intracellular channel 4 (CLIC4) is abundantly expressed in epithelial cells. The purpose of this study was to investigate whether CLIC4 is involved in the regulation of lipopolysaccharide (LPS)-induced inflammatory response in airway epithelial cells and to clarify its potential mechanism. Our results showed that LPS induced inflammatory response and decreased CLIC4 levels in vivo and in vitro. CLIC4 silencing aggravated the inflammatory response in epithelial cells, while overexpression of CLIC4 combined with LPS exposure significantly decreased the inflammatory response compared with cells exposed to LPS without CLIC4 overexpression. By labeling intracellular chloride ions with chloride fluorescent probe MQAE, we showed that CLIC4 mediated intracellular chloride ion-regulated LPS-induced cellular inflammatory response.
Collapse
Affiliation(s)
- Jinhua Luo
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jia Wang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Wang Jiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lang Pan
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenjie Huang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China
| | - Caixia Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China.
| |
Collapse
|
5
|
Tapia M, Levay K, Tsoulfas P, Park KK. Retrograde AAV-mediated gene modulation reveals chloride intracellular channel proteins as potent regulators of retinal ganglion cell death. Exp Neurol 2024; 377:114810. [PMID: 38714284 PMCID: PMC11660818 DOI: 10.1016/j.expneurol.2024.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Most projection neurons, including retinal ganglion cells (RGCs), undergo cell death after axotomy proximal to the cell body. Specific RGC subtypes, such as ON-OFF direction selective RGCs (ooDSGCs) are particularly vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs) exhibit resilience to axonal injury. Through the application of RNA sequencing and fluorescent in situ hybridization, we show that the expression of chloride intracellular channel protein 1 and 4 (Clic1 and Clic4) are highly increased in the ooDSGCs after axonal injury. Toward determining a gene's role in RGCs, we optimized the utility and efficacy of adenovirus associated virus (AAV)-retro expressing short hairpin RNA (shRNA). Injection of AAV2-retro into the superior colliculus results in efficient shRNA expression in RGCs. Incorporating histone H2B gene fused with mGreenLantern results in bright nuclear reporter expression, thereby enhancing single RGC identification and cell quantitation in live retinas. Lastly, we demonstrate that AAV2-retro mediated knockdown of both Clic1 and Clic4 promotes RGC survival after injury. Our findings establish an integrated use of AAV2-retro-shRNA and real-time fundus imaging and reveal CLICs' contribution to RGC death.
Collapse
Affiliation(s)
- Mary Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, United States of America
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, United States of America
| | - Pantelis Tsoulfas
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, United States of America
| | - Kevin K Park
- Department of Ophthalmology, Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, 5901 Forest Park Rd, Dallas, TX 75235, United States of America.
| |
Collapse
|
6
|
Wang C, He Z. Multi-omics analysis reveals CLIC1 as a therapeutic vulnerability of gliomas. Front Pharmacol 2023; 14:1279370. [PMID: 38027011 PMCID: PMC10663228 DOI: 10.3389/fphar.2023.1279370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Despite advances in comprehending cancer biology, malignant gliomas remain incurable. The present work conducted a multi-omics analysis for investigating the significance of chloride intracellular channel 1 (CLIC1) in gliomas. Methods: Multi-omics data of glioma covering transcriptomics, genomics, DNA methylation and single-cell transcriptomics from multiple public cohorts were enrolled for analyzing CLIC1. In vitro experiments were conducted to measure apoptosis and cell mobility in U251 and U373 glioma cells following transfection of CLIC1 siRNAs. Results: Elevated CLIC1 expression was proven to stably and independently estimate worse survival outcomes. CLIC1 expression was higher in more advanced stage, wild-type IDH and unmethylated MGMT samples. Tumorigenic and anticancer immunity pathways were remarkably enriched in CLIC1-up-regulated tumors. Additionally, CLIC1 was positively linked with cancer-immunity cycle, stromal activation, DNA damage repair and cell cycle. Suppressing CLIC1 resulted in apoptosis and attenuated cell motility of glioma cells. More frequent genomic alterations were found in CLIC1-up-regulated tumors. CLIC1 expression presented a remarkably negative connection to DNA methylation. High CLIC1 expression samples were more sensitive to camptothecin, cisplatin, doxorubicin, erlotinib, paclitaxel, rapamycin, clofarabine, tanespimycin, methotrexate, everolimus, TAK-733, trametinib and AZD8330. Tumors with upregulated CLIC1 presented abundant immune cell infiltration, higher expression of immune-checkpoints and -modulators and similar transcriptome profiling, indicative of well response to immune-checkpoint blockade (ICB). Nevertheless, due to elevated TIDE score, tumors with CLIC1 upregulation appeared to be resistant to ICB. Single-cell analysis unveiled that CLIC1 was expressed ubiquitously in tumor cells and tumor microenvironment. Conclusions: Overall, CLIC1 was a promising treatment vulnerability in glioma.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald LF, Duan P. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res 2023; 102:1376-1386. [PMID: 37735908 DOI: 10.1177/00220345231195765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Y Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zapata RC, Zhang D, Yoon D, Nasamran CA, Chilin-Fuentes DR, Libster A, Chaudry BS, Lopez-Valencia M, Ponnalagu D, Singh H, Petrascheck M, Osborn O. Targeting Clic1 for the treatment of obesity: A novel therapeutic strategy to reduce food intake and body weight. Mol Metab 2023; 76:101794. [PMID: 37604246 PMCID: PMC10480059 DOI: 10.1016/j.molmet.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dongmin Yoon
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Besma S Chaudry
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariela Lopez-Valencia
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Kleinjan ML, Mao DY, Naiche LA, Joshi JC, Gupta A, Jesse JJ, Shaye DD, Mehta D, Kitajewski J. CLIC4 Regulates Endothelial Barrier Control by Mediating PAR1 Signaling via RhoA. Arterioscler Thromb Vasc Biol 2023; 43:1441-1454. [PMID: 37317855 PMCID: PMC10527476 DOI: 10.1161/atvbaha.123.319206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.
Collapse
Affiliation(s)
- Matthew L. Kleinjan
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - De Yu Mao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - L. A. Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jagdish C. Joshi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jordan J. Jesse
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel D. Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
10
|
Xu Z, Zhang Q, Ding C, Wen F, Sun F, Liu Y, Tao C, Yao J. Beneficial Effects of Hordenine on a Model of Ulcerative Colitis. Molecules 2023; 28:molecules28062834. [PMID: 36985809 PMCID: PMC10054341 DOI: 10.3390/molecules28062834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Hordenine, a phenethylamine alkaloid, is found in a variety of plants and exhibits a broad array of biological activities and pharmacological properties, including anti-inflammatory and anti-fibrotic effects. However, the efficacy and underlying mechanisms of hordenine in treating ulcerative colitis (UC) remain unclear. To address this, we examined the therapeutic effects of hordenine on dextran sodium sulphate (DSS)-induced UC by comparing disease activity index (DAI), colon length, secretion of inflammatory factors, and degree of colonic histological lesions across diseased mice that were and were not treated with hordenine. We found that hordenine significantly reduced DAI and levels of pro-inflammatory factors, including interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α), and also alleviated colon tissue oedema, colonic lesions, inflammatory cells infiltration and decreased the number of goblet cells. Moreover, in vitro experiments showed that hordenine protected intestinal epithelial barrier function by increasing the expression of tight junction proteins including ZO-1 and occludin, while also promoting the healing of intestinal mucosa. Using immunohistochemistry and western blotting, we demonstrated that hordenine reduced the expression of sphingosine kinase 1 (SPHK1), sphingosine-1-phosphate receptor 1 (S1PR1), and ras-related C3 botulinum toxin substrate 1 (Rac1), and it inhibited the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in colon tissues. Thus, hordenine appears to be effective in UC treatment owing to pharmacological mechanisms that favor mucosal healing and the inhibition of SPHK-1/S1PR1/STAT3 signaling.
Collapse
Affiliation(s)
- Zhengguang Xu
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Qilian Zhang
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- School of Basic Medicine, Weifang Medical University, Weifang 261000, China
| | - Ce Ding
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Feifei Wen
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Fang Sun
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, China
| | - Yanzhan Liu
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Chunxue Tao
- School of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Jing Yao
- School of Basic Medicine, Jining Medical University, Jining 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Jining 272067, China
| |
Collapse
|
11
|
Chloride Intracellular Channel Protein 1 Expression and Angiogenic Profile of Liver Metastasis of Digestive Origin. Curr Issues Mol Biol 2023; 45:1396-1406. [PMID: 36826036 PMCID: PMC9956008 DOI: 10.3390/cimb45020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is involved in cell migration and metastasis. The histological growth patterns of liver metastasis are as follows: desmoplastic (d-HGP), replacement (r-HGP), pushing (p-HGP), and mixed. The aim of this study was to evaluate the relation between HGP, angiogenesis, and CLIC1 expression. Materials and Methods: A total of 40 cases of primary tumors and their LM: d-HGP (12 cases), r-HGP (13 cases), and p-HGP (15 cases), were evaluated through simple and double immunostaining. CLIC1 assessment was conducted as follows: scores of 0 (less than 10% of positive cells), 1 (10-30%), 2 (30-50%), or 3 (more than 50%) were assigned. Heterogeneous CLIC1 expression was found. CLIC1 in primary tumors correlated with grade G for all cases of LM with a p-HGP (p = 0.004). The CLIC1 score for LMs with an r-HGP correlated with grade G of the corresponding primary tumor (p = 0.027). CLIC1 and CD34+/Ki67+ vessels (p = 0.006) correlated in primary tumors. CLIC1 in primary tumors correlated with CD34+/Ki67+ vessels of LMs with a d HGP (p = 0.024). Conclusions: The CLIC1 score may have prognostic value, mainly for LMs with a p-HGP and r-HGP, and therapeutic value for LMs with a d-HGP.
Collapse
|
12
|
Alzaydi MM, Abdul-Salam VB, Whitwell HJ, Russomanno G, Glynos A, Capece D, Szabadkai G, Wilkins MR, Wojciak-Stothard B. Intracellular Chloride Channels Regulate Endothelial Metabolic Reprogramming in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2023; 68:103-115. [PMID: 36264759 PMCID: PMC9817916 DOI: 10.1165/rcmb.2022-0111oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.
Collapse
Affiliation(s)
- Mai M. Alzaydi
- National Heart and Lung Institute,,National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Vahitha B. Abdul-Salam
- National Heart and Lung Institute,,Centre for Cardiovascular Medicine and Device Innovation, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, and,Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, and
| | - Giusy Russomanno
- National Heart and Lung Institute,,Medical Research Council (MRC) Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Angelos Glynos
- Mitochondrial Biology Unit, Medical Research Council, University of Cambridge, Cambridge, United Kingdom; and
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gyorgy Szabadkai
- Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | |
Collapse
|
13
|
Arena AF, Escudero J, Shaye DD. A metazoan-specific C-terminal motif in EXC-4 and Gα-Rho/Rac signaling regulate cell outgrowth during tubulogenesis in C. elegans. Development 2022; 149:285944. [PMID: 36398726 PMCID: PMC10108608 DOI: 10.1242/dev.200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Chloride intracellular channels (CLICs) are conserved proteins for which the cellular and molecular functions remain mysterious. An important insight into CLIC function came from the discovery that Caenorhabditis elegans EXC-4/CLIC regulates morphogenesis of the excretory canal (ExCa) cell, a single-cell tube. Subsequent work showed that mammalian CLICs regulate vascular development and angiogenesis, and human CLIC1 can rescue exc-4 mutants, suggesting conserved function in biological tube formation (tubulogenesis) and maintenance. However, the cell behaviors and signaling pathways regulated by EXC-4/CLICs during tubulogenesis in vivo remain largely unknown. We report a new exc-4 mutation, affecting a C-terminal residue conserved in virtually all metazoan CLICs, that reveals a specific role for EXC-4 in ExCa outgrowth. Cell culture studies suggest a function for CLICs in heterotrimeric G protein (Gα/β/γ)-Rho/Rac signaling, and Rho-family GTPases are common regulators of cell outgrowth. Using our new exc-4 mutant, we describe a previously unknown function for Gα-encoding genes (gpa-12/Gα12/13, gpa-7/Gαi, egl-30/Gαq and gsa-1/Gαs), ced-10/Rac and mig-2/RhoG in EXC-4-mediated ExCa outgrowth. Our results demonstrate that EXC-4/CLICs are primordial players in Gα-Rho/Rac-signaling, a pathway that is crucial for tubulogenesis in C. elegans and in vascular development.
Collapse
Affiliation(s)
- Anthony F Arena
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA.,Graduate Education in Biomedical Sciences program, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| | - Julianna Escudero
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| | - Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA.,Center for Cardiovascular Research, University of Illinois at Chicago - College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
14
|
The Mutually Mediated Chloride Intracellular Channel Protein 1 (CLIC1) Relationship between Malignant Cells and Tumor Blood Vessel Endothelium Exhibits a Significant Impact on Tumor Angiogenesis, Progression, and Metastasis in Clear Cell Renal Cell Carcinoma (ccRCC). Cancers (Basel) 2022; 14:cancers14235981. [PMID: 36497464 PMCID: PMC9740861 DOI: 10.3390/cancers14235981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Overexpression of chloride intracellular channel protein 1 (CLIC1) in tumor cells has been confirmed, but it has received less attention in the tumor blood vessel endothelium. Aim: The assessment of CLIC1 expression in ccRCC tumor blood vessels and its relationship with TNM parameters and tumor cell CLIC1 expression. Methods: CLIC1 immunostaining in ccRCC was evaluated in 50 cases in both malignant cells and tumor blood vessels (CLIC1 microvessel density-CLIC1-MVD) and was correlated with TNM staging parameters. Results: CLIC1-MVD was observed in approximately 65% of cases, and CLIC1 co-localization in both tumor and endothelial cells was observed in 59% of cases. ccRCC was classified into four groups (Classes 0−3) based on the percentage of positive tumor cells, with each group including sub-groups defined by CLIC1 expression in the endothelium. Class 3 (60−100% positive tumor cells) had the highest CLIC1-MVD, with an impact on T and M parameters (p value = 0.007 for T, and p value = 0.006 for M). For cases with CLIC1 intracellular translocation, there was a strong correlation between CLIC1-MVD and M (p value < 0.001). Conclusions: Co-expression of ccRCC tumor and endothelial cells promotes tumor progression and metastasis and should be investigated further as a potential therapeutic target for ccRCC and other human malignancies.
Collapse
|
15
|
Ozaki S, Mikami K, Kunieda T, Tanaka J. Chloride Intracellular Channel Proteins (CLICs) and Malignant Tumor Progression: A Focus on the Preventive Role of CLIC2 in Invasion and Metastasis. Cancers (Basel) 2022; 14:cancers14194890. [PMID: 36230813 PMCID: PMC9562003 DOI: 10.3390/cancers14194890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Although chloride intracellular channel proteins (CLICs) have been identified as ion channel proteins, their true functions are still elusive. Recent in silico analyses show that CLICs may be prognostic markers in cancer. This review focuses on CLIC2 that plays preventive roles in malignant cell invasion and metastasis. CLIC2 is secreted extracellularly and binds to matrix metalloproteinase 14 (MMP14), while inhibiting its activity. As a result, CLIC2 may contribute to the development/maintenance of junctions between blood vessel endothelial cells and the inhibition of invasion and metastasis of tumor cells. CLIC2 may be a novel therapeutic target for malignancies. Abstract CLICs are the dimorphic protein present in both soluble and membrane fractions. As an integral membrane protein, CLICs potentially possess ion channel activity. However, it is not fully clarified what kinds of roles CLICs play in physiological and pathological conditions. In vertebrates, CLICs are classified into six classes: CLIC1, 2, 3, 4, 5, and 6. Recently, in silico analyses have revealed that the expression level of CLICs may have prognostic significance in cancer. In this review, we focus on CLIC2, which has received less attention than other CLICs, and discuss its role in the metastasis and invasion of malignant tumor cells. CLIC2 is expressed at higher levels in benign tumors than in malignant ones, most likely preventing tumor cell invasion into surrounding tissues. CLIC2 is also expressed in the vascular endothelial cells of normal tissues and maintains their intercellular adhesive junctions, presumably suppressing the hematogenous metastasis of malignant tumor cells. Surprisingly, CLIC2 is localized in secretory granules and secreted into the extracellular milieu. Secreted CLIC2 binds to MMP14 and inhibits its activity, leading to suppressed MMP2 activity. CLIC4, on the other hand, promotes MMP14 activity. These findings challenge the assumption that CLICs are ion channels, implying that they could be potential new targets for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Saya Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita 564-8565, Japan
- Correspondence: (S.O.); (J.T.)
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Correspondence: (S.O.); (J.T.)
| |
Collapse
|
16
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 2022; 52:102288. [PMID: 35325804 PMCID: PMC8938627 DOI: 10.1016/j.redox.2022.102288] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury. Empagliflozin reduces I/R-induced microvascular damage. Empagliflozin suppresses I/R-induced endothelial cell damage. Empagliflozin activates FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Ablation of FUNDC1 or AMPKα1 abolishes the protective effects of empagliflozin against I/R-induced microvascular damage.
Collapse
|
17
|
Wasson CW, Caballero-Ruiz B, Gillespie J, Derrett-Smith E, Mankouri J, Denton CP, Canettieri G, Riobo-Del Galdo NA, Del Galdo F. Induction of Pro-Fibrotic CLIC4 in Dermal Fibroblasts by TGF-β/Wnt3a Is Mediated by GLI2 Upregulation. Cells 2022; 11:cells11030530. [PMID: 35159339 PMCID: PMC8834396 DOI: 10.3390/cells11030530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a recently discovered driver of fibroblast activation in Scleroderma (SSc) and cancer-associated fibroblasts (CAF). CLIC4 expression and activity are regulated by TGF-β signalling through the SMAD3 transcription factor. In view of the aberrant activation of canonical Wnt-3a and Hedgehog (Hh) signalling in fibrosis, we investigated their role in CLIC4 upregulation. Here, we show that TGF-β/SMAD3 co-operates with Wnt3a/β-catenin and Smoothened/GLI signalling to drive CLIC4 expression in normal dermal fibroblasts, and that the inhibition of β-catenin and GLI expression or activity abolishes TGF-β/SMAD3-dependent CLIC4 induction. We further show that the expression of the pro-fibrotic marker α-smooth muscle actin strongly correlates with CLIC4 expression in dermal fibroblasts. Further investigations revealed that the inhibition of CLIC4 reverses morphogen-dependent fibroblast activation. Our data highlights that CLIC4 is a common downstream target of TGF-β, Hh, and Wnt-3a through signalling crosstalk and we propose a potential therapeutic avenue using CLIC4 inhibitors
Collapse
Affiliation(s)
- Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
- Correspondence:
| | - Begoña Caballero-Ruiz
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
- Department of Molecular Medicine, Sapienza University of Rome, 00196 Rome, Italy;
| | - Justin Gillespie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
| | - Emma Derrett-Smith
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London NW32PF, UK; (E.D.-S.); (C.P.D.)
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
| | - Christopher P. Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London NW32PF, UK; (E.D.-S.); (C.P.D.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00196 Rome, Italy;
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds LS29JT, UK
| |
Collapse
|
18
|
Jing B, Hui Z. Circular RNA_0033596 aggravates endothelial cell injury induced by oxidized low-density lipoprotein via microRNA-217-5p /chloride intracellular channel 4 axis. Bioengineered 2022; 13:3410-3421. [PMID: 35081862 PMCID: PMC8974077 DOI: 10.1080/21655979.2022.2027062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In recent years, the modulatory functions of some circular RNAs (circRNAs) in the pathogenesis of atherosclerosis (AS) have been reported. Nonetheless, the role of circular RNA_0033596 (circ_0033596) in AS and its mechanism remains unclarified. In this study, oxidized low-density lipoprotein (ox-LDL) was applied to treat human umbilical vein endothelial cells (HUVECs) to establish a cell model of endothelial cell injury. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to detect the expression of circ_0033596, microRNA-217-5p (miR-217-5p), and chloride intracellular channel 4 (CLIC4) in HUVECs. The binding sites between circ_0033596 and miR-217-5p, as well as between miR-217-5p and CLIC4 mRNA 3ʹUTR were determined through a dual-luciferase reporter gene assay. It was found that circ_0033596 expression was increased in ox-LDL-induced HUVECs. After ox-LDL stimulation, HUVEC viability and cell cycle progression were inhibited, and the apoptosis was promoted, while circ_0033596 overexpression aggravated these effects. MiR-217-5p was identified as a downstream target of circ_0033596, and circ_0033596 negatively regulated miR-217-5p expression. CLIC4 was identified as miR-217-5p’s downstream target gene and could be positively modulated by circ_0033596. All in all circ_0033596 aggravates ox-LDL-induced HUVEC apoptosis by regulating the miR-217-5p/CLIC4 axis, by which circ_0033596 participates in the pathogenesis of AS.
Collapse
Affiliation(s)
- Bai Jing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zhou Hui
- Department of Ultrasound, wuhan Prevention and Treatment Center for Occupational Diseases Wuhan PR China
| |
Collapse
|