1
|
Thompson BJ, Carillion EL, Alper S, Bryant SJ. The Foreign Body Response to Biomaterial Implants is reduced by co-inhibition of TLR2 and TLR4. Acta Biomater 2025:S1742-7061(25)00436-2. [PMID: 40516838 DOI: 10.1016/j.actbio.2025.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 05/28/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
The foreign body response (FBR) is a formidable reaction that occurs to any non-biological implantable biomaterial and results in fibrous encapsulation. Non-specific protein adsorption is the first stage of the FBR and is thought to initiate the response by activation of innate immune cells. Here we show that Toll-like receptors (TLRs) 2 and 4 are the primary receptors responsible for recognizing surface adsorbed proteins as damage associated molecular patterns (DAMPs) and they determine the material dependent FBR. An in vitro model using multiple biomaterials identified that macrophages, not neutrophils, respond to surface-adsorbed plasma via TLR2 and/or TLR4 and that deletion of both was required to inhibit activation across all materials. In the more complex in vivo environment, simultaneous deletion of TLR2 and TLR4 nearly abrogated the FBR to multiple biomaterials and eliminated the material dependencies in a subcutaneous implant mouse model. Deletion of either TLR2 or TLR4 showed either no effect or a partial reduction, depending on the material, demonstrating that TLRs determine the material-dependent FBR in vivo. Collectively, we identified TLR2 and TLR4 as necessary receptors for the FBR and implicate macrophage recognition of DAMPs of surface-adsorbed proteins, which vary depending on the material, as the main driver initiating the FBR. Our findings establish TLR2 and TLR4 as therapeutic targets to evade the FBR across a range of implantable materials. STATEMENT OF SIGNIFICANCE: Synthetic biomaterials when implanted elicit a foreign body response (FBR) leading to fibrous encapsulation. The mechanisms however are not fully understood. When a biomaterial is implanted, proteins non-specifically adsorb to the material. These proteins may act as damaged associated molecular patterns (DAMPs) to induce inflammation. Toll like receptor (TLR) 2 and 4 are known receptors that recognize DAMPs. This work investigated several different biomaterials and found that TLR2 and TLR4 mediate the FBR in a material-dependent manner. Deleting both TLR2 and TLR4 was necessary to inhibit significantly fibrous capsule formation across all materials tested. Our findings provide direct evidence that DAMPs are the main driver of the FBR and establish TLR2/4 as potential therapeutic targets to evade the FBR.
Collapse
Affiliation(s)
- Brittany J Thompson
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO USA
| | - Emma L Carillion
- Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, CO USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO USA; Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Anschutz, CO USA
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO USA; Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, CO USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA.
| |
Collapse
|
2
|
Rahaman SG, Dutta B, Liu Z, Rahaman SO. TRPV4 Channel Contributes to Aortic Root Stiffening and Atherosclerotic Lesion Development. Arterioscler Thromb Vasc Biol 2025. [PMID: 40336479 DOI: 10.1161/atvbaha.125.322640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Affiliation(s)
- Suneha G Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park (S.G.R., B.D., S.O.R.)
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park (S.G.R., B.D., S.O.R.)
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia (Z.L.)
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park (S.G.R., B.D., S.O.R.)
| |
Collapse
|
3
|
Mukherjee P, Mahanty M, Dutta B, Rahaman SG, Sankaran KR, Liu Z, Rahaman SO. Trpv4-mediated mechanotransduction regulates the differentiation of valvular interstitial cells to myofibroblasts: implications for aortic valve stenosis. Am J Physiol Cell Physiol 2025; 328:C1558-C1570. [PMID: 40203884 DOI: 10.1152/ajpcell.00977.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
As aortic valve stenosis (AVS) progresses, the valve tissue also stiffens. This increase in tissue stiffness causes the valvular interstitial cells (VICs) to transform into myofibroblasts in response. VIC-to-myofibroblast differentiation is critically involved in the development of AVS. Herein, we investigated the role of mechanosensitive Ca2+-permeant transient receptor potential vanilloid 4 (Trpv4) channels in matrix stiffness- and transforming growth factor β1 (TGFβ1)-induced VIC-myofibroblast activation. We confirmed Trpv4 functionality in primary mouse wild-type VICs compared with Trpv4 null VICs using live Ca2+ influx detection during application of its selective agonist and antagonist. Using physiologically relevant hydrogels of varying stiffness that respectively mimic healthy or diseased aortic valve tissue stiffness, we found that genetic ablation of Trpv4 blocked matrix stiffness- and TGFβ1-induced VIC-myofibroblast activation as determined by changes in morphology, alterations of expression of α-smooth muscle actin, and modulations of F-actin generation. Our results showed that N-terminal residues 30-130 in Trpv4 were crucial for cellular force generation and VIC-myofibroblast activation, while deletion of residues 1-30 had no noticeable negative effect on these processes. Collectively, these data suggest a differential regulatory role for Trpv4 in stiffness/TGFβ1-induced VIC-myofibroblast activation. Our data further showed that Trpv4 regulates stiffness/TGFβ1-induced PI3K-AKT activity that is required for VIC-myofibroblast differentiation and cellular force generation, suggesting a mechanism by which Trpv4 activity regulates VIC-myofibroblast activation. Altogether, these data identify a novel role for Trpv4 mechanotransduction in regulating VIC-myofibroblast activation, implicating Trpv4 as a potential therapeutic target to slow and/or reverse AVS development.NEW & NOTEWORTHY Aortic valve stenosis (AVS) progression involves stiffened valve tissue, driving valvular interstitial cells (VICs) to transform into myofibroblasts. This study highlights the role of Trpv4 channels in VIC activation triggered by matrix stiffness and TGFß1. Using hydrogels mimicking healthy and diseased valves, researchers found that Trpv4 regulates cellular force generation and differentiation via PI3K-AKT activity. These findings identify Trpv4 as a potential therapeutic target to slow or reverse AVS progression.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Suneha G Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Karunakaran R Sankaran
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
4
|
Mahanty M, Dutta B, Ou W, Zhu X, Bromberg JS, He X, Rahaman SO. Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants. Biomaterials 2025; 314:122855. [PMID: 39362025 PMCID: PMC11560625 DOI: 10.1016/j.biomaterials.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. FBR presents a complex bioengineering and medical challenge due to the lack of current treatments, making the detailed exploration of its molecular mechanisms crucial for developing new and effective therapies. To identify key molecular targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR as assessed by atomic force microscopy; and (e) miR-146a is linked to F-actin production and cellular traction force induction as determined by traction force microscopy, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.
Collapse
Affiliation(s)
- Manisha Mahanty
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Wenquan Ou
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | | | - Xiaoming He
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA.
| |
Collapse
|
5
|
Zhang P, Yang D, Li K, Zhang J, Wang Z, Ma F, Liao X, Ma S, Zeng X, Zhang X. Matrix stiffness regulates NPC invasiveness by modulating a mechanoresponsive TRPV4-Nox4-IL-8 signaling axis. J Cancer 2025; 16:1324-1334. [PMID: 39895789 PMCID: PMC11786026 DOI: 10.7150/jca.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/01/2025] [Indexed: 02/04/2025] Open
Abstract
Matrix stiffness is a critical determinant of tumorigenesis and cancer progression. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive calcium channel, regulates angiogenesis and stromal stiffness in various tumors. However, it is unclear whether matrix stiffness regulates the invasiveness of nasopharyngeal carcinoma (NPC) cells through TRPV4. In this study, we found that increased matrix stiffness of NPC tissues correlated with advanced tumor stages. Furthermore, simulation of high matrix stiffness in vitro upregulated TRPV4, and increased the migration, invasion, and epithelial mesenchymal transition (EMT) of NPC cells. Knockdown or pharmacological inhibition of TRPV4 significantly suppressed the calcium influx in NPC cells, and inhibited their invasiveness and EMT under high-stiffness conditions. Mechanistically, TRPV4 modulated the invasiveness of NPC cells in response to matrix stiffness via the NOX4/IL-8 axis. Notably, TRPV4 and IL-8 levels were significantly increased in the high-stiffness NPC tissues, and showed a positive correlation. Taken together, matrix stiffness promotes the malignant progression of NPC cells through the activation of the TRPV4/NOX4/IL-8 axis, which could be explored further as a potential target for NPC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Dunhui Yang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Kang Li
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Otolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Zhen Wang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Fang Ma
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianqin Liao
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Shibo Ma
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xiangmin Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Dutta B, Rahaman SG, Mukherjee P, Rahaman SO. Transient Receptor Potential Vanilloid 4 Calcium-Permeable Channel Contributes to Valve Stiffening in Aortic Stenosis. J Am Heart Assoc 2025; 14:e037931. [PMID: 39719407 PMCID: PMC12054524 DOI: 10.1161/jaha.124.037931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Aortic valve stenosis (AVS) is a progressive disease characterized by fibrosis, inflammation, calcification, and stiffening of the aortic valve leaflets, leading to disrupted blood flow. If untreated, AVS can progress to heart failure and death within 2 to 5 years. Uncovering the molecular mechanisms behind AVS is key for developing effective noninvasive therapies. Emerging evidence highlights that matrix stiffness affect gene expression, inflammation, and cell differentiation. Activation of valvular interstitial cells into myofibroblasts, along with excessive extracellular matrix accumulation and remodeling, are major contributors to AVS progression. Inflammation further exacerbates the disease, as macrophages infiltrate valve leaflets, enhancing inflammation, activating valvular interstitial cells, and driving extracellular matrix remodeling. Our lab and others have shown that the activities of macrophages and fibroblasts are sensitive to matrix stiffness. Previously, we identified mechanosensitive transient receptor potential vanilloid 4 (TRPV4) channels as key regulators of fibrosis and macrophage activation, implicating TRPV4 in AVS as a potential stiffness sensor. METHODS AND RESULTS Herein, we found elevated levels of TRPV4, α-smooth muscle actin, and cluster of differentiation 68 proteins in human AVS tissues compared with controls. Furthermore, the stiffening of human aortic valve tissue is associated with the levels of myofibroblasts, macrophages, and TRPV4 protein expression. In a mouse model, TRPV4 promoted valve stiffening during hypercholesterolemia-induced AVS. Additionally, TRPV4 mediated intracellular stiffness in valvular interstitial cells in response to transforming growth factor β1, which was blocked by the TRPV4 antagonist GSK2193874. CONCLUSIONS These findings reveal a novel mechanism linking TRPV4 to valve stiffening, providing insights into how extracellular matrix mechanical properties drive inflammation and fibrosis in AVS.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| | - Suneha G. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| | - Pritha Mukherjee
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| | - Shaik O. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
7
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Liu Z, Ling SD, Liang K, Chen Y, Niu Y, Sun L, Li J, Du Y. Viscoelasticity of ECM and cells-origin, measurement and correlation. MECHANOBIOLOGY IN MEDICINE 2024; 2:100082. [PMID: 40395221 PMCID: PMC12082326 DOI: 10.1016/j.mbm.2024.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 05/22/2025]
Abstract
The extracellular matrix (ECM) and cells are crucial components of natural tissue microenvironments, and they both demonstrate dynamic mechanical properties, particularly viscoelastic behaviors, when exposed to external stress or strain over time. The capacity to modify the mechanical properties of cells and ECM is crucial for gaining insight into the development, physiology, and pathophysiology of living organisms. As an illustration, researchers have developed hydrogels with diverse compositions to mimic the properties of the native ECM and use them as substrates for cell culture. The behavior of cultured cells can be regulated by modifying the viscoelasticity of hydrogels. Moreover, there is widespread interest across disciplines in accurately measuring the mechanical properties of cells and the surrounding ECM, as well as exploring the interactive relationship between these components. Nevertheless, the lack of standardized experimental methods, conditions, and other variables has hindered systematic comparisons and summaries of research findings on ECM and cell viscoelasticity. In this review, we delve into the origins of ECM and cell viscoelasticity, examine recently developed methods for measuring ECM and cell viscoelasticity, and summarize the potential interactions between cell and ECM viscoelasticity. Recent research has shown that both ECM and cell viscoelasticity experience alterations during in vivo pathogenesis, indicating the potential use of tailored viscoelastic ECM and cells in regenerative medicine.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si Da Ling
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yihan Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Rahaman SG, Dutta B, Rahaman SO. TRPV4 channel contributes to aortic root stiffening and atherosclerotic lesion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622110. [PMID: 39574735 PMCID: PMC11580977 DOI: 10.1101/2024.11.07.622110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cardiovascular disease is the number one cause of death in the developed world and atherosclerosis, a chronic arterial disease, is the most dominant underlying pathology. Epidemiologic and experimental studies suggest that arterial stiffness is a risk factor for atherosclerosis. However, there has been surprisingly limited development in mechanistic understanding of the generation of arterial stiffness and little progress in understanding the mechanisms by which matrix stiffening drives the development of atherosclerosis. Various proinflammatory and fibrotic activities of macrophages and fibroblasts, such as migration, inflammatory gene expression, and myofibroblast activation, are influenced by matrix stiffness. This influence suggests that aorta stiffening may regulate atherosclerosis via a cellular stiffness sensor. Our research indicates that mechanosensitive transient receptor potential vanilloid 4 (TRPV4) channels control inflammation and fibrosis in other organs and regulate macrophage and fibroblast activation, implicating TRPV4 as a potential stiffness sensor in atherosclerosis. This suggests a cycle where inflammation, fibrosis, and tissue stiffening reinforce each other, with macrophages playing a key role. Here, we identify a cellular stiffness sensor linking matrix stiffness and atherosclerosis using human aortic tissues, a murine atherosclerosis model, and atomic force microscopy (AFM) analysis. This novel finding suggests that targeting TRPV4 could be a selective strategy to prevent or suppress atherogenesis.
Collapse
Affiliation(s)
- Suneha G. Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | - Shaik O. Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| |
Collapse
|
10
|
Mukherjee P, Mahanty M, Dutta B, Rahaman SG, Sankaran KR, Rahaman SO. TRPV4-mediated Mechanotransduction Regulates the Differentiation of Valvular Interstitial Cells to Myofibroblasts: Implications for Aortic Stenosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622116. [PMID: 39574752 PMCID: PMC11580895 DOI: 10.1101/2024.11.05.622116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
As aortic valve stenosis (AVS) progresses, the valve tissue also stiffens. This increase in tissue stiffness causes the valvular interstitial cells (VICs) to transform into myofibroblasts in response. VIC-to-myofibroblast differentiation is critically involved in the development of AVS. Herein, we investigated the role of mechanosensitive Ca2+-permeant transient receptor potential vanilloid 4 (Trpv4) channels in matrix stiffness- and transforming growth factor β1 (TGFβ1)-induced VIC-myofibroblast activation. We confirmed Trpv4 functionality in primary mouse wild-type VICs compared to Trpv4 null VICs using live Ca2+ influx detection during application of its selective agonist and antagonist. Using physiologically relevant hydrogels of varying stiffness that respectively mimic healthy or diseased aortic valve tissue stiffness, we found that genetic ablation of Trpv4 blocked matrix stiffness- and TGFβ1-induced VIC-myofibroblast activation as determined by changes in morphology, alterations of expression of α-smooth muscle actin, and modulations of F-actin generation. Our results showed that N-terminal residues 30-130 in Trpv4 were crucial for cellular force generation and VIC-myofibroblast activation, while deletion of residues 1-30 had no noticeable negative effect on these processes. Collectively, these data suggest a differential regulatory role for Trpv4 in stiffness/TGFβ1-induced VIC-myofibroblast activation. Our data further showed that Trpv4 regulates stiffness/TGFβ1-induced PI3K-AKT activity that is required for VIC-myofibroblast differentiation and cellular force generation, suggesting a mechanism by which Trpv4 activity regulates VIC-myofibroblast activation. Altogether, these data identify a novel role for Trpv4 mechanotransduction in regulating VIC-myofibroblast activation, implicating Trpv4 as a potential therapeutic target to slow and/or reverse AVS development.
Collapse
Affiliation(s)
- Pritha Mukherjee
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | - Manisha Mahanty
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | - Suneha G. Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| | | | - Shaik O. Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742
| |
Collapse
|
11
|
Shi W, Xue H, Du T, Liu JL, Ling V, Wang Y, Ma Z, Gao ZH. Penetration enhancers strengthen tough hydrogel bioadhesion and modulate locoregional drug delivery. Biomater Sci 2024; 12:5620-5630. [PMID: 39370988 DOI: 10.1039/d4bm00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The human body possesses natural barriers, such as skin and mucosa, which limit the effective delivery of therapeutics and integration of medical devices to target tissues. Various strategies have been deployed to breach these barriers mechanically, chemically, or electronically. The development of various penetration enhancers (PEs) offers a promising solution due to their ability to increase tissue permeability using readily available reagents. However, existing PE-mediated delivery methods often rely on weak gel or liquid drug formulations, which are not ideal for sustained local delivery. Hydrogel adhesives that can seamlessly interface biological tissues with controlled drug delivery could potentially resolve these issues. Here, we demonstrate that tough adhesion between drug-laden hydrogels and biological tissue (e.g. skin and tumours) can lead to effective local delivery of drugs deep into targeted tissues by leveraging the enhanced tissue penetration mediated by PEs. The drug release profile of the hydrogel adhesives can be fine-tuned by further engineering the nanocomposite hydrogel matrix to elute chemotherapeutics from 2 weeks to 2 months. Using a 3D tumour spheroid model, we demonstrated that PEs increased the cancer-killing effectiveness of doxorubicin by facilitating its delivery into tumour microtissues. Therefore, the proposed tough bioadhesion and drug delivery strategy modulated by PEs holds promise as a platform technique to develop next-generation wearable and implantable devices for cancer management and regenerative medicine.
Collapse
Affiliation(s)
- Wenna Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Jinan, China
| | - Hui Xue
- Department of Experimental Medicine, BC Cancer Research Institute, Vancouver, Canada
| | - Tianwei Du
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Jun-Li Liu
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Victor Ling
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Yuzhuo Wang
- Department of Experimental Medicine, BC Cancer Research Institute, Vancouver, Canada
| | - Zhenwei Ma
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zu-Hua Gao
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Dutta B, Mahanty M, Kesavalu L, Rahaman SO. Mechanisms underlying TRPV4-mediated regulation of miR-146a expression. Front Immunol 2024; 15:1437540. [PMID: 39403372 PMCID: PMC11471512 DOI: 10.3389/fimmu.2024.1437540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Persistent inflammation is a major contributor in the development of various inflammatory diseases like atherosclerosis. Our study investigates how transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, interacts with microRNA-146a (miR-146a), within the context of inflammation and atherosclerosis. Micro-RNAs play a critical role in controlling gene expression, and miR-146a is notable for its anti-inflammatory actions. TRPV4 is activated by diverse soluble and mechanical stimuli, and often associated with inflammatory responses in various diseases. Here, we find that TRPV4 negatively regulates miR-146a expression in macrophages, especially following stimulation by lipopolysaccharides or alterations in matrix stiffness. We show that in atherosclerosis, a condition characterized by matrix stiffening, TRPV4 decreases miR-146a expression in aortic tissue macrophages. We find that TRPV4's impact on miR-146a is independent of activation of NFκB, Stat1, P38, and AKT, but is rather mediated through a mechanism involving histone deacetylation instead of DNA methylation at the miR-146a promoter site. Furthermore, we show that N-terminal residues 1 to 130 in TRPV4 is essential in suppression of miR-146a expression in LPS-stimulated macrophages. Altogether, this study identifies a regulatory mechanism of miR-146a expression by TRPV4 which may open new potential therapeutic strategies for managing inflammatory diseases.
Collapse
Affiliation(s)
- Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| | - Lakshmyya Kesavalu
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
14
|
Zhou X, Lu Z, Cao W, Zhu Z, Chen Y, Ni Y, Liu Z, Jia F, Ye Y, Han H, Yao K, Liu W, Wang Y, Ji J, Zhang P. Immunocompatible elastomer with increased resistance to the foreign body response. Nat Commun 2024; 15:7526. [PMID: 39214984 PMCID: PMC11364871 DOI: 10.1038/s41467-024-52023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.
Collapse
Affiliation(s)
- Xianchi Zhou
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zhouyu Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zuolong Liu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jian Ji
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
15
|
Zhou X, Wang Y, Ji J, Zhang P. Materials Strategies to Overcome the Foreign Body Response. Adv Healthc Mater 2024; 13:e2304478. [PMID: 38666550 DOI: 10.1002/adhm.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| |
Collapse
|
16
|
Estrada-Bernal A, Sharma L, Shah FA. "When the Going Gets Tough": Novel Roles for TRPV4 in Stiffness-induced Phagolysosome Maturation. Am J Respir Cell Mol Biol 2024; 70:431-432. [PMID: 38502902 PMCID: PMC11160420 DOI: 10.1165/rcmb.2024-0070ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Adriana Estrada-Bernal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | - Faraaz Ali Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh
- Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Kumar S, Acharya TK, Kumar S, Rokade TP, Das NK, Chawla S, Goswami L, Goswami C. TRPV4 Activator-Containing CMT-Hy Hydrogel Enhances Bone Tissue Regeneration In Vivo by Enhancing Mitochondrial Health. ACS Biomater Sci Eng 2024; 10:2367-2384. [PMID: 38470969 DOI: 10.1021/acsbiomaterials.3c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca2+ levels and mitochondrial health. Accordingly, the hydrogel made from a natural modified biopolymer carboxymethyl tamarind CMT-Hy and encapsulated with TRPV4-modulatory agents affects different parameters of MSCs, such as cell morphology, focal adhesion points, intracellular Ca2+, and reactive oxygen species- and NO-levels. TRPV4 also regulates cell differentiation and biomineralization in vitro. We demonstrate that 4α-10-CMT-Hy and 4α-50-CMT-Hy (the hydrogel encapsulated with 4αPDD, 10 and 50 nM, TRPV4 activator) surfaces upregulate mitochondrial health, i.e., an increase in ATP- and cardiolipin-levels, and improve the mitochondrial membrane potential. The same scaffold turned out to be nontoxic in vivo. 4α-50-CMT-Hy enhances the repair of the bone-drill hole in rat femur, both qualitatively and quantitatively in vivo. We conclude that 4α-50-CMT-Hy as a scaffold is suitable for treating large-scale bone defects at low cost and can be tested for clinical trials.
Collapse
Affiliation(s)
- Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tusar K Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tejas P Rokade
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Nilesh K Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
- School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| |
Collapse
|
18
|
Mahanty M, Dutta B, Ou W, Zhu X, Bromberg JS, He X, Rahaman SO. Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588018. [PMID: 38617341 PMCID: PMC11014630 DOI: 10.1101/2024.04.03.588018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. To identify key targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR; and (e) miR-146a is linked to F-actin production and cellular traction force induction, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.
Collapse
|
19
|
Dutta B, Mahanty M, Kesavalu L, Rahaman SO. Mechanisms underlying TRPV4-mediated regulation of miR-146a expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587984. [PMID: 38617263 PMCID: PMC11014524 DOI: 10.1101/2024.04.03.587984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Persistent inflammation is a major contributor in the development of various inflammatory diseases like atherosclerosis. Our study investigates how transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, interacts with microRNA-146a (miR-146a), within the context of inflammation and atherosclerosis. Micro-RNAs play a critical role in controlling gene expression, and miR-146a is notable for its anti-inflammatory actions. TRPV4 is activated by diverse soluble and mechanical stimuli, and often associated with inflammatory responses in various diseases. Here, we find that TRPV4 negatively regulates miR-146a expression in macrophages, especially following stimulation by lipopolysaccharides or alterations in matrix stiffness. We show that in atherosclerosis, a condition characterized by matrix stiffening, TRPV4 decreases miR-146a expression in aortic tissue macrophages. We find that TRPV4's impact on miR-146a is independent of activation of NFκB, Stat1, P38, and AKT, but is rather mediated through a mechanism involving histone deacetylation instead of DNA methylation at the miR-146a promoter site. Furthermore, we show that N-terminal residues 1 to 130 in TRPV4 is essential in suppression of miR-146a expression in LPS-stimulated macrophages. Altogether, this study identifies a regulatory mechanism of miR-146a expression by TRPV4 which may open new potential therapeutic strategies for managing inflammatory diseases.
Collapse
|
20
|
Sharma S, Mahanty M, Rahaman SG, Mukherjee P, Dutta B, Khan MI, Sankaran KR, He X, Kesavalu L, Li W, Rahaman SO. Avocado-derived extracellular vesicles loaded with ginkgetin and berberine prevent inflammation and macrophage foam cell formation. J Cell Mol Med 2024; 28:e18177. [PMID: 38494843 PMCID: PMC10945093 DOI: 10.1111/jcmm.18177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of aorta, remains the major cause of morbidity and mortality among cardiovascular disease patients. Macrophage foam cell formation and inflammation are critically involved in early stages of atherosclerosis, hence chemopreventive targeting of foam cell formation by nutraceuticals may be a promising approach to curbing the progression of atherosclerosis. However, many nutraceuticals including berberine and ginkgetin have low stability, tissue/cell penetration and bioavailability resulting in inadequate chemotherapeutic effects of these nutraceuticals. We have used avocado-derived extracellular vesicles (EV) isolated from avocado (EVAvo ) as a novel carrier of nutraceuticals, in a strategy to alleviate the build-up of macrophage foam cells and expression of inflammatory genes. Our key findings are: (i) Avocado is a natural source of plant-derived EVs as shown by the results from transmission electron microscopy, dynamic light scattering and NanoBrook Omni analysis and atomic force microscopy; (ii) EVAvo are taken up by macrophages, a critical cell type in atherosclerosis; (iii) EVAvo can be loaded with high amounts of ginkgetin and berberine; (iv) ginkgetin plus berberine-loaded EVAvo (EVAvo(B+G) ) suppress activation of NFκB and NLRP3, and inhibit expression of pro-inflammatory and atherogenic genes, specifically Cd36, Tnfα, Il1β and Il6; (v) EVAvo(B+G) attenuate oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation and (vi) EVAvo(B+G) inhibit oxLDL uptake but not its cell surface binding during foam cell formation. Overall, our results suggest that using EVAvo as a natural carrier of nutraceuticals may improve strategies to curb the progression of atherosclerosis by limiting inflammation and pro-atherogenic responses.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Manisha Mahanty
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Suneha G. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Pritha Mukherjee
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Bidisha Dutta
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Mohammad Imran Khan
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | | | - Xiaoming He
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Lakshmyya Kesavalu
- Department of Periodontology and Oral Biology, College of DentistryUniversity of FloridaGainesvilleFloridaUSA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Shaik O. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
21
|
Wang Q, Ji C, Smith P, McCulloch CA. Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen. Int J Mol Sci 2024; 25:3566. [PMID: 38612378 PMCID: PMC11012046 DOI: 10.3390/ijms25073566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.
Collapse
Affiliation(s)
- Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Chenfan Ji
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Patricio Smith
- Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile;
| | | |
Collapse
|
22
|
Jin S, Wen J, Zhang Y, Mou P, Luo Z, Cai Y, Chen A, Fu X, Meng W, Zhou Z, Li J, Zeng W. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis. Acta Biomater 2024; 177:91-106. [PMID: 38311198 DOI: 10.1016/j.actbio.2024.01.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Designing scaffolds that can regulate the innate immune response and promote vascularized bone regeneration holds promise for bone tissue engineering. Herein, electrospun scaffolds that combined physical and biological cues were fabricated by anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The topological pore structure of the fiber and the immobilization of exosomes increased the nanoscale roughness and hydrophilicity of the fibrous scaffold. In vitro cell experiments showed that exosomes could be internalized by target cells to promote cell migration, tube formation, osteogenic differentiation, and anti-inflammatory macrophage polarization. The activation of fibrosis, angiogenesis, and macrophage was elucidated during the exosome-functionalized fibrous scaffold-mediated foreign body response (FBR) in subcutaneous implantation in mice. The exosome-functionalized nanofibrous scaffolds also enhanced vascularized bone formation in a critical-sized rat cranial bone defect model. Importantly, histological analysis revealed that the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation. This study elaborated on the complex processes within the cell microenvironment niche during fibrous scaffold-mediated FBR and vascularized bone regeneration to guide the design of implants or devices used in orthopedics and maxillofacial surgery. STATEMENT OF SIGNIFICANCE: How to design scaffold materials that can regulate the local immune niche and truly achieve functional vascularized bone regeneration still remain an open question. Here, combining physical and biological cues, we proposed new insight to cell-free and growth factor-free therapy, anchoring reparative M2 macrophage-derived exosomes onto topological pore structured nanofibrous scaffolds. The exosomes functionalized-scaffold system mitigated foreign body response, including excessive fibrosis, tumor-like vascularization, and macrophage activation. Importantly, the biofunctional scaffolds regulated the coupling effect of angiogenesis, osteoclastogenesis, and osteogenesis by stimulating type H vessel formation.
Collapse
Affiliation(s)
- Shue Jin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Wen
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yao Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Mou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongrui Cai
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjin Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Fu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weikun Meng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jidong Li
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Janssen E, van den Dries K, Ventre M, Cambi A. Mechanobiology of myeloid cells. Curr Opin Cell Biol 2024; 86:102311. [PMID: 38176349 DOI: 10.1016/j.ceb.2023.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Tissue-resident myeloid cells sense and transduce mechanical signals such as stiffness, stretch and compression. In the past two years, our understanding of the mechanosensitive signalling pathways in myeloid cells has significantly expanded. Moreover, it is increasingly clear which mechanical signals induce myeloid cells towards a pro- or anti-inflammatory phenotype. This is especially relevant in the context of altered matrix mechanics in immune-related pathologies or in the response to implanted biomaterials. A detailed understanding of myeloid cell mechanosensing may eventually lead to more effective cell-based immunotherapies for cancer, the development of mechanically inspired therapies to target fibrosis, and the engineering of safer implants. This review covers these recent advances in the emerging field of mechanoimmunology of myeloid cells.
Collapse
Affiliation(s)
- Eline Janssen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, the Netherlands
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples, Italy; Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Italy
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
24
|
Gudde AN, van Velthoven MJJ, Kouwer PHJ, Roovers JPWR, Guler Z. Injectable polyisocyanide hydrogel as healing supplement for connective tissue regeneration in an abdominal wound model. Biomaterials 2023; 302:122337. [PMID: 37793268 DOI: 10.1016/j.biomaterials.2023.122337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, β-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel - tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep.
Collapse
Affiliation(s)
- Aksel N Gudde
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Melissa J J van Velthoven
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, the Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
26
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Johnson CD, Aranda-Espinoza H, Fisher JP. A Case for Material Stiffness as a Design Parameter in Encapsulated Islet Transplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:334-346. [PMID: 36475851 PMCID: PMC10442690 DOI: 10.1089/ten.teb.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.
Collapse
Affiliation(s)
- Courtney D. Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
28
|
Goretzki B, Wiedemann C, McCray BA, Schäfer SL, Jansen J, Tebbe F, Mitrovic SA, Nöth J, Cabezudo AC, Donohue JK, Jeffries CM, Steinchen W, Stengel F, Sumner CJ, Hummer G, Hellmich UA. Crosstalk between regulatory elements in disordered TRPV4 N-terminus modulates lipid-dependent channel activity. Nat Commun 2023; 14:4165. [PMID: 37443299 PMCID: PMC10344929 DOI: 10.1038/s41467-023-39808-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are essential for membrane receptor regulation but often remain unresolved in structural studies. TRPV4, a member of the TRP vanilloid channel family involved in thermo- and osmosensation, has a large N-terminal IDR of approximately 150 amino acids. With an integrated structural biology approach, we analyze the structural ensemble of the TRPV4 IDR and the network of antagonistic regulatory elements it encodes. These modulate channel activity in a hierarchical lipid-dependent manner through transient long-range interactions. A highly conserved autoinhibitory patch acts as a master regulator by competing with PIP2 binding to attenuate channel activity. Molecular dynamics simulations show that loss of the interaction between the PIP2-binding site and the membrane reduces the force exerted by the IDR on the structured core of TRPV4. This work demonstrates that IDR structural dynamics are coupled to TRPV4 activity and highlights the importance of IDRs for TRP channel function and regulation.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Christoph Wiedemann
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefan L Schäfer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Frederike Tebbe
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Sarah-Ana Mitrovic
- Department of Chemistry, Section Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Nöth
- Department of Chemistry, Section Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ainara Claveras Cabezudo
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cy M Jeffries
- European Molecular Biology Laboratory, EMBL Hamburg Unit, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ute A Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Jena, Germany.
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
29
|
Li W, Xu F, Dai F, Deng T, Ai Y, Xu Z, He C, Ai F, Song L. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci 2023; 11:3976-3997. [PMID: 37115001 DOI: 10.1039/d3bm00362k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioceramic scaffolds used in bone tissue engineering suffer from a low concentration of ceramic particles (<50 wt%), because the high concentration of ceramic particles increases the brittleness of the composite. 3D printed flexible PCL/HA scaffolds with high ceramic particle concentrations (84 wt%) were successfully fabricated in this study. However, the hydrophobicity of PCL weakens the composite scaffold hydrophilicity, which may limit the osteogenic ability to some extent. Thus, as a less time-consuming, less labour intensive, and more cost-effective treatment method, alkali treatment (AT) was employed to modify the surface hydrophilicity of the PCL/HA scaffold, and its regulation of immune responses and bone regeneration were investigated in vivo and in vitro. Initially, several concentrations of NaOH (0.5, 1, 1.5, 2, 2.5, and 5 mol L-1) were employed in tests to determine the appropriate concentration for AT. Based on the comprehensive consideration of the results of mechanical experiments and hydrophilicity, 2 mol L-1 and 2.5 mol L-1 of NaOH were selected for further investigation in this study. The PCL/HA-AT-2 scaffold dramatically reduced foreign body reactions as compared to the PCL/HA and PCL/HA-AT-2.5 scaffolds, promoted macrophage polarization towards the M2 phenotype and enhanced new bone formation. The Wnt/β-catenin pathway might participate in the signal transduction underlying hydrophilic surface-modified 3D printed scaffold-regulated osteogenesis, according to the results of immunohistochemical staining. In conclusion, hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations can regulate the immune reactions and macrophage polarization to promote bone regeneration, and the PCL/HA-AT-2 scaffold is a potential candidate for bone tissue repair.
Collapse
Affiliation(s)
- Wenfeng Li
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fancheng Xu
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fang Dai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Tian Deng
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Yufeng Ai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Zhiyong Xu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Chenjiang He
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fanrong Ai
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
- School of Advanced Manufacturing, Nanchang University, Nanchang, China.
| | - Li Song
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
30
|
Parlani M, Bedell ML, Mikos AG, Friedl P, Dondossola E. Dissecting the recruitment and self-organization of αSMA-positive fibroblasts in the foreign body response. SCIENCE ADVANCES 2022; 8:eadd0014. [PMID: 36542704 PMCID: PMC9770965 DOI: 10.1126/sciadv.add0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The foreign body response (FBR) is a clinically relevant issue that can cause malfunction of implanted medical devices by fibrotic encapsulation. Whereas inflammatory aspects of the FBR have been established, underlying fibroblast-dependent mechanisms remain unclear. We here combine multiphoton microscopy with ad hoc reporter mice expressing α-smooth muscle actin (αSMA) protein to determine the locoregional fibroblast dynamics, activation, and fibrotic encapsulation of polymeric materials. Fibroblasts invaded as individual cells and established a multicellular network, which transited to a two-compartment fibrotic response displaying an αSMA cold external capsule and a long-lasting, inner αSMA hot environment. The recruitment of fibroblasts and extent of fibrosis were only incompletely inhibited after depletion of macrophages, implicating coexistence of macrophage-dependent and macrophage-independent mediators. Furthermore, neither altering material type or porosity modulated αSMA+ cell recruitment and distribution. This identifies fibroblast activation and network formation toward a two-compartment FBR as a conserved, self-organizing process partially independent of macrophages.
Collapse
Affiliation(s)
- Maria Parlani
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthew L. Bedell
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Peter Friedl
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre (CGC.nl), 3584 Utrecht, Netherlands
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Chen SL, Lundy DJ, Ruan SC, Chen HC, Chao YK, Cheng YY, Prajnamitra RP, Liao CC, Lin CY, Lai JJ, Hsieh PCH. The gut microbiota regulates acute foreign body reaction and tissue repair after biomaterial implantation. Biomaterials 2022; 289:121807. [PMID: 36166894 DOI: 10.1016/j.biomaterials.2022.121807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022]
Abstract
We hypothesized that the host microbiome may influence foreign body responses following biomaterial implantation. To test this, we implanted a variety of clinically relevant biomaterials into germ-free or antibiotic-treated mice. Surprisingly, these mice displayed less fibrous tissue deposition, reduced host cell recruitment to the implant site, and differential expression of angiogenic and inflammatory markers. These observations were reversed upon fecal microbiome reconstitution, confirming a causal role of the host microbiome. In a clinically relevant disease model, microbiome-depleted mice cleared hyaluronic acid and bone marrow mononuclear cells from ischemic hind limb tissues more slowly, resulting in an improved therapeutic response. Findings were confirmed in pigs which showed reduced fibrotic responses to a variety of implanted materials. Lastly, we profiled changes in the host microbiome following material implantation, implicating several key bacteria phyla.
Collapse
Affiliation(s)
- Sheng-Lun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan
| | - Shu-Chian Ruan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Hung-Chih Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Kai Chao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | | | - Chun-Chieh Liao
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
32
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
33
|
Coronel MM, Martin KE, Hunckler MD, Kalelkar P, Shah RM, García AJ. Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106896. [PMID: 35274457 PMCID: PMC10288386 DOI: 10.1002/smll.202106896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hydrogel microparticles (microgels) are an attractive approach for therapeutic delivery because of their modularity, injectability, and enhanced integration with the host tissue. Multiple microgel fabrication strategies and chemistries have been implemented, yet manipulation of microgel degradability and its effect on in vivo tissue responses remains underexplored. Here, the authors report a facile method to synthesize microgels crosslinked with ester-containing junctions to afford tunable degradation kinetics. Monodisperse microgels of maleimide-functionalized poly(ethylene-glycol) are generated using droplet microfluidics crosslinked with thiol-terminated, ester-containing molecules. Tunable mechanics are achievable based on the ratio of degradable to nondegradable crosslinkers in the continuous phase. Degradation in an aqueous medium leads to microgel deformation based on swelling and a decrease in elastic modulus. Furthermore, degradation byproducts are cytocompatible and do not cause monocytic cell activation under noninflammatory conditions. These injectable microgels possess time-dependent degradation on the order of weeks in vivo. Lastly, the evaluation of tissue responses in a subcutaneous dorsal pocket shows a dynamic type-1 like immune response to the synthetic microgels, driven by interferon gamma (IFN-γ ) expression, which can be moderated by tuning the degradation properties. Collectively, this study demonstrates the development of a hydrolytic microgel platform that can be adapted to desired host tissue immune responses.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pranav Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rahul M Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
34
|
Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022; 11:e2200045. [PMID: 35286778 PMCID: PMC11468936 DOI: 10.1002/adhm.202200045] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease leads to the highest morbidity worldwide. There is an urgent need to solve the lack of a viable arterial graft for patients requiring coronary artery bypass surgery. The current gold standard is to use the patient's own blood vessel, such as a saphenous vein graft. However, some patients do not have appropriate vessels to use because of systemic disease or secondary surgery. On the other hand, there is no commercially available synthetic vascular graft available on the market for small diameter (<6 mm) blood vessels like coronary, carotid, and peripheral popliteal arteries. Tissue-engineered vascular grafts (TEVGs) are studied in recent decades as a promising alternative to synthetic arterial prostheses. Yet only a few studies have proceeded to a clinical trial. Recent studies have uncovered that the host immune response can be directed toward increasing the success of a TEVG by shedding light on ways to modulate the macrophage response and improve the tissue regeneration outcome. In this review, the basic concepts of vascular tissue engineering and immunoengineering are considered. The state-of-art of TEVGs is summarized and the role of macrophages in TEVG regeneration is analyzed. Current immunomodulatory strategies based on biomaterials are also discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
35
|
Mukherjee P, Rahaman SG, Goswami R, Dutta B, Mahanty M, Rahaman SO. Role of mechanosensitive channels/receptors in atherosclerosis. Am J Physiol Cell Physiol 2022; 322:C927-C938. [PMID: 35353635 PMCID: PMC9109792 DOI: 10.1152/ajpcell.00396.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Mechanical forces are critical physical cues that can affect numerous cellular processes regulating the development, tissue maintenance, and functionality of cells. The contribution of mechanical forces is especially crucial in the vascular system where it is required for embryogenesis and for maintenance of physiological function in vascular cells including aortic endothelial cells, resident macrophages, and smooth muscle cells. Emerging evidence has also identified a role of these mechanical cues in pathological conditions of the vascular system such as atherosclerosis and associated diseases like hypertension. Of the different mechanotransducers, mechanosensitive ion channels/receptors are gaining prominence due to their involvement in numerous physiological and pathological conditions. However, only a handful of potential mechanosensory ion channels/receptors have been shown to be involved in atherosclerosis, and their precise role in disease development and progression remains poorly understood. Here, we provide a comprehensive account of recent studies investigating the role of mechanosensitive ion channels/receptors in atherosclerosis. We discuss the different groups of mechanosensitive proteins and their specific roles in inflammation, endothelial dysfunction, macrophage foam cell formation, and lesion development, which are crucial for the development and progression of atherosclerosis. Results of the studies discussed here will help in developing an understanding of the current state of mechanobiology in vascular diseases, specifically in atherosclerosis, which may be important for the development of innovative and targeted therapeutics for this disease.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | | | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|