1
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2025; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhao J, Wang Y, Tian C, Wang J, Chen F, Dong X, Luo J, Zhu Y, Liu A, Ma Z, Shen H. Activating the Astrocytes of the Dorsal Raphe Nucleus via Its Neural Circuits With the Medial Prefrontal Cortex Improves Depression in Mice. Behav Neurol 2025; 2025:8890705. [PMID: 39803364 PMCID: PMC11717441 DOI: 10.1155/bn/8890705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear. The aim of this study is to examine the alterations of calcium signaling of astrocytes in the dorsal raphe nucleus (DRN), the calcium signaling alterations of neurons in both the DRN and medial prefrontal cortex (mPFC), and the alteration of depressive-like behaviors by activation of DRN astrocytes using chemogenetics in chronic social defeat stress (CSDS) mice. The results showed that the intensity of calcium signaling in DRN astrocytes was decreased and the frequency of calcium signaling was lower after CSDS. The activation of DRN astrocytes increased the calcium signaling of the neurons including CaMKIIα neurons in both DRN and mPFC (via neural circuit between DRN and mPFC). The depressive-like behaviors were improved by activating DRN astrocytes in CSDS mice. Our results suggest that the astrocytes in DRN have an important role in depression and the findings offer new insights for the treatment of depression.
Collapse
Affiliation(s)
- Jingyu Zhao
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yuang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Chunxiao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jialiang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Jiayi Luo
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxuan Zhu
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Peng X, Ju J, Li Z, Liu J, Jia X, Wang J, Ren J, Gao F. C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats. CNS Neurosci Ther 2025; 31:e70216. [PMID: 39801259 PMCID: PMC11725764 DOI: 10.1111/cns.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
AIMS Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance. METHODS Sprague-Dawley rats were intrathecally treated with morphine twice daily for 9 days to establish morphine-tolerant rat model. Tail-flick latency test was performed to identify the analgesic effect of morphine. The role of microglia, astrocyte and C3-C3aR axis in morphine tolerance were elucidated by real-time quantitative polymerase chain reaction, Western blot, and immunofluorescence. RESULTS Chronic morphine treatment notably promoted the activation of microglia, upregulated the production of proinflammatory mediators (interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q)). Simultaneously, it programed astrocytes to a pro-inflammatory phenotype (A1), which mainly expresses complement 3 (C3) and serping1. PLX3397 (a colony-stimulating factor 1 receptor (CSF1R) inhibitor), Compstain (a C3 inhibitor) and SB290157(a C3aR antagonist) could reverse the above pathological process and alleviate morphine tolerance to different extents. CONCLUSION Our findings identify C3-C3aR axis as an amplifier of microglia-astrocyte crosstalk, neuroinflammation and a node for therapeutic intervention in morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Liu D, Zhang M, Xu X, Zhong X, Ma C, Zheng X, Wu X, Wang G. Involvement of CXCL12/CXCR4 in CB2 receptor agonist-attenuated morphine tolerance in Walker 256 tumor-bearing rats with cancer pain. Eur J Med Res 2024; 29:580. [PMID: 39696656 DOI: 10.1186/s40001-024-02207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
While low-dose cannabinoid 2 (CB2) receptor agonists attenuate morphine tolerance in cancer pain models, chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) expression induces morphine tolerance. Whether CB2 receptor agonists attenuate morphine tolerance by modulating CXCL12/CXCR4 signaling or whether CXCL12/CXCR4 signaling affects the mu opioid receptor (MOR) in the development of morphine tolerance in cancer pain remains unclear. In this study, we investigated the attenuation of morphine tolerance by a non-analgesic dose of the CB2 receptor agonist AM1241, focusing specifically on the modulation of CXCL12/CXCR4 signaling and its effect on the MOR. Rats received intrathecal Walker 256 tumor cell implantations and were treated with morphine combined with the intrathecal injection of AM1241 or the CB2 receptor antagonists AM630 and AM1241, or a CXCL12-neutralizing antibody, exogenous CXCL12, or the CXCR4 antagonist AMD3100. Our results show that CXCL12 and CXCR4 levels increased significantly in morphine-tolerant rats and were reduced by AM1241 pretreatment, which was reversed by AM630. CXCL12/CXCR4 expression accelerated the development of morphine tolerance and downregulated MOR expression. CXCR4 colocalized with MOR and CB2. Therefore, a non-analgesic dose of AM1241 attenuated morphine tolerance via CXCL12/CXCR4 signaling, whereas CXCL12/CXCR4 signaling participated in the development of morphine tolerance, potentially by modulating MOR expression in Walker 256 tumor-bearing rats.
Collapse
MESH Headings
- Animals
- Receptors, CXCR4/metabolism
- Cancer Pain/drug therapy
- Cancer Pain/etiology
- Cancer Pain/metabolism
- Rats
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Morphine/pharmacology
- Drug Tolerance
- Chemokine CXCL12/metabolism
- Carcinoma 256, Walker/drug therapy
- Carcinoma 256, Walker/metabolism
- Carcinoma 256, Walker/pathology
- Male
- Cannabinoids/pharmacology
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Dandan Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaohai Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuelai Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chao Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiaohong Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Leng SZ, Fang MJ, Wang YM, Lin ZJ, Li QY, Xu YN, Mai CL, Wan JY, Yu Y, Wei M, Li Y, Zheng YF, Zhang KL, Wang YJ, Zhou LJ, Tan Z, Zhang H. Elevated plasma CXCL12 leads to pain chronicity via positive feedback upregulation of CXCL12/CXCR4 axis in pain synapses. J Headache Pain 2024; 25:213. [PMID: 39627724 PMCID: PMC11616163 DOI: 10.1186/s10194-024-01917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain. Our previous study has reported that elevated plasma CXCL12 mediates intracerebral neuroinflammation and the comorbidity of cognitive impairment in neuropathic pain, but whether it is also involved in the pathogenesis of pathologic pain has not been investigated. METHODS Intravenous or intrathecal injection (i.v. or i.t.) of recombinant mouse CXCL12, neutralizing antibody (anti-CXCL12) or AMD3100 [an antagonist of its receptor C-X-C chemokine receptor type 4 (CXCR4)] was used to investigate the role of CXCL12 signaling pathway in pain chronicity. Two behavioral tests were used to examine pain changes. ELISA, immunofluorescence staining, Western blot, quantitative Real Time-PCR and Cytokine array were applied to detect the expressions of different molecules. RESULTS We found that increased plasma CXCL12 was positively correlated with pain severity in both chronic pain patients and neuropathic pain model in mice with spared nerve injury (SNI). Neutralizing plasma CXCL12 mitigated SNI-induced hyperalgesia. A single i.v. injection of CXCL12 induced prolonged mechanical hyperalgesia and activation of the nociceptive pathway. Multiple intravenous CXCL12 caused persistent hypersensitivity, enhanced structural plasticity of nociceptors and up-regulation of the CXCL12/CXCR4 axis in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). However, intrathecal blocking of CXCL12/CXCR4 pathway by CXCL12 antibody or CXCR4 antagonist AMD3100 significantly alleviated CXCL12-induced pain hypersensitivity and pathological changes. CONCLUSIONS Our study provides strong evidence that a sustained increase in plasma CXCL12 contributes to neuropathic pain through a positive feedback loop that enhances nociceptor plasticity, and suggests that targeting CXCL12/CXCR4 axis in plasma or nociceptive pathways has potential value in regulating pain chronicity.
Collapse
Affiliation(s)
- Shi-Ze Leng
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Mei-Jia Fang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yi-Min Wang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Qian-Yi Li
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Jun-Ya Wan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yangyinhui Yu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Kai-Lang Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ya-Juan Wang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Hui Zhang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
6
|
Zhang X, Jin T, Wang H, Han S, Liang Y. Microglia in morphine tolerance: cellular and molecular mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1499799. [PMID: 39669194 PMCID: PMC11635611 DOI: 10.3389/fphar.2024.1499799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Morphine has a crucial role in treating both moderate to severe pain and chronic pain. However, prolonged administration of morphine can lead to tolerance of analgesia, resulting in increased doses and poor treatment of pain. Many patients, such as those with terminal cancer, require high doses of morphine for long periods. Addressing morphine tolerance can help this group of patients to escape pain, and the mechanisms behind this need to be investigated. Microglia are the key cells involved in morphine tolerance and chronic morphine administration leads to microglia activation, which in turn leads to activation of internal microglia signalling pathways and protein transcription, ultimately leading to the release of inflammatory factors. Inhibiting the activation of microglia internal signalling pathways can reduce morphine tolerance. However, the exact mechanism of how morphine acts on microglia and ultimately leads to tolerance is unknown. This article discusses the mechanisms of morphine induced microglia activation, reviews the signalling pathways within microglia and the associated therapeutic targets and possible drugs, and provides possible directions for clinical prevention or retardation of morphine induced analgesic tolerance.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Haixia Wang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongxin Liang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Huang HT, Tzeng SF. Interleukin-33 has the protective effect on oligodendrocytes against impairment induced by cuprizone intoxication. Neurochem Int 2024; 172:105645. [PMID: 38016520 DOI: 10.1016/j.neuint.2023.105645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Our prior investigations have demonstrated the pivotal role of IL-33 in facilitating the maturation of oligodendrocytes (OLs), prompting our interest in exploring its potential therapeutic effects. In this study, our focus was directed towards deciphering the functions of interleukin-33 (IL-33) in established demyelinating mouse model induced by the feeding of cuprizone (CPZ)-containing diet. We observed the reduction in corpus callosal adenomatous polyposis coli (APC)+ OLs with IL-33 expression in mice subjected to CPZ feeding for durations of 6 and 8 weeks. In parallel, the levels of IL-33 in the corpus callosum declined after CPZ-containing diet. Furthermore, we conducted experiments utilizing primary oligodendrocyte precursor cells (OPCs) and mature OLs, which were exposed to CPZ. A decrease in the expression of myelin basic protein (MBP) was evident in the cultures of mature OLs after treatment with CPZ. Additionally, both IL-33 mRNA and protein levels exhibited downregulation. To counteract the diminished IL-33 levels induced by CPZ, we employed a lentiviral vector to overexpress IL-33 in OLs. Intriguingly, the overexpression of IL-33 (IL33OE) in OLs resulted in a more distinct membranous morphology following CPZ treatment when compared to that observed in OL Mock cultures. Moreover, MBP protein levels in the presence of CPZ were higher in IL33OE OLs than that detected in OL Mock cultures. These findings collectively indicate that IL-33 possesses the capability to mitigate CPZ-induced damage and bolster OL homeostasis. In summary, our study underscores the importance of IL-33 in the context of demyelinating diseases, shedding light on its potential therapeutic implications for fostering remyelination and preserving OL function.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Gao X, Yang Y, Zhu J, Zhang Y, Wang C, Wang Z, Mi W, Du L. Xanthotoxol relieves itch in mice via suppressing spinal GRP/GRPR signaling. Eur J Pharmacol 2023; 960:176147. [PMID: 37871763 DOI: 10.1016/j.ejphar.2023.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.
Collapse
Affiliation(s)
- Xinyi Gao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuxin Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhifei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lixia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Sun J, Wang XH, Song FH, Li DY, Gao SJ, Zhang LQ, Wu JY, Liu DQ, Wang LW, Zhou YQ, Mei W. Inhibition of Brd4 alleviates osteoarthritis pain via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Br J Pharmacol 2023; 180:3194-3214. [PMID: 37485568 DOI: 10.1111/bph.16195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) pain remains a major clinical problem. It is urgent to identify novel therapeutic approaches for OA pain states. Bromodomain and extra-terminal (BET) protein inhibitors have robust anti-inflammatory effects in several pain models. However, the underlying mechanisms of these inhibitors in OA pain have not been determined. We, therefore, investigated the effects and the underlying mechanism(s) of BET inhibition on pain-related behaviours in a rat model of OA. EXPERIMENTAL APPROACH The OA model was established by intra-articular injection of monosodium iodoacetate (MIA) in rat knees. Pain behaviours were assessed in rats by hindlimb weight-bearing asymmetry, mechanical allodynia and thermal hyperalgesia. Possible mechanisms underlying BET inhibition were explored in the MIA-induced OA pain model in the spinal cord and dorsal root ganglia (DRG). KEY RESULTS Inhibiting bromodomain-containing protein 4 (Brd4) with either JQ1 or MS417, or using AAV2/9-shRNA-Brd4-EGFP-mediated knockdown of Brd4 genes, significantly attenuated MIA-induced pain behaviours. Brd4 inhibition suppressed NF-κB and NF-κB-mediated inflammatory cytokines in both the spinal cord and DRG in rats with MIA-induced OA pain. Brd4 inhibition also attenuated the oxidative stress and promoted nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant genes in both the spinal cord and DRG in our odel of MIA-induced OA pain. CONCLUSIONS AND IMPLICATIONS In conclusion, Brd4 inhibition alleviated MIA-induced OA pain in rats, via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Although our model does not perfectly represent how OA develops in humans, inhibition of Brd4 may provide novel insights into possible treatments for OA pain.
Collapse
Affiliation(s)
- Jia Sun
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-He Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Liu R, Liu L, Ren S, Wei C, Wang Y, Li D, Zhang W. The role of IL-33 in depression: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1242367. [PMID: 38025419 PMCID: PMC10646299 DOI: 10.3389/fpsyt.2023.1242367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Depression has long been considered a disease involving immune hyperactivation. The impact of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-8 on depression has been widely studied. However, the effect of IL-33, another pro-inflammatory cytokine, has been less researched. Currently, research on the correlation between IL-33 and depression risk is inconsistent. In response to these divergent results, we conducted a review and meta-analysis aimed at resolving published research on the correlation between IL-33 and depression risk, and understanding the potential role of IL-33 in the development and treatment of depression. After searching different databases, we analyzed 8 studies. Our meta-analysis showed that IL-33 had a positive correlation with reduced risk of depression. The pooled standard mean differences (SMD) = 0.14, 95% confidence interval (CI): 0.05-0.24. Subgroup analysis results showed that IL-33 and ST2 levels in cerebrospinal fluid and serum is positive correlated with reduced risk of major depressive disorder (MDD) and bipolar disorder (BD). According to the characteristics of the included literature, the results mainly focuses on Caucasian. Furthermore, according to the subgroup analysis of depression-related data sources for disease or treatment, the correlation between IL-33 and depression risk is reflected throughout the entire process of depression development and treatment. Therefore, the change of IL-33 level in serum and cerebrospinal fluid can serve as useful indicators for assessing the risk of depression, and the biomarker provides potential treatment strategies for reducing the burden of the disease.
Collapse
Affiliation(s)
- Renli Liu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shiying Ren
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wenxin Zhang
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Li P, Yu Q, Nie H, Yin C, Liu B. IL-33/ST2 signaling in pain and itch: Cellular and molecular mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115143. [PMID: 37450998 DOI: 10.1016/j.biopha.2023.115143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pain is a cardinal feature of many diseases. Chronic pain poses heavy burdens to the suffering patients, both physically and mentally. However, current mainstream medications for chronic pain, including opioids, antidepressants and non-steroid anti-inflammatory drugs are sometimes inefficient for chronic pain management and may cause side effects that limit long term usage. IL-33 belongs to IL-1 cytokine family and it exerts biological activities through binding to its specific receptor ST2. IL-33/ST2 signaling is very important in both innate and adaptive immunity. Emerging evidence indicates IL-33/ST2 signaling regulates pain in both immune and somatosensory systems through promoting neuro-immune or neuron-glia crosstalk, neuroinflammation and neuronal hyperexcitability. Some very latest studies indicate a vital part of IL-33/ST2 in mediating chronic itch. This work aims to overview the existing knowledge regarding the mechanisms of IL-33/ST2 involvement in pain and itch conditions, considering their potential similarities. We also summarized some key findings obtained from clinical studies. The targeting of IL-33/ST2 signaling holds promise for the development of novel therapeutic modalities in the management of pain and itch.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
13
|
Ferrarelli LK. Glia turn opioids painful. Sci Signal 2023; 16:eadh2919. [PMID: 36853963 DOI: 10.1126/scisignal.adh2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Co-targeting glial cells may block the paradoxical increase in pain caused by repeated opioid use.
Collapse
|
14
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
15
|
CircNf1-mediated CXCL12 expression in the spinal cord contributes to morphine analgesic tolerance. Brain Behav Immun 2023; 107:140-151. [PMID: 36202171 DOI: 10.1016/j.bbi.2022.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Severe pain in patients can be alleviated by morphine treatment. However, long-term morphine treatment induces analgesic tolerance and the molecular mechanism of morphine analgesic intolerance is still not fully elucidated. Therefore, a novel target for improving morphine analgesic tolerance is required. Whole-genome sequencing showed that circNf1 is highly expressed in the dorsal horns of morphine-treated rats. Circular RNAs (circRNAs) are known to be unique and conserved cellular molecules that are mostly present in cytoplasm and participate in various biochemical processes with different functions. Therefore, we focused on exploring the molecular mechanism by which circNf1 contributes to morphine analgesic tolerance. METHODS CircRNA sequencing revealed differential expression of circRNAs after morphine treatment, and bioinformatics software programs (miRNAda, PicTar, and RNAhybrid) were used to predict possible mRNAs and binding sites. RNA binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), fluorescence in situ hybridization (FISH), western blotting, biotin-coupled probe pull-down assay, luciferase assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect and measure the expression levels of circRNAs, mRNAs, and proteins. Intrathecal injections of small interfering RNAs (siRNAs), microRNA (miRNA) agomirs, and functional virus microinjections were administered to artificially mediate the expression of molecules. Tail immersion and hotplate tests were performed to evaluate morphine analgesic tolerance. RESULTS Morphine-induced circNf1 expression was high in the spinal cord. RIP-PCR and luciferase assay data showed that circNf1 could combine with both miR-330-3p and miR-665, and FISH showed that circNf1 co-localized with miR-330-3p and miR-665. qRT-PCR assay showed downregulation of miR-330-3p and miR-665 in morphine-treated rats; western blotting results showed that CXCL12 increased after morphine treatment, however, the upregulation of CXCL12 could be alleviated after the intrathecal injection of miR-330-3p as well as miR-665 agomir. qRT-PCR indicated that circNf1 can bind to CXCL12 promoter, the increased circNf1 can enhance CXCL12 mRNA in naïve rats, and inhibition of circNf1 can alleviate the upregulation of CXCL12 mRNA in morphine-treated rats. Behavioral tests revealed that inhibition of circNf1 and CXCL12 and the enhancement of miR-330-3p and miR-665 can alleviate morphine analgesic tolerance. CONCLUSIONS Our study indicates a novel pathway that can contribute to morphine analgesic tolerance, the circRNA to cytokine pathway, in which circNf1 functions as a sponge for miR-330-3p and miR-665 and induces the upregulation of CXCL12 at both transcriptional and translational levels in morphine-treated rats.
Collapse
|
16
|
Ouyang H, Zhang J, Chi D, Zhang K, Huang Y, Huang J, Huang W, Bai X. The YTHDF1-TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19:310. [PMID: 36550542 PMCID: PMC9784087 DOI: 10.1186/s12974-022-02672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1β, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1β, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.
Collapse
Affiliation(s)
- Handong Ouyang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jianxing Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Dongmei Chi
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Kun Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Yongtian Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jingxiu Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Wan Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Xiaohui Bai
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China ,grid.412536.70000 0004 1791 7851Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang Road West, Guangzhou, China
| |
Collapse
|
17
|
Ji J, Yan N, Zhang Z, Li B, Xue R, Dang Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci Lett 2022; 788:136857. [PMID: 36038030 DOI: 10.1016/j.neulet.2022.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Jinshan Ji
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ni Yan
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Disease Control and Prevention, The Affiliated Ninth Hospital of Xi'an of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Baoli Li
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ruiyang Xue
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Yonghui Dang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
18
|
Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the Matrix: The Role of Extracellular Matrix Remodeling in Opioid Use Disorder. Front Integr Neurosci 2022; 16:899637. [PMID: 35757099 PMCID: PMC9218427 DOI: 10.3389/fnint.2022.899637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Opioid use disorder (OUD) and deaths from drug overdoses have reached unprecedented levels. Given the enormous impact of the opioid crisis on public health, a more thorough, in-depth understanding of the consequences of opioids on the brain is required to develop novel interventions and pharmacological therapeutics. In the brain, the effects of opioids are far reaching, from genes to cells, synapses, circuits, and ultimately behavior. Accumulating evidence implicates a primary role for the extracellular matrix (ECM) in opioid-induced plasticity of synapses and circuits, and the development of dependence and addiction to opioids. As a network of proteins and polysaccharides, including cell adhesion molecules, proteases, and perineuronal nets, the ECM is intimately involved in both the formation and structural support of synapses. In the human brain, recent findings support an association between altered ECM signaling and OUD, particularly within the cortical and striatal circuits involved in cognition, reward, and craving. Furthermore, the ECM signaling proteins, including matrix metalloproteinases and proteoglycans, are directly involved in opioid seeking, craving, and relapse behaviors in rodent opioid models. Both the impact of opioids on the ECM and the role of ECM signaling proteins in opioid use disorder, may, in part, depend on biological sex. Here, we highlight the current evidence supporting sex-specific roles for ECM signaling proteins in the brain and their associations with OUD. We emphasize knowledge gaps and future directions to further investigate the potential of the ECM as a therapeutic target for the treatment of OUD.
Collapse
Affiliation(s)
- Madelyn H. Ray
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Madeline K. Kuppe
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Camron D. Bryant
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ryan W. Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|