1
|
Yu X, Wu H, Wu Z, Lan Y, Chen W, Wu B, Deng Y, Liu J. Nuclear pore complex protein RANBP2 and related SUMOylation in solid malignancies. Genes Dis 2025; 12:101407. [PMID: 40271196 PMCID: PMC12017851 DOI: 10.1016/j.gendis.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/21/2024] [Indexed: 04/25/2025] Open
Abstract
The growing interest in post-translational protein modification, particularly in SUMOylation, is driven by its crucial role in cell cycle regulation. SUMOylation affects various cell cycle regulators, including oncogenes, suggesting its relevance in cancer. SUMO E3 ligases are pivotal in this process, exhibiting diverse functionalities through structural domains and subcellular localizations. A less-explored SUMO E3 ligase, RANBP2, a component of the vertebrate nuclear pore complex, emerges as a central player in cellular cycle processes, as well as in tumorigenesis. The current studies illuminate the importance of RANBP2 and underscore the need for more extensive studies to validate its clinical applicability in neoplastic interventions. Our review elucidates the significance of RANBP2 across various types of malignancies. Additionally, it delves into exploring RANBP2 as a prospective therapeutic target for cancer treatment, offering insights into the avenues that scholars should pursue in their subsequent research endeavors. Thus, further investigation into RANBP2's role in solid tumorigenesis is eagerly awaited.
Collapse
Affiliation(s)
- Xinning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huatao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yangzheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenjia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
2
|
Sun X, Yang Z, Li M, Gong S, Miao X, Wang B, Kong X, Zhu Q. Interferon regulatory factor 1 contributes to metabolic dysfunction associated steatotic liver disease. Life Sci 2025; 370:123575. [PMID: 40132726 DOI: 10.1016/j.lfs.2025.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction associated steatotic liver disease (MASLD), has reached epidemic levels in multiple regions worldwide and contributes to cirrhosis and hepatocellular carcinoma. We have previously reported that the CC motif chemokine ligand 11 (CCL11) is a key regulator of MASLD. Expression of interferon regulatory factor 1 (IRF1) can be up-regulated by CCL11 treatment in hepatocytes, the relevance of which is not clear. In the present study we investigated the role of IRF1 in NAFLD pathogenesis. METHODS AND MATERIALS MASLD was investigated in mice fed a high-fat high carbohydrate (HFHC) diet or in the genetically predisposed obese mice (db/db). KEY FINDINGS Hepatocytes from CCL11 knockout mice displayed a less severe MASLD phenotype, when treated with palmitic acid (PA), compared to wild type hepatocytes, which could be normalized by IRF1 over-expression. On the contrary, IRF1 knockdown in hepatocytes significantly down-regulated expression of pro-inflammatory mediators and dampened lipid accumulation induced by PA treatment. More importantly, IRF1 knockdown in hepatocytes led to amelioration of MASLD in mice. RNA-seq and CUT&Tag-seq identified pro-MASLD genes, including Osbpl3, Ddit4, and Ccl2, as potential targets for IRF1 in hepatocytes. SIGNIFICANCE Our data reveal a novel regulatory role of IRF1 in MASLD pathogenesis. Targeting IRF1 can be considered as a reasonable approach for MASLD intervention.
Collapse
Affiliation(s)
- Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Zhen Yang
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Min Li
- Center for Experimental Medicine, Department of Pathophysiology, Jiangsu Health Vocational College, China
| | - Shanwen Gong
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Bo Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, the Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qiang Zhu
- Department of Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Yi N, Zhang L, Huang X, Ma J, Gao J. Lenvatinib-activated NDUFA4L2/IL33/PADI4 pathway induces neutrophil extracellular traps that inhibit cuproptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2025; 48:487-504. [PMID: 39585643 PMCID: PMC11996955 DOI: 10.1007/s13402-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Lenvatinib is a potent first-line therapy for patients with hepatocellular carcinoma (HCC), but it also increased the number of neutrophils in HCC tumor microenvironment. METHODS CitH3, MPO-DNA, elastase and MPO activity were measured for assessing neutrophil extracellular traps (NETs) in vivo and in vitro. Cell cuproptosis was assessed by measurement of copper content, FDX1, and pyruvate. The functions of lenvatinib, DNase I, interleukin 33 (IL33) neutralizing antibody and GPX4 in tumor growth were explored in mice. RESULTS Lenvatinib induced NETs in the HCC tumor microenvironment via HCC cells, but not through the direct stimulation of neutrophils. In addition, NET clearance by DNase I improves the efficacy of lenvatinib therapy in HCC mouse models. Mechanistically, lenvatinib promoted the expression and secretion of IL33 by HCC cells that triggered NET formation. Moreover, IL33 knockdown in Hepa1-6 cells improved lenvatinib efficacy in Hepa1-6-bearing HCC model mice and reduced NET formation in the tumor microenvironment. Subsequently, lenvatinib increased IL33 production by increasing the NDUFA4L2 expression in HCC cells. Furthermore, we found that IL33 triggered NET formation in neutrophils by increasing the protein expression of PADI4 via the Akt/mTOR signaling pathway. Rapamycin inhibition of mTOR reduced PADI4 expression and NET formation. Consistently, PADI4 inhibition by the selective PAD4 inhibitor GSK484 hydrochloride (GSK484) improved lenvatinib response to HCC therapy. Importantly, NETs contribute to lenvatinib resistance by inhibiting cuproptosis, but not apoptosis, pyroptosis, or ferroptosis in HCC cells. Treatment with GSK484 reversed the inhibitory effects of NETs on cuproptosis and sensitized the HCC cells to lenvatinib. CONCLUSIONS Our study revealed that lenvatinib-induced NETs inhibited the cuproptosis of HCC cells, suggesting that targeting the IL33/PADI4/NET axis represents a promising therapeutic strategy for ameliorating lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Lingyun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Piao Y, Zhai N, Zhang X, Zhao W, Li M. Post-translational modifications in hepatocellular carcinoma: unlocking new frontiers in immunotherapy. Front Immunol 2025; 16:1554372. [PMID: 40040703 PMCID: PMC11876159 DOI: 10.3389/fimmu.2025.1554372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), is one of the most common and aggressive malignancies worldwide. Immunotherapy has shown promising results in treating HCC, but its efficacy is often limited by complex mechanisms of immune evasion. Post-translational modifications (PTMs) of proteins play a critical role in regulating the immune responses within the tumor microenvironment (TME). These modifications influence protein function, stability, and interactions, which either promote or inhibit immune cell activity in cancer. In this mini-review, we explore the diverse PTMs that impact immune evasion in liver cancer, including glycosylation, phosphorylation, acetylation, and ubiquitination. We focus on how these PTMs regulate key immune checkpoint molecules such as PD-L1, CTLA-4, and the TCR complex. Furthermore, we discuss the potential of targeting PTMs in combination with existing immunotherapies to enhance the effectiveness of treatment in HCC. Understanding the role of PTMs in immune regulation may lead to the development of novel therapeutic strategies to overcome resistance to immunotherapy in liver cancer.
Collapse
Affiliation(s)
- Yuexian Piao
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| | - Naicui Zhai
- Core Facility of First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Sheng F, Li M, Yu JM, Yang SY, Zou L, Yang GJ, Zhang LL. IL-33/ST2 axis in diverse diseases: regulatory mechanisms and therapeutic potential. Front Immunol 2025; 16:1533335. [PMID: 39925809 PMCID: PMC11802536 DOI: 10.3389/fimmu.2025.1533335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor and member of the IL-1 cytokine family. IL-33 is mainly expressed by epithelial and endothelial cells and exerts its function through interaction with various immune cells, and binding to its receptor can form the IL-33/Suppression of tumorigenicity 2 (ST2) signaling pathway. While most cytokines are actively synthesized within cells, IL-33 is produced passively in response to tissue damage or cell necrosis, indicating its role as a signaling molecule following cellular infection, stress, or trauma. IL-33/ST2 signaling pathway has been proved to play diverse role in the pathological process of central nervous system disorders, cancer, fibrosis, autoimmune diseases, etc. Although research on the IL-33/ST2 signaling pathway has deepened recently, relevant treatment strategies have been proposed, and even targeted drugs are in the preclinical stage; further research on the effect of the IL-33/ST2 signaling pathway in different diseases is still necessary, to provide a clearer understanding of the different roles of IL-33/ST2 in disease progression and to develop new drugs and treatment strategies. Because IL-33/ST2 plays an important role in the occurrence and progression of diseases, the study of therapeutic drugs targeting this pathway is also necessary. This review focused on recent studies on the positive or negative role of IL-33/ST2 in different diseases, as well as the current related drugs targeting IL-33/ST2 in the preclinical and clinical stage. The mechanism of IL-33/ST2 in different diseases and its mediating effect on different immune cells have been summarized, as well as the antibody drugs targeting IL-33 or ST2, natural compounds with a mediating effect, and small molecule substances targeting relative pathway. We aim to provide new ideas and treatment strategies for IL-33/ST2-related drugs to treat different diseases.
Collapse
Affiliation(s)
- Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Si-Yu Yang
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro−Products, Ningbo University, Ningbo, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
6
|
Kotas ME, Gordon ED. Innovation through imitation: IL-33 decoys show promise in pulmonary fibrosis. J Pharmacol Exp Ther 2025; 392:100035. [PMID: 39893003 DOI: 10.1016/j.jpet.2024.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
7
|
Zhang X, Cao J, Li X, Zhang Y, Yan W, Ding B, Hu J, Liu H, Chen X, Nie Y, Liu F, Lin N, Wang S. Comprehensive Analysis of the SUMO-related Signature: Implication for Diagnosis, Prognosis, and Immune Therapeutic Approaches in Cervical Cancer. Biochem Genet 2024; 62:4654-4678. [PMID: 38349439 DOI: 10.1007/s10528-024-10728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 11/29/2024]
Abstract
SUMOylation, an important post-translational protein modification, plays a critical role in cancer development and immune processes. This study aimed to construct diagnostic and prognostic models for cervical cancer (CC) using SUMOylation-related genes (SRGs) and explore their implications for novel clinical therapies. We analyzed the expression profiles of SRGs in CC patients and identified 15 SRGs associated with CC occurrence. After the subsequent qPCR verification of 20 cases of cancer and adjacent tissues, 13 of the 15 SRGs were differentially expressed in cancer tissues. Additionally, we identified molecular markers associated with the prognosis and recurrence of CC patients, based on SRGs. Next, a SUMOScore, based on SRG expression patterns, was generated to stratify patients into different subgroups. The SUMOScore showed significant associations with the tumor microenvironment, immune function features, immune checkpoint expression, and immune evasion score in CC patients, highlighting the strong connection between SUMOylation factors and immune processes. In terms of immune therapy, our analysis identified specific chemotherapy drugs with higher sensitivity in the subgroups characterized by high and low SUMOScore, indicating potential treatment options. Furthermore, we conducted drug sensitivity analysis to evaluate the response of different patient subgroups to conventional chemotherapy drugs. Our findings revealed enrichment of immune-related pathways in the low-risk subgroup identified by the prognostic model. In conclusion, this study presents diagnostic and prognostic models based on SRGs, accompanied by a comprehensive index derived from SRGs expression patterns. These findings offer valuable insights for CC diagnosis, prognosis, treatment, and immune-related analysis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jian Cao
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, 832003, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Ning Lin
- Jiangsu Institute of Planned Parenthood Research, Nanjing, 210036, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
8
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Luo X, Huang W, Li S, Sun M, Hu D, Jiang J, Zhang Z, Wang Y, Wang Y, Zhang J, Wu Z, Ji X, Liu D, Chen X, Zhang B, Liang H, Li Y, Liu B, Wang S, Xu X, Nie Y, Wu K, Fan D, Xia L. SOX12 Facilitates Hepatocellular Carcinoma Progression and Metastasis through Promoting Regulatory T-Cells Infiltration and Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310304. [PMID: 39072947 PMCID: PMC11423149 DOI: 10.1002/advs.202310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-β1 (TGF-β1)/TGFβR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFβR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFβR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjie Huang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Siwen Li
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengyu Sun
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dian Hu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junqing Jiang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zerui Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yijun Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yufei Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiaqian Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhangfan Wu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ji
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Danfei Liu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoping Chen
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Bixiang Zhang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Huifang Liang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Limin Xia
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| |
Collapse
|
10
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China; (C.Z.); (X.Z.); (H.L.); (Z.H.)
| |
Collapse
|
11
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED, Chien CM, Chiu CC, Chang WT. Burning down the house: Pyroptosis in the tumor microenvironment of hepatocellular carcinoma. Life Sci 2024; 347:122627. [PMID: 38614301 DOI: 10.1016/j.lfs.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1β and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.
Collapse
Affiliation(s)
- Chi Cheng
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Yang Y, Yu F. Abnormal protein SUMOylation in liver disease: novel target for therapy. J Mol Med (Berl) 2024; 102:719-731. [PMID: 38565749 DOI: 10.1007/s00109-024-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
SUMOylation is an important protein post-translational modification (PTM) process, in which the small ubiquitin-like modifier (SUMO) protein covalently binds to the target protein and regulates stability, subcellular localization, and protein-protein interaction of the target protein. Protein SUMOylation exerts crucial regulatory function in the liver, and its abnormalities are associated with various liver-related disease processes. This review focuses on the biological functions of protein SUMOylation in liver-related diseases in recent years, summarizes the molecular mechanisms of SUMOylation in the replication of hepatitis viruses and the occurrence of hepatocellular carcinoma, and discusses the significance of SUMOylation in liver-related disorders, which is essential for understanding liver biological processes and formulating therapeutic strategies.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Fuxun Yu
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
13
|
Chen Z, Balachandran YL, Chong WP, Chan KWY. Roles of Cytokines in Alzheimer's Disease. Int J Mol Sci 2024; 25:5803. [PMID: 38891990 PMCID: PMC11171747 DOI: 10.3390/ijms25115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The neuroimmune system is a collection of immune cells, cytokines, and the glymphatic system that plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Of particular focus are cytokines, a group of immune signaling molecules that facilitate communication among immune cells and contribute to inflammation in AD. Extensive research has shown that the dysregulated secretion of certain cytokines (IL-1β, IL-17, IL-12, IL-23, IL-6, and TNF-α) promotes neuroinflammation and exacerbates neuronal damage in AD. However, anti-inflammatory cytokines (IL-2, IL-3, IL-33, and IL-35) are also secreted during AD onset and progression, thereby preventing neuroinflammation. This review summarizes the involvement of pro- and anti-inflammatory cytokines in AD pathology and discusses their therapeutic potential.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Yekkuni L. Balachandran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Shi H, Chen L, Wang T, Zhang W, Liu J, Huang Y, Li J, Qi H, Wu Z, Wang Y, Chen H, Zhu Y, Li Q. Nur77-IRF1 axis inhibits esophageal squamous cell carcinoma growth and improves anti-PD-1 treatment efficacy. Cell Death Discov 2024; 10:254. [PMID: 38789431 PMCID: PMC11126585 DOI: 10.1038/s41420-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The nuclear receptor Nur77 plays paradoxical roles in numerous cancers. However, whether Nur77 inhibits esophageal squamous cell carcinoma (ESCC) growth and affects immunological responses against ESCC has not been determined. The functional role of Nur77 in ESCC was investigated in this study using human ESCC cell lines, quantitative real-time polymerase chain reaction (PCR), cell proliferation and colony formation assays, flow cytometry analysis, western blotting and animal models. The target gene controlled by Nur77 was verified using dual-luciferase reporter assays, chromatin immunoprecipitation analysis and functional rescue experiments. To examine the clinical importance of Nur77, 72 human primary ESCC tissues were subjected to immunohistochemistry. Taken together, these findings showed that, both in vitro and in vivo, Nur77 dramatically reduced ESCC cell growth and triggered apoptosis. Nur77 directly interacts with the interferon regulatory factor 1 (IRF1) promoter to inhibit its activity in ESCC. Pharmacological induction of Nur77 using cytosporone B (CsnB) inhibited ESCC cell proliferation and promoted apoptosis both in vitro and in vivo. Furthermore, CsnB increased CD8+ T-cell infiltration and cytotoxicity to inhibit the formation of ESCC tumors in an immunocompetent mouse model. In ESCC tissues, Nur77 expression was downregulated, and IRF1 expression was increased; moreover, their expression levels were negatively related. IRF1 and Nur77 were strongly correlated with overall survival. These findings suggested that Nur77 targets and regulates the IRF1/PD-L1 axis to serve as a tumor suppressor in ESCC. Graphical abstract of the regulatory mechanism of Nur77 overexpression downregulates IRF1 in the inhibition of ESCC progression and enhance anti-PD-1 therapy efficacy.
Collapse
Affiliation(s)
- Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yi Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Yongjun Zhu
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
15
|
Wang Z, Wu L, Zhou Y, Chen Z, Zhang T, Wei H, Wang Z. Protein and metabolic profiles of tyrosine kinase inhibitors co-resistant liver cancer cells. Front Pharmacol 2024; 15:1394241. [PMID: 38835670 PMCID: PMC11149701 DOI: 10.3389/fphar.2024.1394241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) patients often develop resistance to tyrosine kinase inhibitors (TKIs) like sorafenib (SR) and lenvatinib (RR). We established HCC cell lines resistant to these drugs and analyzed the correlation between protein and metabolite profiles using bioinformatics. Our analysis revealed overexpression of MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1, and downregulation of IFITM3, CA4, AGR2, and SLC51B in drug-resistant cells. Differential signals are mainly enriched in steroid hormone biosynthesis, cell adhesion, and immune synapses, with metabolic pathways including cytochrome P450 drug metabolism, amino acid metabolism, and glycolysis. Proteomics and metabolomics analysis showed co-enrichment signals in drug metabolism, amino acids, glucose metabolism, ferroptosis, and other biological processes. Knocking down MISP, CHMP2B, IL-18, TMSB4X, and EFEMP1 significantly reduced drug resistance, indicating their potential as therapeutic response biomarkers. This study characterizes protein and metabolic profiles of drug-resistant HCC cells, exploring metabolite-protein relationships to enhance understanding of drug resistance mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Linqing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Cadres's Healthcare Office, Fujian Provincial Hospital, Fuzhou, China
| | - Zhihong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
16
|
Wang Z, Tang N. Unpacking the complexity of nuclear IL-33 (nIL-33): a crucial regulator of transcription and signal transduction. J Cell Commun Signal 2023:10.1007/s12079-023-00788-1. [PMID: 37878185 DOI: 10.1007/s12079-023-00788-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Interleukin-33 (IL-33) (NF-HEV), a chromatin-associated nuclear cytokine, is a member of the IL-1 family. IL-33 possesses a nuclear localization signal and a homeodomain (a structure resembling a helix-turn-helix) that can bind to nuclear chromatin. Research has revealed that IL-33 can function as a nuclear factor to regulate various biological processes. This review discusses the cellular localization, functional effects, and immune regulation of full length IL-33 (FLIL-33), cytokine IL-33 (sIL-33) and nuclear IL-33 (nIL-33). In addition, the post-translational modifications of nIL-33 and the hypothesis of using nIL-33 as a treatment method were also summarized. A multidisciplinary approach is required which integrates methods and techniques from genomics, proteomics, cell biology and immunology to provide comprehensive insights into the function and therapeutic potential of nIL-33.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
17
|
Pan B, Chen Z, Zhang X, Wang Z, Yao Y, Wu X, Qiu J, Lin H, Yu L, Tu H, Tang N. 2,5-dimethylcelecoxib alleviated NK and T-cell exhaustion in hepatocellular carcinoma via the gastrointestinal microbiota-AMPK-mTOR axis. J Immunother Cancer 2023; 11:e006817. [PMID: 37316264 DOI: 10.1136/jitc-2023-006817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND 2,5-dimethylcelecoxib (DMC), a derivative of celecoxib, is an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1). Our previous studies have demonstrated that DMC inhibits the expression of programmed death-ligand 1 on hepatocellular carcinoma (HCC) cells to prevent tumor progression. However, the effect and mechanism of DMC on HCC infiltrating immune cells remain unclear. METHODS In this study, single-cell-based high-dimensional mass cytometry was performed on the tumor microenvironment of HCC mice treated with DMC, celecoxib and MK-886 (a known mPGES-1 inhibitor). Moreover, 16S ribosomal RNA sequencing was employed to analyze how DMC improved the tumor microenvironment of HCC by remodeling the gastrointestinal microflora. RESULTS We found that (1) DMC significantly inhibited the growth of HCC and improved the prognosis of the mice, and this depended on the stronger antitumor activity of natural killer (NK) and T cells; (2) compared with celecoxib and MK-886, DMC significantly enhanced the cytotoxic and stem-like potential, and inhibited exhaustion of NK and T cells; (3) mechanistically, DMC inhibited the expression of programmed cell death protein-1 and upregulated interferon-γ expression of NK and T cells via the gastrointestinal microbiota (Bacteroides acidifaciens, Odoribacter laneus, and Odoribacter splanchnicus)-AMPK-mTOR axis. CONCLUSIONS Our study uncovers the role of DMC in improving the tumor microenvironment of HCC, which not only enriches the relationship between the mPGES-1/prostaglandin E2 pathway and the antitumor function of NK and T cells, but also provide an important strategic reference for multitarget or combined immunotherapy of HCC.Cite Now.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua Lin
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Liumin Yu
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Haijian Tu
- School of Basic Medical Sciences, Putian University, Putian, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|