1
|
Toure MA, Motoyama K, Xiang Y, Urgiles J, Kabinger F, Koglin AS, Iyer RS, Gagnon K, Kumar A, Ojeda S, Harrison DA, Rees MG, Roth JA, Ott CJ, Schiavoni R, Whittaker CA, Levine SS, White FM, Calo E, Richters A, Koehler AN. Targeted degradation of CDK9 potently disrupts the MYC-regulated network. Cell Chem Biol 2025; 32:542-555.e10. [PMID: 40154489 PMCID: PMC12042413 DOI: 10.1016/j.chembiol.2025.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
CDK9 coordinates signaling events that regulate transcription and is implicated in oncogenic pathways, making it an actionable target for drug development. While numerous CDK9 inhibitors have been developed, success in the clinic has been limited. Targeted degradation offers a promising alternative. A comprehensive evaluation of degradation versus inhibition is needed to assess when degradation might offer superior therapeutic outcomes. We report a selective and potent CDK9 degrader with rapid kinetics, comparing its downstream effects to those of a conventional inhibitor. We validated that CDK9 inhibition triggers a compensatory feedback mechanism that dampens its anticipated effect on MYC expression and found that this was absent when degraded. Importantly, degradation is more effective at disrupting MYC transcriptional regulation and subsequently destabilizing nucleolar homeostasis, likely by abrogation of both enzymatic and scaffolding functions of CDK9. These findings suggest that CDK9 degradation offers a more robust strategy to overcome limitations associated with its inhibition.
Collapse
Affiliation(s)
- Mohammed A Toure
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Keisuke Motoyama
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Yichen Xiang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Julie Urgiles
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA; Harvard-MIT Health Sciences and Technology, Boston, MA 02115, USA
| | - Florian Kabinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Ann-Sophie Koglin
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ramya S Iyer
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlyn Gagnon
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amruth Kumar
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Ojeda
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Drew A Harrison
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Christopher J Ott
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT BioMicro Center, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andre Richters
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA.
| |
Collapse
|
2
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
3
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
5
|
Seger R. Special Issue: MAPK Signaling Cascades in Human Health and Diseases. Int J Mol Sci 2024; 25:11226. [PMID: 39457006 PMCID: PMC11509016 DOI: 10.3390/ijms252011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In order to survive and fulfil their functions, cells of any organism need to be able to respond to a large number of extracellular factors, also termed extracellular stimuli [...].
Collapse
Affiliation(s)
- Rony Seger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Toure MA, Motoyama K, Xiang Y, Urgiles J, Kabinger F, Koglin AS, Iyer RS, Gagnon K, Kumar A, Ojeda S, Harrison DA, Rees MG, Roth JA, Ott CJ, Schiavoni R, Whittaker CA, Levine SS, White FM, Calo E, Richters A, Koehler AN. Targeted Degradation of CDK9 Potently Disrupts the MYC Transcriptional Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593352. [PMID: 38952800 PMCID: PMC11216368 DOI: 10.1101/2024.05.14.593352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) coordinates signaling events that regulate RNA polymerase II (Pol II) pause-release states. It is an important co-factor for transcription factors, such as MYC, that drive aberrant cell proliferation when their expression is deregulated. CDK9 modulation offers an approach for attenuating dysregulation in such transcriptional programs. As a result, numerous drug development campaigns to inhibit CDK9 kinase activity have been pursued. More recently, targeted degradation has emerged as an attractive approach. However, comprehensive evaluation of degradation versus inhibition is still critically needed to assess the biological contexts in which degradation might offer superior therapeutic benefits. We validated that CDK9 inhibition triggers a compensatory mechanism that dampens its effect on MYC expression and found that this feedback mechanism was absent when the kinase is degraded. Importantly, CDK9 degradation is more effective than its inhibition for disrupting MYC transcriptional regulatory circuitry likely through the abrogation of both enzymatic and scaffolding functions of CDK9. Highlights - KI-CDK9d-32 is a highly potent and selective CDK9 degrader. - KI-CDK9d-32 leads to rapid downregulation of MYC protein and mRNA transcripts levels. - KI-CDK9d-32 represses canonical MYC pathways and leads to a destabilization of nucleolar homeostasis. - Multidrug resistance ABCB1 gene emerged as the strongest resistance marker for the CDK9 PROTAC degrader.
Collapse
|
7
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation selection by ATP-competitive inhibitors and allosteric communication in ERK2. eLife 2024; 12:RP91507. [PMID: 38537148 PMCID: PMC10972564 DOI: 10.7554/elife.91507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
- Jake W Anderson
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David Vaisar
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David N Jones
- Department of Pharmacology, University of Colorado Anschutz Medical CenterBoulderUnited States
| | - Laurel M Pegram
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | | | - Huifen Chen
- Genentech, Inc.South San FranciscoUnited States
| | | | - Natalie G Ahn
- Department of Biochemistry, University of ColoradoBoulderUnited States
| |
Collapse
|
8
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation Selection by ATP-competitive Inhibitors and Allosteric Communication in ERK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557258. [PMID: 37745518 PMCID: PMC10515847 DOI: 10.1101/2023.09.12.557258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
| | - David Vaisar
- Department of Biochemistry, University of Colorado, Boulder, CO
| | - David N. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Laurel M. Pegram
- Department of Biochemistry, University of Colorado, Boulder, CO
- Present address: Loxo Oncology, Louisville, CO 80027
| | - Guy P. Vigers
- Array BioPharma, Inc., Boulder, CO
- Present address: Allium Consulting LLC, Boulder, CO 80304
| | - Huifen Chen
- Genentech, Inc. South San Francisco, CA, USA
| | | | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO
| |
Collapse
|
9
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|