1
|
Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, Wang J, Song J, Kong E, Yang A. ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy 2024; 20:2719-2737. [PMID: 39087410 PMCID: PMC11587844 DOI: 10.1080/15548627.2024.2386915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Macroautophagy/autophagy is a fundamental cellular catabolic process that delivers cytoplasmic components into double-membrane vesicles called autophagosomes, which then fuse with lysosomes and their contents are degraded. Autophagy recycles cytoplasmic components, including misfolded proteins, dysfunctional organelles and even microbial invaders, thereby playing an essential role in development, immunity and cell death. Autophagosome formation is the main step in autophagy, which is governed by a set of ATG (autophagy related) proteins. ATG16L1 interacts with ATG12-ATG5 conjugate to form an ATG12-ATG5-ATG16L1 complex. The complex acts as a ubiquitin-like E3 ligase that catalyzes the lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), which is crucial for autophagosome formation. In the present study, we found that ATG16L1 was subject to S-palmitoylation on cysteine 153, which was catalyzed by ZDHHC7 (zinc finger DHHC-type palmitoyltransferase 7). We observed that re-expressing ATG16L1 but not the S-palmitoylation-deficient mutant ATG16L1C153S rescued a defect in the lipidation of LC3 and the formation of autophagosomes in ATG16L1-KO (knockout) HeLa cells. Furthermore, increasing ATG16L1 S-palmitoylation by ZDHHC7 expression promoted the production of LC3-II, whereas reducing ATG16L1 S-palmitoylation by ZDHHC7 deletion inhibited the LC3 lipidation process and autophagosome formation. Mechanistically, the addition of a hydrophobic 16-carbon palmitoyl group on Cys153 residue of ATG16L1 enhances the formation of ATG16L1-WIPI2B complex and ATG16L1-RAB33B complex on phagophore, thereby facilitating the LC3 lipidation process and autophagosome formation. In conclusion, S-palmitoylation of ATG16L1 is essential for the lipidation process of LC3 and the formation of autophagosomes. Our research uncovers a new regulatory mechanism of ATG16L1 function in autophagy.Abbreviation: ABE: acyl-biotin exchange; ATG: autophagy related; Baf-A1: bafilomycin A1; 2-BP: 2-bromopalmitate; CCD: coiled-coil domain; co-IP: co-immunoprecipitation; CQ: chloroquine; EBSS: Earle's balanced salt solution; HAM: hydroxylamine; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NP-40: Nonidet P-40; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex I; PTM: post-translational modification; RAB33B: RAB33B, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscope; WD: tryptophan and aspartic acid; WIPI2B: WD repeat domain, phosphoinositide interacting 2B; WT: wild-type; ZDHHC: zinc finger DHHC-type palmitoyltransferase.
Collapse
Affiliation(s)
- Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hesheng Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiong Song
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Ma Y, Yuan X, Wei A, Li X, Patar A, Su S, Wang S, Ma G, Zhu J, Kong E. Enhancing Gpx1 palmitoylation to inhibit angiogenesis by targeting PPT1. Redox Biol 2024; 77:103376. [PMID: 39423458 PMCID: PMC11532489 DOI: 10.1016/j.redox.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024] Open
Abstract
The significance of protein S-palmitoylation in angiogenesis has been largely overlooked, leaving various aspects unexplored. Recent identification of Gpx1 as a palmitoylated protein has generated interest in exploring its potential involvement in novel pathological mechanisms related to angiogenesis. In this study, we demonstrate that Gpx1 undergoes palmitoylation at cysteine-76 and -113, with PPT1 playing a crucial role in modulating the depalmitoylation of Gpx1. Furthermore, we find that PPT1-regulated depalmitoylation negatively impacts Gpx1 protein stability. Interestingly, inhibiting Gpx1 palmitoylation, either through expression of a non-palmitoylated Gpx1 mutant or by expressing PPT1, significantly enhances neovascular angiogenesis. Conversely, in PPT1-deficient mice, angiogenesis is notably attenuated compared to wild-type mice in an Oxygen-Induced Retinopathy (OIR) model, which mimics pathological angiogenesis. Physiologically, under hypoxic conditions, Gpx1 palmitoylation levels are drastically reduced, suggesting that increasing Gpx1 palmitoylation may have beneficial effects. Indeed, enhancing Gpx1 palmitoylation by inhibiting PPT1 with DC661 effectively suppresses retinal angiogenesis in the OIR disease model. Overall, our findings highlight the pivotal role of protein palmitoylation in angiogenesis and propose a novel mechanism whereby the PPT1-Gpx1 axis modulates angiogenesis, thereby providing a potential therapeutic strategy for targeting PPT1 to combat angiogenesis.
Collapse
Affiliation(s)
- Yidan Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Xinxin Yuan
- Sanquan College of Xinxiang Medical University, XinXiang 453003, Henan, China
| | - Aodong Wei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Shaobo Su
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Songtao Wang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Jiangli Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Eryan Kong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
3
|
Chang Y, Zhu J, Li X, Deng Y, Lai B, Ma Y, Tong J, Liu H, Li J, Yang C, Chen Q, Lu C, Liang Y, Qi S, Wang X, Kong E. Palmitoylation regulates myelination by modulating the ZDHHC3-Cadm4 axis in the central nervous system. Signal Transduct Target Ther 2024; 9:254. [PMID: 39327467 PMCID: PMC11427461 DOI: 10.1038/s41392-024-01971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The downregulation of Cadm4 (Cell adhesion molecular 4) is a prominent feature in demyelination diseases, yet, the underlying molecular mechanism remains elusive. Here, we reveal that Cadm4 undergoes specific palmitoylation at cysteine-347 (C347), which is crucial for its stable localization on the plasma membrane (PM). Mutation of C347 to alanine (C347A), blocking palmitoylation, causes Cadm4 internalization from the PM and subsequent degradation. In vivo experiments introducing the C347A mutation (Cadm4-KI) lead to severe myelin abnormalities in the central nervous system (CNS), characterized by loss, demyelination, and hypermyelination. We further identify ZDHHC3 (Zinc finger DHHC-type palmitoyltransferase 3) as the enzyme responsible for catalyzing Cadm4 palmitoylation. Depletion of ZDHHC3 reduces Cadm4 palmitoylation and diminishes its PM localization. Remarkably, genetic deletion of ZDHHC3 results in decreased Cadm4 palmitoylation and defects in CNS myelination, phenocopying the Cadm4-KI mouse model. Consequently, altered Cadm4 palmitoylation impairs neuronal transmission and cognitive behaviors in both Cadm4-KI and ZDHHC3 knockout mice. Importantly, attenuated ZDHHC3-Cadm4 signaling significantly influences neuroinflammation in diverse demyelination diseases. Mechanistically, we demonstrate the predominant expression of Cadm4 in the oligodendrocyte lineage and its potential role in modulating cell differentiation via the WNT-β-Catenin pathway. Together, our findings propose that dysregulated ZDHHC3-Cadm4 signaling contributes to myelin abnormalities, suggesting a common pathological mechanism underlying demyelination diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Yanli Chang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yi Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Birou Lai
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yidan Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Tong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Juanjuan Li
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Chenyu Yang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Chengbiao Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Xiaoning Wang
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Eryan Kong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 PMCID: PMC12010433 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Liu H, Tan R, Tong J, Wen S, Wu C, Rao M, Zhu J, Qi S, Kong E. Palmitoylation is required for Sept8-204 and Sept5 to form vesicle-like structure and colocalize with synaptophysin. J Cell Biochem 2024; 125:e30529. [PMID: 38308620 DOI: 10.1002/jcb.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Sept8 is a vesicle associated protein and there are two typical transcriptional variants (Sept8-204 and Sept8-201) expressed in mice brain. Interestingly, the coexpression of Sept8-204/Sept5 induces the formation of small sized vesicle-like structure, while that of the Sept8-201/Sept5 produces large puncta. Sept8 is previously shown to be palmitoylated. Here it was further revealed that protein palmitoylation is required for Sept8-204/Sept5 to maintain small sized vesicle-like structure and colocalize with synaptophysin, since either the expression of nonpalmitoylated Sept8-204 mutant (Sept8-204-3CA) or inhibiting Sept8-204 palmitoylation by 2-BP with Sept5 produces large puncta, which barely colocalizes with synaptophysin (SYP). Moreover, it was shown that the dynamic palmitoylation of Sept8-204 is controlled by ZDHHC17 and PPT1, loss of ZDHHC17 decreases Sept8-204 palmitoylation and induces large puncta, while loss of PPT1 increases Sept8-204 palmitoylation and induces small sized vesicle-like structure. Together, these findings suggest that palmitoylation is essential for the maintenance of the small sized vesicle-like structure for Sept8-204/Sept5, and may hint their important roles in synaptic functions.
Collapse
Affiliation(s)
- Huicong Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Rong Tan
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Shuo Wen
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Can Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Muding Rao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Urology, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, Department of Urology, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|