1
|
Deminice R, Cella P, Borsari A, Padilha C, de Oliveira V. Angiotensin II Type 1 Receptor Blocker Usage Prevents Oxidative Stress and Muscle Dysfunction in HIV. Fundam Clin Pharmacol 2025; 39:e70016. [PMID: 40421794 PMCID: PMC12108033 DOI: 10.1111/fcp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND We aimed to elucidate the role of Angiotensin II type 1 receptor (AT1R) blocker usage in muscle wasting and dysfunction related to HIV. RESEARCH DESIGN AND METHODS Appendicular skeletal muscle mass, higher and lower limb strength, and physical fitness were determined in people living with HIV (PWH) using AT1R blockers users (n = 33), angiotensin-converting enzyme (ACE) inhibitors (n = 28), or not using antihypertensive drugs (n = 33). Groups had similar age, sex, race, BMI, and time of HIV infection. Muscle biopsies were performed to determine the abundance of AT1R, the relative abundance of selected proteins related to proteolysis, antioxidant enzymes, and oxidative stress. Plasma angiotensin II, IL-6, and TNF-alpha were also determined. RESULTS PWH using AT1R blocker presented higher strength, physical fitness, and muscle mass than PWH using ACE inhibitors or not using antihypertensive drugs. Although both PWH using AT1R blockers and ACE inhibitors presented reduced angiotensin II plasma levels, only PWH using AT1R blockers presented lower skeletal muscle AT1R activation, lower plasma oxidative stress markers, lower skeletal muscle oxidative stress (4-HNE), and proteolysis markers (Atrogin-1, Murf-1). CONCLUSION AT1R blocker usage protects against oxidative stress and activated proteolysis, contributing to the prevention of muscle wasting and dysfunction among PWH.
Collapse
Affiliation(s)
- Rafael Deminice
- Physical Education and Sports InstituteState University of LondrinaLondrinaBrazil
| | - Paola Sanches Cella
- Physical Education and Sports InstituteState University of LondrinaLondrinaBrazil
| | - Ana Lúcia Borsari
- Physical Education and Sports InstituteState University of LondrinaLondrinaBrazil
| | - Camila S. Padilha
- Physical Education and Sports InstituteState University of LondrinaLondrinaBrazil
- Biology of Ageing Laboratory, Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell BiologyRoyal Prince Alfred HospitalSidneyNSWAustralia
- Faculty of Medicine and Health, Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Faculty of Health, School of Sport, Exercise and Rehabilitation SciencesUniversity of Technology SydneyUltimoNSWAustralia
| | - Vitor Hugo Fernando de Oliveira
- Physical Education and Sports InstituteState University of LondrinaLondrinaBrazil
- Department of Child, Family and Population Health NursingUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2025; 480:1935-1949. [PMID: 38811433 PMCID: PMC11961475 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
3
|
Takeshita H, Yamamoto K, Mogi M, Rakugi H. Muscle mass, muscle strength and the renin-angiotensin system. Clin Sci (Lond) 2024; 138:1561-1577. [PMID: 39718491 DOI: 10.1042/cs20220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
The renin-angiotensin system (RAS) is a classically known circulatory regulatory system. In addition to the previously known multi-organ circulatory form of the RAS, the existence of tissue RASs in individual organs has been well established. Skeletal muscle has also been identified as an organ with a distinct RAS. In recent years, the effects of RAS activation on skeletal muscle have been elucidated from several perspectives: differences in motor function due to genetic polymorphisms of RAS components, skeletal muscle dysfunction under conditions of excessive RAS activation such as heart failure, and the effects of the use of RAS inhibitors on muscle strength. In addition, the concept of the RAS itself has recently been expanded with the discovery of a 'protective arm' of the RAS formed by factors such as angiotensin-converting enzyme 2 and angiotensin 1-7. This has led to a new understanding of the physiological function of the RAS in skeletal muscle. This review summarizes the diverse physiological functions of the RAS in skeletal muscle and considers the potential of future therapeutic strategies targeting the RAS to overcome problems such as sarcopenia and muscle weakness associated with chronic disease.
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Medical Science Technology, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | |
Collapse
|
4
|
Santos DCD, Alves FHF, Veríssimo LF, Raquel HA, Volpini VL, Marques LADC, Martins-Pinge MC, Fernandes KBP, Andrade KC, Michelini LC, Pelosi GG. Enalapril induces muscle epigenetic changes and contributes to prevent a decline in running capacity in spontaneously hypertensive rats. Arch Gerontol Geriatr 2024; 129:105699. [PMID: 39581157 DOI: 10.1016/j.archger.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs). Male SHRs were treated with water, enalapril (10/mg/kg/day) or losartan (10/mg/kg/day) for 28 consecutive days and submitted to progressive testing on a treadmill. Body weight, perigonadal and retroperitoneal fat, mean arterial pressure, heart rate, running distance and global DNA methylation in the gastrocnemius and soleus muscles were evaluated. Enalapril reduced the rate of weight gain, as well as reducing retroperitoneal fat (p < 0.05) and MAP (p < 0.05) and avoiding the decline in running distance when compared to the other groups (p > 0.05), even 7 days after the end of treatment (p > 0.05). Moreover, enalapril increased global DNA methylation in gastrocnemius muscle cells (p < 0.01). No effects were observed in the losartan-treated group. Our data showed that enalapril prevented the decline in physical function in SHR, as well as reduced the rate of weight gain of the animals. In addition, the results showed, alterations in the global DNA methylation of skeletal muscle cells skeletal structures of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Denis Carlos Dos Santos
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Fernando Henrique Ferrari Alves
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil; Institute of Science, Technology and Innovation - Federal University of Lavras, São Sebastião do Paraíso, MG, Brazil.
| | - Luiz Fernando Veríssimo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hiviny Ataides Raquel
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Vinicius Lucca Volpini
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo André da Costa Marques
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Karen Barros Parron Fernandes
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Londrina, Paraná, Brazil
| | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Lisete Compagno Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
5
|
Chen LK. Sarcopenia in the era of precision health: Toward personalized interventions for healthy longevity. J Chin Med Assoc 2024; 87:980-987. [PMID: 39257038 DOI: 10.1097/jcma.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sarcopenia, characterized by the progressive loss of skeletal muscle mass and function, significantly impacts health outcomes in older adults. This review explores the evolving landscape of sarcopenia research, with a particular focus on its unique characteristics in Asian populations and emerging pharmaceutical interventions. Recent studies have revealed distinct patterns of muscle mass decline in Asian adults, particularly in women, challenging the universal application of global sarcopenia diagnostic criteria. The Asian Working Group for Sarcopenia has proposed region-specific diagnostic criteria, acknowledging these ethnic variations. Prevalence estimates of sarcopenia vary widely, ranging from 10% to 40% in community-dwelling older adults. For specific chronic conditions, the prevalence of sarcopenia is notably higher, reaching 35% for cardiovascular diseases and 24.5% for chronic kidney disease. Sarcopenia is strongly associated with various chronic conditions, increasing the risk of falls by 1.5 to 3 times and significantly increasing mortality risk by 29% to 51%. Current management strategies primarily involve resistance exercise and nutritional interventions, with a recommended daily protein intake of at least 1.2 g/kg to maintain muscle health. Pharmaceutical development has gained significant momentum, with over 20 compounds in various stages of clinical trials. These include myostatin inhibitors, selective androgen receptor modulators, ghrelin receptor agonists, mesenchymal stem cell therapy, and follistatin gene therapy. However, the unique dietary patterns, cultural contexts, and potentially distinct drug responses in Asian populations necessitate tailored interventions and Asia-specific clinical trials. Future directions include refining Asian-specific diagnostic criteria, conducting large-scale epidemiological studies across multiple Asian countries, developing culturally appropriate interventions, integrating sarcopenia management into chronic disease care, and advancing pharmaceutical research with a focus on Asian populations. In conclusion, sarcopenia emerges as a critical nexus in the aging process, intricately linked with multiple organ systems and chronic conditions, underscoring the imperative for its recognition as a cornerstone in person-centered care and the holistic management of age-related health challenges.
Collapse
Affiliation(s)
- Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Testa EJ, Schmitt P, Callanan TC, Milner JD, Penvose IR, Owens BD. Angiotensin II receptor blockers and their applications in orthopaedic surgery and musculoskeletal medicine. ANNALS OF JOINT 2024; 9:39. [PMID: 39540070 PMCID: PMC11558279 DOI: 10.21037/aoj-24-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024]
Abstract
Angiotensin II receptor blockers (ARBs) are commonly prescribed for hypertension and heart failure, and have well-described antifibrotic properties throughout medical literature. The etiology and pathogenesis of fibrosis is biologically complex with a multitude of factors playing a role in the process. Consequently, pathologic fibrosis may be significant within orthopaedics contributing to post-operative stiffness and, ultimately, negative patient outcomes. The pharmacology of ARBs has been described to combat fibrosis in preclinical settings, while the literature of ARBs antifibrotic properties in relation to orthopaedics remains scarce. However, fibrosis is one of the primary factors contributing to tissue healing and functional recovery in the field of orthopaedic surgery. Fibrosis has specifically been described in relation to shoulder surgery, knee arthroplasty and hip arthroscopy. As such, outcomes of various orthopaedic surgeries are dependent upon a balance between tissue healing and stiffness, both of which may be mediated by a fibrotic response. Importantly, ARBs have recently emerged as a potential therapy to combat fibrosis-mediated stiffness in orthopaedic surgery patients. Thus, the following review article seeks to highlight the basic and clinical science of ARBs with emphasis on their implications and indications for orthopaedic surgery and musculoskeletal medicine.
Collapse
Affiliation(s)
- Edward J Testa
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Phillip Schmitt
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Tucker C Callanan
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John D Milner
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ian R Penvose
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Brett D Owens
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Chen S, Luo C, Zheng B. The causality of atrial fibrillation on frailty index: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37948. [PMID: 39151487 PMCID: PMC11332714 DOI: 10.1097/md.0000000000037948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 08/19/2024] Open
Abstract
Prior epidemiological research has indicated a possible association between atrial fibrillation (AF) and frailty status. Our study used Mendelian randomization to estimate its causality. The genome-wide association studies for AF were utilized as the exposure for individuals included in the UK Biobank (n = 463,010) and publicly available summary statistics data sets of genome-wide association studies meta-analyses for frailty index in individuals of European descent (n = 175,226) was used as the outcome. The inverse variance weighting method was utilized to evaluate causality. To further confirm the reliability of the results, sensitivity analyses were conducted. The inverse variance weighting analysis indicated that the presence of AF was found to be statistically linked to an increased risk of frailty (odds ratio = 3.017, CI: 1.106-8.232, P = .031). MR-Egger intercept test indicated no pleiotropy (Egger intercept = .002, P = .808). The leave-one-out method indicated that the individual SNPs did not have an impact on the robustness of the findings. The research implies a causal relationship between AF and frailty. Early detection and timely intervention of AF can control the occurrence of frailty.
Collapse
Affiliation(s)
- Shoulei Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Baoshi Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Luna-Angulo A, Landa-Solís C, Escobar-Cedillo RE, Estrada-Mena FJ, Sánchez-Chapul L, Gómez-Díaz B, Carrillo-Mora P, Avilés-Arnaut H, Jiménez-Hernández L, Jiménez-Hernández DA, Miranda-Duarte A. Pharmacological Treatments and Therapeutic Targets in Muscle Dystrophies Generated by Alterations in Dystrophin-Associated Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1060. [PMID: 39064489 PMCID: PMC11279157 DOI: 10.3390/medicina60071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
Collapse
Affiliation(s)
- Alexandra Luna-Angulo
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, División de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Rosa Elena Escobar-Cedillo
- Departamento de Electromiografía y Distrofia Muscular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Francisco Javier Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Facultad de Ciencias de la Salud, Augusto Rodin 498, Ciudad de México 03920, Mexico
| | - Laura Sánchez-Chapul
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Benjamín Gómez-Díaz
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Paul Carrillo-Mora
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo Leon, Av. Universidad s/n Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico
| | | | | | - Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| |
Collapse
|
9
|
Li N, Xiahou Z, Li Z, Zhang Z, Song Y, Wang Y. Identification of hub genes and therapeutic siRNAs to develop novel adjunctive therapy for Duchenne muscular dystrophy. BMC Musculoskelet Disord 2024; 25:386. [PMID: 38762732 PMCID: PMC11102231 DOI: 10.1186/s12891-024-07206-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2024] [Indexed: 05/20/2024] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by various defects in the dystrophin gene and still no universal therapy. This study aims to identify the hub genes unrelated to excessive immune response but responsible for DMD progression and explore therapeutic siRNAs, thereby providing a novel treatment. METHODS Top ten hub genes for DMD were identified from GSE38417 dataset by using GEO2R and PPI networks based on Cytoscape analysis. The hub genes unrelated to excessive immune response were identified by GeneCards, and their expression was further verified in mdx and C57 mice at 2 and 4 months (M) by (RT-q) PCR and western blotting. Therapeutic siRNAs were deemed as those that could normalize the expression of the validated hub genes in transfected C2C12 cells. RESULTS 855 up-regulated and 324 down-regulated DEGs were screened from GSE38417 dataset. Five of the top 10 hub genes were considered as the candidate genes unrelated to excessive immune response, and three of these candidates were consistently and significantly up-regulated in mdx mice at 2 M and 4 M when compared with age-matched C57 mice, including Col1a2, Fbn1 and Fn1. Furthermore, the three validated up-regulated candidate genes can be significantly down-regulated by three rational designed siRNA (p < 0.0001), respectively. CONCLUSION COL1A2, FBN1 and FN1 may be novel biomarkers for DMD, and the siRNAs designed in our study were help to develop adjunctive therapy for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Zhuo Li
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Zilian Zhang
- School of Sports Science, Beijing Sport University, Beijing, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Tanaka M, Kaji K, Nishimura N, Asada S, Koizumi A, Matsuda T, Yorioka N, Tsuji Y, Fujinaga Y, Sato S, Namisaki T, Akahane T, Yoshiji H. Blockade of angiotensin II modulates insulin-like growth factor 1-mediated skeletal muscle homeostasis in experimental steatohepatitis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119649. [PMID: 38097064 DOI: 10.1016/j.bbamcr.2023.119649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Sarcopenia is associated with mortality in patients with nonalcoholic steatohepatitis (NASH). Angiotensin II receptor blocker (ARB) has been suggested to prevent sarcopenia, but reports on its effect on NASH-derived skeletal muscle atrophy in conjunction with insulin-like growth factor 1 (IGF-1)-mediated muscle homeostasis are few. Our aim was to examine the combined effect of the ARB losartan and IGF-1 replacement on skeletal muscle atrophy in a methionine-choline deficient (MCD) diet-fed murine steatohepatitis model. The MCD-fed mice developed steatohepatitis and skeletal muscle atrophy, as indicated by the reduction of psoas muscle mass and attenuation of forelimb and hindlimb grip strength. Significantly suppressed steatohepatitis and skeletal muscle atrophy was observed after single treatment with ARB or IGF-1, and these effects were augmented after combination treatment. Treatment with ARB and IGF-1 effectively inhibited ubiquitin proteasome-mediated protein degradation by reducing forkhead box protein O1 (FOXO1) and FOXO3a transcriptional activity in the skeletal muscle. Combined ARB and IGF-1 decreased the intramuscular expression of proinflammatory cytokines (i.e., TNFα, IL6, and IL1β) and increased the Trolox equivalent antioxidant capacity and antioxidant enzymes (CAT, GPX1, SOD2, and CYTB). This antioxidant effect was based on downregulation of NADPH oxidase (NOX) 2, normalization of mitochondrial biogenesis and dynamics. Moreover, ARB increased the hepatic and plasma IGF-1 levels and improved steatohepatitis, leading to enhanced skeletal muscle protein synthesis mediated by IGF-1/ AKT/ mechanistic target of rapamycin signaling. Collectively, combined ARB and IGF-1 replacement could be a promising new therapeutic target for NASH-derived skeletal muscle wasting.
Collapse
Affiliation(s)
- Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
11
|
Serova M, Didry-Barca B, Deloux R, Foucault AS, Veillet S, Lafont R, Dilda PJ, Latil M. BIO101 stimulates myoblast differentiation and improves muscle function in adult and old mice. J Cachexia Sarcopenia Muscle 2024; 15:55-66. [PMID: 38064183 PMCID: PMC10834314 DOI: 10.1002/jcsm.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Muscle aging is associated with a consistent decrease in the ability of muscle tissue to regenerate following intrinsic muscle degradation, injury or overuse. Age-related imbalance of protein synthesis and degradation, mainly regulated by AKT/mTOR pathway, leads to progressive loss of muscle mass. Maintenance of anabolic and regenerative capacities of skeletal muscles may be regarded as a therapeutic option for sarcopenia and other muscle wasting diseases. Our previous studies have demonstrated that BIO101, a pharmaceutical grade 20-hydroxyecdysone, increases protein synthesis through the activation of MAS receptor involved in the protective arm of renin-angiotensin-aldosterone system. The purpose of the present study was to assess the anabolic and pro-differentiating properties of BIO101 on C2C12 muscle cells in vitro and to investigate its effects on adult and old mice models in vivo. METHODS The effects of BIO101 on C2C12 differentiation were assessed using myogenic transcription factors and protein expression of major kinases of AKT/mTOR pathway by Western blot. The in vivo effects of BIO101 have been investigated in BIO101 orally-treated (50 mg/kg/day) adult mice (3 months) for 28 days. To demonstrate potential beneficial effect of BIO101 treatment in a sarcopenic mouse model, we use orally treated 22-month-old C57Bl6/J mice, for 14 weeks with vehicle or BIO101. Mice body and muscle weight were recorded. Physical performances were assessed using running capacity and muscle contractility tests. RESULTS Anabolic properties of BIO101 were confirmed by the rapid activation of AKT/mTOR, leading to an increase of C2C12 myotubes diameters (+26%, P < 0.001). Pro-differentiating effects of BIO101 on C2C12 myoblasts were revealed by increased expression of muscle-specific differentiation transcription factors (MyoD, myogenin), resulting in increased fusion index and number of nuclei per myotube (+39% and +53%, respectively, at day 6). These effects of BIO101 were like those of angiotensin (1-7) and were abolished with the use of A779, a MAS receptor specific antagonist. Chronic BIO101 oral treatment induced AKT/mTOR activation and anabolic effects accompanied with improved physical performances in adult and old animals (maximal running distance and maximal running velocity). CONCLUSIONS Our data suggest beneficial anabolic and pro-differentiating effects of BIO101 rendering BIO101 a potent drug candidate for treating sarcopenia and possibly other muscle wasting disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - René Lafont
- Biophytis, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
12
|
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
13
|
Li S, Xie K, Xiao X, Xu P, Tang M, Li D. Correlation between sarcopenia and esophageal cancer: a narrative review. World J Surg Oncol 2024; 22:27. [PMID: 38267975 PMCID: PMC10809562 DOI: 10.1186/s12957-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In recent years, the research on the relationship between sarcopenia before and after the treatment of esophageal cancer, as well as its impact on prognosis of esophageal cancer, has increased rapidly, which has aroused people's attention to the disease of patients with esophageal cancer complicated with sarcopenia. This review examines the prevalence of sarcopenia in patients with esophageal cancer, as well as the relationship between sarcopenia (before and after surgery or chemotherapy) and prognosis in patients with esophageal cancer. Moreover, we summarized the potential pathogenesis of sarcopenia and pharmacologic and non-pharmacologic therapies. METHODS A narrative review was performed in PubMed and Web of Science using the keywords ("esophageal cancer" or "esophageal neoplasm" or "neoplasm, esophageal" or "esophagus neoplasm" or "esophagus neoplasms" or "neoplasm, esophagus" or "neoplasms, esophagus" or "neoplasms, esophageal" or "cancer of esophagus" or "cancer of the esophagus" or "esophagus cancer" or "cancer, esophagus" or "cancers, esophagus" or "esophagus cancers" or "esophageal cancer" or "cancer, esophageal" or "cancers, esophageal" or "esophageal cancers") and ("sarcopenia" or "muscular atrophy" or "aging" or "senescence" or "biological aging" or "aging, biological" or "atrophies, muscular" or "atrophy, muscular" or "muscular atrophies" or "atrophy, muscle" or "atrophies, muscle" or "muscle atrophies"). Studies reporting relationship between sarcopenia and esophageal cancer were analyzed. RESULTS The results of the review suggest that the average prevalence of sarcopenia in esophageal cancer was 46.3% ± 19.6% ranging from 14.4 to 81% and sarcopenia can be an important predictor of poor prognosis in patients with esophageal cancer. Patients with esophageal cancer can suffer from sarcopenia due to their nutritional deficiencies, reduced physical activity, chemotherapy, and the effects of certain inflammatory factors and pathways. When classic diagnostic values for sarcopenia such as skeletal muscle index (SMI) are not available clinically, it is also feasible to predict esophageal cancer prognosis using simpler metrics, such as calf circumference (CC), five-count sit-up test (5-CST), and six-minute walk distance (6MWD). CONCLUSIONS Identifying the potential mechanism of sarcopenia in patients with esophageal cancer and implementing appropriate interventions may hold the key to improving the prognosis of these patients.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China
| | - Xiaoxiong Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingsheng Xu
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Dai Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
15
|
Ruzbarsky JJ, Soares RW, Comfort SM, Arner JW, Philippon MJ. Adhesions in the setting of hip arthroscopy. EFORT Open Rev 2023; 8:792-797. [PMID: 37909708 PMCID: PMC10646518 DOI: 10.1530/eor-21-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
With the growing number of primary arthroscopies performed, patients requiring revision hip arthroscopies for various issues is high including postoperative adhesion formation, a source of pain, mechanical symptoms, range of motion limitation, stiffness, and microinstability. Adhesions are a consequence of biological pathways that have been stimulated by injury or surgical interventions leading to an increased healing response. Preventative efforts have included surgical adjuncts during/after primary hip arthroscopy, biologic augmentation, and postoperative rehabilitation. Treatment options for adhesion formation includes surgical lysis of adhesions with or without placement of biologic membranes aimed at inhibiting adhesion reformation as well as systemic medications to further reduce the risk. Postoperative rehabilitation exercises have also been demonstrated to prevent adhesions as a result of hip arthroscopy. Ongoing clinical trials are further investigating pathways and prevention of adhesion formation.
Collapse
Affiliation(s)
- Joseph J Ruzbarsky
- Steadman Philippon Research Institute, Vail, Colorado, USA
- Steadman Clinic and United States Coalition for the Prevention of Illness and Injury in Sport, Vail, Colorado, USA
| | - Rui W Soares
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Justin W Arner
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marc J Philippon
- Steadman Philippon Research Institute, Vail, Colorado, USA
- Steadman Clinic and United States Coalition for the Prevention of Illness and Injury in Sport, Vail, Colorado, USA
| |
Collapse
|
16
|
Rivera FB, Escolano BT, Nifas FM, Choi S, Carado GP, Lerma E, Vijayaraghavan K, Yu MG. Interrelationship of Sarcopenia and Cardiovascular Diseases: A Review of Potential Mechanisms and Management. J ASEAN Fed Endocr Soc 2023; 39:69-78. [PMID: 38863922 PMCID: PMC11163321 DOI: 10.15605/jafes.039.01.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2024] Open
Abstract
Sarcopenia refers to an age-related reduction of lean body mass. It showed a reciprocal relationship with cardiovascular diseases. Thus, it is imperative to explore pathophysiological mechanisms explaining the relationship between sarcopenia and cardiovascular diseases, along with the clinical assessment, and associated management. In this review, we discuss how processes such as inflammation, oxidative stress, endothelial dysfunction, neural and hormonal modifications, as well as other metabolic disturbances influence sarcopenia as well as its association with cardiovascular diseases. Moreover, this review provides an overview of both non-pharmacological and pharmacological management for patients with sarcopenia and cardiovascular diseases, with a focus on the potential role of cardiovascular drugs to mitigate sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sarang Choi
- Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines
| | - Genquen Philip Carado
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center, Philippines
| | - Edgar Lerma
- Section of Nephrology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Marc Gregory Yu
- Section of Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, USA
| |
Collapse
|
17
|
Lee SY, Kim JH, Lee DY, Hur SJ. Characterization of gut microbiota in mouse models of aging and sarcopenia. Microbiol Res 2023; 275:127462. [PMID: 37473669 DOI: 10.1016/j.micres.2023.127462] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota play vital roles in the maintenance of human health and in various diseases. We aimed to investigate the association of gut microbiota with aging and sarcopenia. This study contained two experimental designs using the ICR mouse model for 1) determining the association between aging and gut microbiota (by analyzing murine fecal samples) and 2) determining the association between sarcopenia and gut microbiota in mice treated with microorganisms or dexamethasone. The composition of the gut microbiota was determined by next-generation sequencing. Marginally significant differences were observed in taxon composition of the gut microbiota depending on age; particularly, the abundance of the genusAlistipes increased with increasing age. In addition, the abundance of the class Bacteroidia decreased with increasing age, whereas that of the genus Oscillibacter increased. The microbiome composition differed between young mice and aging mice with sarcopenia. Moreover, the gut microbiota in aging and sarcopenia showed altered abundances of Alistipes, Lachnospiraceae, and Bacteroides. Although the sample size was small, these results point to similarities in the gut microbiota between aging and sarcopenia and to differences between young and old individuals. The results on gut microbiota obtained in this study form a basis for studying the development of sarcopenia in geriatric animal models in the future.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
18
|
Bi AS, Papalia AG, Romeo PV, Schoof LH, Kwon YW, Rokito AS, Zuckerman JD, Virk MS. Effect of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on need for operative intervention for idiopathic adhesive capsulitis. JSES Int 2023; 7:793-798. [PMID: 37719830 PMCID: PMC10499842 DOI: 10.1016/j.jseint.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background The exact pathogenesis of idiopathic adhesive capsulitis (IAC) is not fully understood, but an inflammatory profibrotic cascade, largely mediated by transforming growth factor-beta 1 (TGF- β1) has been implicated. Angiotensin II receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) both decrease the activity of TGF-β1. The aim of this study was to determine the impact of ACE-Is or ARBs use on the need for operative intervention in IAC. Methods This was a retrospective cohort study of patients from a single institutional database with IAC, divided into two cohorts, with and without ACE-I and/or ARB use as the primary exposure and a minimum 2-year follow-up. The primary outcome measured was the incidence of operative intervention including manipulation under anesthesia (MUA) and arthroscopic capsular release (ACR). Additional multivariable logistic regression analysis was performed to evaluate associations between ACE-I/ARB use and likelihood of undergoing an operative procedure. Results A total of 17,645 patients met inclusion criteria, with 5424 patients in the ACE-I/ARB cohort and 12,221 in the non-ACE-I/ARB cohort. Overall, 422 (2.4%) patients underwent surgical treatment, 378 (2.1%) ACR, and 74 (0.4%) MUA. There was no significant difference between cohorts in the frequency of surgical procedures or time to procedure since diagnosis. There were no significant differences between individual ACE-Is or ARBs, although Losartan was found to have a trend of decreased rate of intervention (31.7% vs. 36.8%, P = .209) when compared to patients not on losartan that did not reach statistical significance. Patient factors predictive of undergoing MUA/ACR were diabetes (P = .013), obesity (P < .001), and male sex (P < .001). Increasing patient age reduces the likelihood of undergoing operative intervention, with patients aged 50-70 years (P = .022) and age >70 years (P < .001) demonstrating reduced odds as compared to patients aged <30 years. Conclusion Patients with IAC have an overall low (2.4%) rate of requiring surgical intervention. While the antifibrotic mechanism of ACE inhibitors and ARBs did not significantly affect the rate of requiring surgical intervention, male gender, obesity, younger age, and diabetes, all increased the risk for operative intervention. Losartan, specifically, may have a disease modifying effect on IAC that should be investigated with larger controlled trials.
Collapse
Affiliation(s)
- Andrew S. Bi
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Aidan G. Papalia
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Paul V. Romeo
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Lauren H. Schoof
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Young W. Kwon
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Andrew S. Rokito
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Joseph D. Zuckerman
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Mandeep S. Virk
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| |
Collapse
|
19
|
de Jong JCBC, Caspers MPM, Keijzer N, Worms N, Attema J, de Ruiter C, Lek S, Nieuwenhuizen AG, Keijer J, Menke AL, Kleemann R, Verschuren L, van den Hoek AM. Caloric Restriction Combined with Immobilization as Translational Model for Sarcopenia Expressing Key-Pathways of Human Pathology. Aging Dis 2023; 14:937-957. [PMID: 37191430 DOI: 10.14336/ad.2022.1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 05/17/2023] Open
Abstract
The prevalence of sarcopenia is increasing while it is often challenging, expensive and time-consuming to test the effectiveness of interventions against sarcopenia. Translational mouse models that adequately mimic underlying physiological pathways could accelerate research but are scarce. Here, we investigated the translational value of three potential mouse models for sarcopenia, namely partial immobilized (to mimic sedentary lifestyle), caloric restricted (CR; to mimic malnutrition) and a combination (immobilized & CR) model. C57BL/6J mice were calorically restricted (-40%) and/or one hindleg was immobilized for two weeks to induce loss of muscle mass and function. Muscle parameters were compared to those of young control (4 months) and old reference mice (21 months). Transcriptome analysis of quadriceps muscle was performed to identify underlying pathways and were compared with those being expressed in aged human vastus lateralis muscle-biopsies using a meta-analysis of five different human studies. Caloric restriction induced overall loss of lean body mass (-15%, p<0.001), whereas immobilization decreased muscle strength (-28%, p<0.001) and muscle mass of hindleg muscles specifically (on average -25%, p<0.001). The proportion of slow myofibers increased with aging in mice (+5%, p<0.05), and this was not recapitulated by the CR and/or immobilization models. The diameter of fast myofibers decreased with aging (-7%, p<0.05), and this was mimicked by all models. Transcriptome analysis revealed that the combination of CR and immobilization recapitulated more pathways characteristic for human muscle-aging (73%) than naturally aged (21 months old) mice (45%). In conclusion, the combination model exhibits loss of both muscle mass (due to CR) and function (due to immobilization) and has a remarkable similarity with pathways underlying human sarcopenia. These findings underline that external factors such as sedentary behavior and malnutrition are key elements of a translational mouse model and favor the combination model as a rapid model for testing the treatments against sarcopenia.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
20
|
Arosio B, Calvani R, Ferri E, Coelho-Junior HJ, Carandina A, Campanelli F, Ghiglieri V, Marzetti E, Picca A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023; 15:nu15081853. [PMID: 37111070 PMCID: PMC10142447 DOI: 10.3390/nu15081853] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Declines in physical performance and cognition are commonly observed in older adults. The geroscience paradigm posits that a set of processes and pathways shared among age-associated conditions may also serve as a molecular explanation for the complex pathophysiology of physical frailty, sarcopenia, and cognitive decline. Mitochondrial dysfunction, inflammation, metabolic alterations, declines in cellular stemness, and altered intracellular signaling have been observed in muscle aging. Neurological factors have also been included among the determinants of sarcopenia. Neuromuscular junctions (NMJs) are synapses bridging nervous and skeletal muscle systems with a relevant role in age-related musculoskeletal derangement. Patterns of circulating metabolic and neurotrophic factors have been associated with physical frailty and sarcopenia. These factors are mostly related to disarrangements in protein-to-energy conversion as well as reduced calorie and protein intake to sustain muscle mass. A link between sarcopenia and cognitive decline in older adults has also been described with a possible role for muscle-derived mediators (i.e., myokines) in mediating muscle-brain crosstalk. Herein, we discuss the main molecular mechanisms and factors involved in the muscle-brain axis and their possible implication in cognitive decline in older adults. An overview of current behavioral strategies that allegedly act on the muscle-brain axis is also provided.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Campanelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- San Raffaele University, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| |
Collapse
|
21
|
Ruzbarsky JJ, Comfort SM, Martin MD, Briggs KK, Philippon MJ. Outcomes for Treatment of Capsulolabral Adhesions With a Capsular Spacer During Revision Hip Arthroscopy. Am J Sports Med 2023; 51:487-493. [PMID: 36661250 DOI: 10.1177/03635465221145704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The presence of adhesions is a common source of pain and dysfunction after hip arthroscopic surgery and an indication for revision surgery. The placement of a capsular spacer in the capsulolabral recess after lysis of adhesions has been developed to treat and prevent the recurrence of adhesions. PURPOSE To evaluate patient-reported outcomes (PROs) and survivorship at a minimum of 2 years after revision hip arthroscopic surgery with capsular spacer placement for capsular adhesions. STUDY DESIGN Case series; Level of evidence, 4. METHODS Between January 2013 and June 2018, a total of 95 patients (99 hips) aged ≥18 years underwent revision hip arthroscopic surgery for the treatment of capsular adhesions with the placement of a capsular spacer. Overall, 53 patients (56 hips) met the inclusion criteria and had a minimum 2-year follow-up, forming the cohort of this study. Exclusion criteria included confounding metabolic bone diseases (eg, Legg-Calve-Perthes disease, Marfan syndrome), labral deficiency, or advanced osteoarthritis (Tönnis grade 2 or 3). Preoperative and postoperative outcome scores (modified Harris Hip Score [mHHS], Hip Outcome Score-Activities of Daily Living [HOS-ADL], Hip Outcome Score-Sport-Specific Subscale [HOS-SSS], 12-Item Short Form Health Survey [SF-12], and Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]) were collected and compared in addition to the revision rate, conversion to total hip arthroplasty, and patient satisfaction. RESULTS The mean age of the cohort was 32 ± 11 years, with 32 female hips (57%) and a median number of previous hip arthroscopic procedures of 1 (range, 1-5). The arthroplasty- and revision-free survivorship rate at 2 years was 91%. Overall, 5 patients (6 hips; 11%) underwent revision surgery at a mean of 2.4 ± 1.4 years after capsular spacer placement, with symptomatic capsular defects being the most common finding. There were 4 patients (7%) who converted to total hip arthroplasty. For hips not requiring subsequent surgery (n = 46), there was a significant improvement in outcome scores except for the SF-12 Mental Component Summary, with rates of achieving the minimal clinically important difference of 70%, 70%, and 65% for the mHHS, HOS-ADL, and HOS-SSS, respectively. CONCLUSION Capsular spacers, as part of a systematic approach including lysis of adhesions with early and consistent postoperative physical therapy including circumduction exercises, resulted in improved PROs as well as high arthroplasty- and revision-free survivorship (91%) at a minimum 2-year follow-up. Capsular spacers should be considered in revision hip arthroscopic procedures when an adequate labral volume remains but adhesions continue to be a concern.
Collapse
Affiliation(s)
- Joseph J Ruzbarsky
- Steadman Philippon Research Institute, Vail, Colorado, USA.,The Steadman Clinic, Vail, Colorado, USA
| | | | | | - Karen K Briggs
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Marc J Philippon
- Steadman Philippon Research Institute, Vail, Colorado, USA.,The Steadman Clinic, Vail, Colorado, USA
| |
Collapse
|
22
|
Bueno V, Frasca D. Mini-review: Angiotensin- converting enzyme 1 (ACE1) and the impact for diseases such as Alzheimer's disease, sarcopenia, cancer, and COVID-19. FRONTIERS IN AGING 2023; 4:1117502. [PMID: 36756193 PMCID: PMC9899811 DOI: 10.3389/fragi.2023.1117502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Ageing has been associated with comorbidities, systemic low-grade of inflammation, and immunosenescence. Hypertension is the most common morbidity and anti-hypertensives are used for more than 50%. Angiotensin-converting enzyme 1 inhibitors (ACEi) and angiotensin II receptor blockers (ARB) control blood pressure but also seem to play a role in comorbidities such as Alzheimer's disease, sarcopenia and cancer. The impact of anti-hypertensives in comorbidities is due to the expression of renin-angiotensin system (RAS) in several tissues and body fluids. Angiotensin-converting enzyme 1 (ACE1) has been linked to oxidative stress, metabolism, and inflammation. The levels and activity of ACE1 are under genetic control and polymorphisms have been correlated with susceptibility to Alzheimer's disease. In addition, some results found that ACEi and ARB users present delayed cognitive decline and reduced risk of dementia. Regarding to sarcopenia, RAS has been linked to the catabolic and anabolic pathways for muscle mass maintenance. In some studies, older adults using ACEi were highly benefited by exercise training. In cancer, RAS and its products have been shown to play a role since their inhibition in animal models modulates tumor microenvironment and improves the delivery of chemotherapy drugs. Clinically, the incidence of colorectal cancer is reduced in patients using ACEi and ARB. During the pandemic COVID-19 it was found that ACE2 receptor plays a role in the entry of SARS-CoV-2 into the host cell. ACE1 genotypes have been linked to an increased risk for COVID-19 and severe disease. In some studies COVID-19 patients taking ARB or ACEi presented better outcome.
Collapse
Affiliation(s)
- Valquiria Bueno
- Department of Microbiology Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Immunology, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
Takayama S, Inoue K, Ogura Y, Hoshino S, Sugaya T, Ohata K, Kotake H, Ichikawa D, Watanabe M, Kimura K, Shibagaki Y, Kamijo-Ikemori A. Angiotensin II type 1a receptor deficiency alleviates muscle atrophy after denervation. Sci Rep 2023; 13:519. [PMID: 36627369 PMCID: PMC9832142 DOI: 10.1038/s41598-023-27737-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The study aim was to determine if suppressed activation of angiotensin II type 1 receptor (AT1) prevents severe muscle atrophy after denervation. The sciatic nerves in right and left inferior limbs were cut in AT1a knockout homo (AT1a-/-) male mice and wild-type (AT1a+/+) male mice. Muscle weight and cross-sectional areas of type IIb muscle fibers in gastrocnemius muscle decreased at 7 and 21 days postdenervation in both AT1a-/- mice and AT1a+/+ mice, and the reduction was significantly attenuated in the denervated muscles of AT1a-/- mice compared to the AT1a+/+ mice. Gene expressions in the protein degradation system [two E3 ubiquitin ligases (muscle RING-finger protein-1 and Atrogin-1)] upregulated at 7 days postdenervation in all denervated mice were significantly lower in AT1a-/- mice than in AT1a+/+ mice. Activations of nuclear factor κB and Forkhead box subgroup O1, and protein expression of monocyte chemoattractant protein-1 were significantly suppressed in the AT1a-/- mice compared with those in the AT1a+/+ mice. In addition, suppressed apoptosis, lower infiltration of M1 macrophages, and higher infiltration of M2 macrophages were significantly observed at 21 days postdenervation in the AT1a-/- mice compared with those in the AT1a+/+ mice. In conclusion, the AT1 receptor deficiency retarded muscle atrophy after denervation.
Collapse
Affiliation(s)
- Suguru Takayama
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Kazuho Inoue
- grid.412764.20000 0004 0372 3116Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yuji Ogura
- grid.412764.20000 0004 0372 3116Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Seiko Hoshino
- grid.412764.20000 0004 0372 3116Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takeshi Sugaya
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Keiichi Ohata
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Hitoshi Kotake
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Daisuke Ichikawa
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | - Yugo Shibagaki
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511, Japan. .,Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan. .,Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
24
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
25
|
Lee JL, Zhang C, Westbrook R, Gabrawy MM, Nidadavolu L, Yang H, Marx R, Wu Y, Anders NM, Ma L, Bichara MD, Kwak MJ, Buta B, Khadeer M, Yenokyan G, Tian J, Xue QL, Siragy HM, Carey RM, de Cabo R, Ferrucci L, Moaddel R, Rudek MA, Le A, Walston JD, Abadir PM. Serum Concentrations of Losartan Metabolites Correlate With Improved Physical Function in a Pilot Study of Prefrail Older Adults. J Gerontol A Biol Sci Med Sci 2022; 77:2356-2366. [PMID: 35511890 PMCID: PMC9799219 DOI: 10.1093/gerona/glac102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
Losartan is an oral antihypertensive agent that is rapidly metabolized to EXP3174 (angiotensin-subtype-1-receptor blocker) and EXP3179 (peroxisome proliferator-activated receptor gamma [PPARγ] agonist), which was shown in animal studies to reduce inflammation, enhance mitochondrial energetics, and improve muscle repair and physical performance. We conducted an exploratory pilot study evaluating losartan treatment in prefrail older adults (age 70-90 years, N = 25). Participants were randomized to control (placebo) or treatment (daily oral losartan beginning at 25 mg per day and increasing every 8 weeks) for a total of 6 months. Fatigue, hyperkalemia, and hypotension were the most observed side effects of losartan treatment. Participants in the losartan group had an estimated 89% lower odds of frailty (95% confidence interval [CI]: 18% to 99% lower odds, p = .03), with a 0.3-point lower frailty score than the placebo group (95% CI: 0.01-0.5 lower odds, p = .04). Frailty score was also negatively associated with serum losartan and EXP3179 concentrations. For every one standard deviation increase in EXP3179 (ie, 0.0011 ng/μL, based on sample values above detection limit) and EXP3174 (ie, 0.27 ng/μL, based on sample values above detection limit), there was a 0.0035 N (95% CI: 0.0019-0.0051, p < .001) and a 0.0027 N (95% CI: 0.00054-0.0043, p = .007) increase in average knee strength, respectively.
Collapse
Affiliation(s)
- Jessica L Lee
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland,USA
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cissy Zhang
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Reyhan Westbrook
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariann M Gabrawy
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lolita Nidadavolu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruth Marx
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuqiong Wu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M Anders
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Marcela-Dávalos Bichara
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Min-Ji Kwak
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brian Buta
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammed Khadeer
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jing Tian
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qian-Li Xue
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Helmy M Siragy
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Robert M Carey
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Michelle A Rudek
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anne Le
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy D Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter M Abadir
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
27
|
Saleh N, Cosarderelioglu C, Vajapey R, Walston J, Abadir PM. Losartan Mitigates Oxidative Stress in the Brains of Aged and Inflamed IL-10-/- Mice. J Gerontol A Biol Sci Med Sci 2022; 77:1784-1788. [PMID: 35486382 PMCID: PMC9434460 DOI: 10.1093/gerona/glac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Chronic inflammation, oxidative stress, and dysregulation of the renin-angiotensin system are closely linked, and their crosstalk commonly contributes to age-related physical and cognitive decline. The primary dementia-protective benefits of Angiotensin II type 1 receptor (AT1R) blockers are believed to arise from systemic effects on blood pressure. However, there is an independently regulated brain-specific renin-angiotensin system. Here, we examined the impact of 4 weeks of oral Losartan treatment on the brains of aged (100 weeks old) IL-10-/- mice, an animal model of chronic inflammation and frailty. Our data show that aged IL-10-/- mice have higher AT1R and Nitrotyrosine (oxidative stress marker) levels in their frontal cortex tissue but not in cerebellar or hippocampal tissue compared to age- and sex-matched wild type mice. Losartan treatment for 4 weeks is associated with lower AT1R protein level, Nitrotyrosine, and Tau protein in the frontal cortex of aged IL-10-/- mice. Our results highlight the impact of Losartan, an AT1R blocker commonly prescribed for treating high blood pressure, on the brain-specific angiotensin system and AT1R-linked downstream effects such as brain oxidative stress damage and Tau burden in a frailty mouse model.
Collapse
Affiliation(s)
- Nazaneen Saleh
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Caglar Cosarderelioglu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Geriatrics, Ankara University School of Medicine, Ankara, Turkey
| | | | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Yoshihara T, Dobashi S, Takaragawa M, Naito H. Effect of losartan treatment on Smad signaling and recovery from hindlimb unloading-induced soleus muscle atrophy in female rats. Eur J Pharmacol 2022; 931:175223. [PMID: 35988789 DOI: 10.1016/j.ejphar.2022.175223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Losartan, an angiotensin II type 1 receptor blocker, exerts protective effect on soleus muscle atrophy in female rats. Thus, we aimed to examine the effect of losartan treatment on the recovery of atrophied soleus muscles. Female Wistar rats were subjected to hindlimb unloading for 7 d and then reloading for 7 d with either phosphate-buffered saline (PBS; n = 9) or losartan (40 mg/kg/day; n = 9). The soleus muscles were removed at rest (sedentary control [SED]; n = 9), after 7 d of hindlimb unloading (HU; n = 9), and after 7 d of reloading (HUR-PBS or HUR-LOS; n = 9 each). The absolute and relative weights, and fiber cross-sectional area (CSA) of the soleus muscles of rats in the HU group were significantly reduced as compared to those of the rats in the SED group at 7 d post-hindlimb unloading. Seven days of reloading significantly increased the muscle weights of rats in the HUR-PBS and HUR-LOS groups, with the recovery rate of the absolute muscle weight and type I fiber CSA being significantly higher in the HUR-LOS group (6.1% and 10.1%, respectively) than in the HUR-PBS group (4.7% and 5.2%, respectively) (p < 0.05). Moreover, the absolute and relative muscle weight in HUR-PBS were lower than SED; however, no significant difference was observed between the SED and HUR-LOS groups. CSAs of type I and IIa fiber were significantly higher in the HUR-LOS group than in the HU group. Losartan administration during reloading resulted in increased Smad1/5/8 and mTOR signaling and decreased Smad2/3 signaling and protein ubiquitination, facilitating the recovery of atrophied soleus muscle. Therefore, losartan administration-induced muscle recovery may partially be attributed to enhanced Smad1/5/8 and mTOR signaling activation, and reduced activation of canonical TGF-β signaling (Smad2/3) in the soleus muscle.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
| | - Shohei Dobashi
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan; Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
29
|
Effects of losartan and exercise on muscle mass and exercise endurance of old mice. Exp Gerontol 2022; 165:111869. [PMID: 35710057 DOI: 10.1016/j.exger.2022.111869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
This study evaluated the effects of angiotensin II type I receptor blocker (ARB) on muscle mass and exercise capacity in healthy older animals. The effects of combined ARB and exercise training were also determined. Eighty 18-month-old mice were randomized into the control group (C), exercise group (E), losartan group (L) and losartan plus exercise group (LE). Mice in the L and LE groups received losartan from drinking water every day. Mice in the E and LE groups trained on a treadmill 30 min per day, 3 days per week for 4 months. Exercise endurance and spontaneous physical activity of mice were measured at baseline and monthly for 4 months. After 4 months of intervention, serum interleukin-6 (IL-6) levels, muscle mass, and muscle fiber cross sectional area (CSA) were measured. Total antioxidant capacity (TAC), lipid peroxidation and IL-6 levels were determined in quadriceps. We found that exercise endurance only increased in the E and LE groups. Muscle TAC levels of E, L, and LE groups were greater than that in the C group. Serum IL-6 and lipid peroxidation levels were not different among groups. LE group, but not E and L groups, had greater muscle mass, larger muscle fiber CSA, and greater muscle IL-6 levels than that in the C group after 4 months of intervention. These results suggest that losartan promotes the adaptions of muscle mass with exercise training in healthy older animals.
Collapse
|
30
|
Fuloria S, Subramaniyan V, Meenakshi DU, Sekar M, Chakravarthi S, Kumar DH, Kumari U, Vanteddu VG, Patel TD, Narra K, Sharma PK, Fuloria NK. Etiopathophysiological role of the renin-angiotensin-aldosterone system in age-related muscular weakening: RAAS-independent beneficial role of ACE2 in muscle weakness. J Biochem Mol Toxicol 2022; 36:e23030. [PMID: 35253303 DOI: 10.1002/jbt.23030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
Aging is accompanied by major changes in body composition that can negatively affect functional status in older adults, including a progressive decrease in muscle mass, strength, and quality. The prevalence of sarcopenia has varied considerably, depending on the definition used and the population surveyed-a 2014 meta-analysis across several countries found estimates ranging from 1% to 29% for people aged 60 years or older, who live independently. The potentially relevant studies were retrieved from the ScienceDirect/Medline/PubMed/Public library of science/Mendeley/Springer link and Google Scholar. Multiple keywords were used for the literature search both alone and in combination. Some of the important keywords used for literature search were as follows: "Epidemiology of muscle weakness/muscle disorders," "Pathogenesis of RAAS in muscle weakness," "Role of Angiotensin 1-7/ACE-2/Mas R axis in muscle weakness," and "Correction pathophysiology of muscle weakness via ACE2." The renin-angiotensin system (RAAS), a major blood pressure regulatory system, is a candidate mediator that may promote aging-associated muscle weakness. Previously, studies explored the proof concept for RAAS inhibition as a therapeutic target. Furthermore, in RAAS, angiotensin II, and angiotensin-converting enzyme 2 (ACE2) have been reported to induce endoplasmic reticulum (ER) stress via glucose-regulated protein 78/eukaryotic translation initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4)/CHOP axis in the liver. In addition, other mitochondria and ER physical interactions contribute to skeletal muscle dysfunction. However, very few studies have investigated the relationship between RAAS and ER stress-associated pathophysiological events and ACE2-mediated biological consequences in muscle weakness. Thus, the study has been designed to investigate the RAAS-independent beneficial role of ACE2 in muscle weakness.
Collapse
Affiliation(s)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, Faculty of Medicine, MAHSA University, Jenjarom Selangor, Malaysia
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Srikumar Chakravarthi
- Faculty of Medicine, Bioscience and Nursing, Faculty of Medicine, MAHSA University, Jenjarom Selangor, Malaysia
| | - Darnal H Kumar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Johor, Johor Bahru, Malaysia
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Malaysia
| | | | | | | | | | - Neeraj K Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, India
| |
Collapse
|
31
|
Yoshihara T, Takaragawa M, Dobashi S, Naito H. Losartan treatment attenuates hindlimb unloading-induced atrophy in the soleus muscle of female rats via canonical TGF-β signaling. J Physiol Sci 2022; 72:6. [PMID: 35264097 PMCID: PMC10717208 DOI: 10.1186/s12576-022-00830-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
We investigated the protective effect of losartan, an angiotensin II type 1 receptor blocker, on soleus muscle atrophy. Age-matched male and female Wistar rats were subjected to hindlimb unloading, and the soleus muscle was removed on days 1 and 7 for analysis. Females showed greater reductions in relative weight and myofiber cross-sectional area of the soleus muscle than males on day 7 post-hindlimb unloading. Losartan partially protected females against muscle atrophy. Activation of the canonical TGF-β signaling pathway, assessed via Smad2/3 phosphorylation, was lower in females following losartan treatment and associated with lower levels of protein ubiquitination after 1 (myofibril) and 7 (cytosol) days of unloading. However, no effect was observed in non-canonical TGF-β signaling (p44/p42 and p38 MAPK phosphorylation) in males or females during unloading. Our results suggest that losartan provides partial protection against hindlimb unloading-induced soleus muscle atrophy in female rats, possibly associated with decreased canonical TGF-β signaling.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Shohei Dobashi
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
32
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
33
|
David MA, Reiter AJ, Dunham CL, Castile RM, Abraham JA, Iannucci LE, Shah ID, Havlioglu N, Chamberlain AM, Lake SP. Pleiotropic Effects of Simvastatin and Losartan in Preclinical Models of Post-Traumatic Elbow Contracture. Front Bioeng Biotechnol 2022; 10:803403. [PMID: 35265595 PMCID: PMC8899197 DOI: 10.3389/fbioe.2022.803403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 02/02/2023] Open
Abstract
Elbow trauma can lead to post-traumatic joint contracture (PTJC), which is characterized by loss of motion associated with capsule/ligament fibrosis and cartilage damage. Unfortunately, current therapies are often unsuccessful or cause complications. This study aimed to determine the effects of prophylactically administered simvastatin (SV) and losartan (LS) in two preclinical models of elbow PTJC: an in vivo elbow-specific rat injury model and an in vitro collagen gel contraction assay. The in vivo elbow rat (n = 3-10/group) injury model evaluated the effects of orally administered SV and LS at two dosing strategies [i.e., low dose/high frequency/short duration (D1) vs. high dose/low frequency/long duration (D2)] on post-mortem elbow range of motion (via biomechanical testing) as well as capsule fibrosis and cartilage damage (via histopathology). The in vitro gel contraction assay coupled with live/dead staining (n = 3-19/group) evaluated the effects of SV and LS at various concentrations (i.e., 1, 10, 100 µM) and durations (i.e., continuous, short, or delayed) on the contractibility and viability of fibroblasts/myofibroblasts [i.e., NIH3T3 fibroblasts with endogenous transforming growth factor-beta 1 (TGFβ1)]. In vivo, no drug strategy prevented elbow contracture biomechanically. Histologically, only SV-D2 modestly reduced capsule fibrosis but maintained elevated cellularity and tissue hypertrophy, and both SV strategies lessened cartilage damage. SV modest benefits were localized to the anterior region, not the posterior, of the joint. Neither LS strategy had meaningful benefits in capsule nor cartilage. In vitro, irrespective of the presence of TGFβ1, SV (≥10 μM) prevented gel contraction partly by decreasing cell viability (100 μM). In contrast, LS did not prevent gel contraction or affect cell viability. This study demonstrates that SV, but not LS, might be suitable prophylactic drug therapy in two preclinical models of elbow PTJC. Results provide initial insight to guide future preclinical studies aimed at preventing or mitigating elbow PTJC.
Collapse
Affiliation(s)
- Michael A. David
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Alex J. Reiter
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - James A. Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Leanne E. Iannucci
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ishani D. Shah
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, United States
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
34
|
Sasaki KI, Fukumoto Y. Sarcopenia as a comorbidity of cardiovascular disease. J Cardiol 2021; 79:596-604. [PMID: 34906433 DOI: 10.1016/j.jjcc.2021.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Sarcopenia, the lowered skeletal muscle mass, weakened skeletal muscle strength, and reduced physical performance with aging, is a component of frailty and high-risk factor for falls, resulting in an increase in mortality. In cardiovascular disease (CVD) patients, systemic inflammation, oxidative stress, overactivation of ubiquitin-proteasome system, endothelial dysfunction, lowering muscle blood flow, impaired glucose tolerance, hormonal changes, and physical inactivity possibly contribute to CVD-related sarcopenia. Prevalence of sarcopenia and osteosarcopenia, which is osteopenia and sarcopenia coexisting together, seems to be higher in CVD patients than in community-dwelling adults, suggesting the necessity of early diagnosis and prevention of CVD-related sarcopenia. Atrial stiffness, coronary artery calcification score, and serum vitamin D levels may be of help as the biomarkers to suspect sarcopenia, and renin-angiotensin-aldosterone system inhibitors may play a role in the medical prevention and treatment of CVD-related sarcopenia. There are few reports to convince the efficacies of dietary and antioxidant supplementation on sarcopenia at present, whereas aerobic and resistance training exercises have been recognized as an effective strategy to prevent and treat sarcopenia.
Collapse
Affiliation(s)
- Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
35
|
Angiotensin II inhibition: a potential treatment to slow the progression of sarcopenia. Clin Sci (Lond) 2021; 135:2503-2520. [PMID: 34751393 DOI: 10.1042/cs20210719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined as the progressive and generalized loss of skeletal muscle mass and strength, which is associated with increased likelihood of adverse outcomes including falls, fractures, physical disability, and mortality. The etiology of sarcopenia has been postulated to be multifactorial with genetics, aging, immobility, nutritional deficiencies, inflammation, stress, and endocrine factors all contributing to the imbalance of muscle anabolism and catabolism. The prevalence of sarcopenia is estimated to range from 13 to 24% in adults over 60 years of age and up to 50% in persons aged 80 and older. As the population continues to age, the prevalence of sarcopenia continues to increase and is expected to affect 500 million people by the year 2050. Sarcopenia impacts the overall health of patients through limitations in functional status, increase in hospital readmissions, poorer hospital outcomes, and increase in overall mortality. Thus, there exists a need to prevent or reduce the occurrence of sarcopenia. Here, we explore the potential mechanisms and current studies regarding angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors on reducing the development of sarcopenia through the associated changes in cardiovascular function, renal function, muscle fiber composition, inflammation, endothelial dysfunction, metabolic efficiency, and mitochondrial function.
Collapse
|
36
|
Nidadavolu LS, Stern D, Lin R, Wang Y, Li Y, Wu Y, Marin S, Antonio MJ, Yenokyan G, Boronina T, Cole R, Foster DB, Talbot C, Jedrych J, Smith B, Rini D, Le A, Cui H, Walston JD, Abadir PM. Valsartan nano-filaments alter mitochondrial energetics and promote faster healing in diabetic rat wounds. Wound Repair Regen 2021; 29:927-937. [PMID: 34669222 PMCID: PMC8571056 DOI: 10.1111/wrr.12974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are a common and debilitating condition associated with aging populations that impact more than 6.5 million patients in the United States. We have previously demonstrated the efficacy of daily topical 1% valsartan in treating wounds in diabetic mouse and pig models. Despite these promising results, there remains a need to develop an extended-release formulation that would reduce patient burden by decreasing the frequency of daily applications. Here, we used nanotechnology to self-assemble valsartan amphiphiles into a filamentous structure (val-filaments) that would serve as a scaffold in wound beds and allow for steady, localised and tunable release of valsartan amphiphiles over 24 days. Two topical treatments of this peptide-based hydrogel on full-thickness wounds in Zucker Diabetic Fatty rats resulted in faster rates of wound closure. By day 23, all val-filament treated wounds were completely closed, as compared to one wound closed in the placebo group. Mechanistically, we observed enrichment of proteins involved in cell adhesion and energetics pathways, downregulation of Tgf-β signalling pathway mediators (pSmad2, pSmad3 and Smad4) and increased mitochondrial metabolic pathway intermediates. This study demonstrates the successful synthesis of a sustained-release valsartan filament hydrogel, its impact on mitochondrial energetics and efficacy in treating diabetic wounds.
Collapse
Affiliation(s)
- Lolita S. Nidadavolu
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - David Stern
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21228, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21228, USA
| | - Ran Lin
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21228, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21228, USA
| | - Yuzhu Wang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21228, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21228, USA
| | - Yi Li
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21228, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21228, USA
| | - Yuqiong Wu
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Sela Marin
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Marjorie J. Antonio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - D. Brian Foster
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jaroslaw Jedrych
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Barbara Smith
- Cell Biology Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - David Rini
- Department of Art as Applied to Medicine, Division of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Honggang Cui
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21228, USA
| | - Jeremy D. Walston
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Peter M. Abadir
- Division of Geriatrics and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
37
|
Harada H, Nishiyama Y, Niiyama H, Katoh A, Kai H. Angiotensin II receptor blocker and statin combination therapy associated with higher skeletal muscle index in patients with cardiovascular disease: A retrospective study. J Clin Pharm Ther 2021; 47:89-96. [PMID: 34668212 DOI: 10.1111/jcpt.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Reduction in skeletal muscle mass is the most important component in diagnosing sarcopenia. Ageing and chronic heart failure due to cardiovascular diseases (CVDs) accelerate the reduction of skeletal muscles. However, there are no currently available drugs that are effective for sarcopenia. The purpose of this study was to explore the association between prescribed medications and skeletal muscle mass in patients with CVD. METHODS This was a single-centre, retrospective, cross-sectional study. The subjects were 636 inpatients with CVD who took prescribed medicines for at least 4 weeks at the time of admission. Skeletal muscle volume was assessed using a bioelectrical impedance assay. RESULTS AND DISCUSSION Single regression analysis showed that 10 and 3 medications were positively and negatively associated with skeletal muscle index (SMI), respectively. Stepwise multivariate regression analysis revealed that angiotensin II receptor blocker (ARB)/statin combination, dipeptidyl peptidase-4 inhibitor, and antihyperuricemic agents were positively associated with SMI while diuretics and antiarrhythmic agents were negatively associated with SMI. After adjustment using propensity score matching, the SMI was found to be significantly higher in ARB/statin combination users than in non-users. WHAT IS NEW AND CONCLUSION Combination use of ARB/statin was associated with a higher SMI in patients with CVD. A future randomised, controlled trial is warranted to determine whether the ARB/statin combination will increase the SMI and prevent sarcopenia in patients with CVD.
Collapse
Affiliation(s)
- Haruhito Harada
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Yasuhiro Nishiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Hiroshi Niiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Atsushi Katoh
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Hisashi Kai
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| |
Collapse
|
38
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Ekiz T, Kara M, Ata AM, Ricci V, Kara Ö, Özcan F, Özçakar L. Rewinding sarcopenia: a narrative review on the renin-angiotensin system. Aging Clin Exp Res 2021; 33:2379-2392. [PMID: 33394457 DOI: 10.1007/s40520-020-01761-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The purpose of this review was two-fold. First, we aimed to provide an in-depth glance on the relationship between renin-angiotensin system (RAS) dysregulation and sarcopenia. Second, we aimed to touch upon potential treatments of sarcopenia (including RAS blockers, vitamin D, and exercise) in light of the pertinent literature. METHODS Currently available research regarding the effects of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers on knee extensor strength, grip strength, chair stand test, gate speed together with the effects of exercise on muscle mass, strength, physical performance, blood pressure and cognitive tests (particularly in older adults) was reviewed. RESULTS Although some studies have shown favorable effects of ACEIs on muscle strength and/or physical function tests, some studies have reported no/negative association in between. The favorable impact of exercise on reducing blood pressure is shown, and exercise treatment is widely recommended in the relevant literature. Different types of exercises (aerobic, resistance, dancing, music movement, water-based, golf, knitting activities or multicomponent exercises) have shown improvement in cognitive functions as well. CONCLUSION Classical RAS activity results in deleterious effects not only on the cardiovascular but also on the neuromusculoskeletal system. Therefore, treatments targeting inhibition of the classical RAS activity seem to be important in the management of several age-related pathologies, including sarcopenia. As such, ACEIs, vitamin D, exercise, and healthy diet can have prominent effects not only on the modulation of RAS but also on physical and cognitive functions and sarcopenia as well.
Collapse
Affiliation(s)
- Timur Ekiz
- Department of Physical Medicine and Rehabilitation, Türkmenbaşı Medical Center, Türkmenbaşı Bulvarı Botanik Evleri Osmanbey Apt. C Blok No:3/B Seyhan, 01130, Adana, Turkey.
| | - Murat Kara
- Department of Physical Medicine and Rehabilitation, Hacettepe University Medical School, Ankara, Turkey
| | - Ayşe Merve Ata
- Department of Physical Medicine and Rehabilitation, Dr. Ayten Bozkaya Spastic Children Hospital and Rehabilitation Center, Bursa, Turkey
| | - Vincenzo Ricci
- Physical and Rehabilitation Medicine Unit, Department of Biomedical and Neuromotor Science, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Özgür Kara
- Geriatrics Unit, Yenimahalle Training and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Fırat Özcan
- Department of Cardiology, Ankara City Hospital, Health Sciences University, Ankara, Turkey
| | - Levent Özçakar
- Department of Physical Medicine and Rehabilitation, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
40
|
Feike Y, Zhijie L, Wei C. Advances in research on pharmacotherapy of sarcopenia. Aging Med (Milton) 2021; 4:221-233. [PMID: 34553120 PMCID: PMC8444957 DOI: 10.1002/agm2.12168] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is a comprehensive degenerative disease with the progressive loss of skeletal muscle mass with age, accompanied by the loss of muscle strength and muscle dysfunction. As a new type of senile syndrome, sarcopenia seriously threatens the health of the elderly. The first-line treatment for sarcopenia is exercise and nutritional supplements. However, pharmacotherapy will provide more reliable and sustainable interventions in geriatric medicine. Clinical trials of new drugs targeting multiple molecules are ongoing. This article focuses on the latest progress in pharmacotherapeutic approaches of sarcopenia in recent years by comprehensively reviewing the clinical outcomes of the existing and emerging pharmacotherapies as well as the molecular mechanisms underlying their therapeutic benefits and side effects.
Collapse
Affiliation(s)
- Yang Feike
- Department of Geriatric MedicineThe Central Hospital of Changsha CityChangshaChina
| | - Liu Zhijie
- Department of Geriatric MedicineThe Central Hospital of Changsha CityChangshaChina
| | - Chen Wei
- Department of Geriatric MedicineThe Central Hospital of Changsha CityChangshaChina
| |
Collapse
|
41
|
Sartori R, Hagg A, Zampieri S, Armani A, Winbanks CE, Viana LR, Haidar M, Watt KI, Qian H, Pezzini C, Zanganeh P, Turner BJ, Larsson A, Zanchettin G, Pierobon ES, Moletta L, Valmasoni M, Ponzoni A, Attar S, Da Dalt G, Sperti C, Kustermann M, Thomson RE, Larsson L, Loveland KL, Costelli P, Megighian A, Merigliano S, Penna F, Gregorevic P, Sandri M. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med 2021; 13:eaay9592. [PMID: 34349036 DOI: 10.1126/scitranslmed.aay9592] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.
Collapse
Affiliation(s)
- Roberta Sartori
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Adam Hagg
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Laís R Viana
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-97, Brazil
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Kevin I Watt
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hongwei Qian
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Pardis Zanganeh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Anna Larsson
- Theme Cancer, Karolinska University Hospital, Solna 171 76, Sweden
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Elisa S Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Lucia Moletta
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Alberto Ponzoni
- Department of Radiology, Padova General Hospital, 35121 Padova, Italy
| | - Shady Attar
- Department of Medicine, University Hospital of Padova, 35121 Padova, Italy
| | - Gianfranco Da Dalt
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Monika Kustermann
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rachel E Thomson
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kate L Loveland
- Centre for Reproductive Health. Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, and Anatomy and Developmental Biology, Monash University, VIC 3800, Australia
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
42
|
Takeshita H, Yamamoto K, Mogi M, Wang Y, Nozato Y, Fujimoto T, Yokoyama S, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Horiuchi M, Rakugi H. Double Deletion of Angiotensin II Type 2 and Mas Receptors Accelerates Aging-Related Muscle Weakness in Male Mice. J Am Heart Assoc 2021; 10:e021030. [PMID: 34212761 PMCID: PMC8403326 DOI: 10.1161/jaha.120.021030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Background The activation of AT2 (angiotensin II type 2 receptor ) and Mas receptor by angiotensin II and angiotensin-(1-7), respectively, is the primary process that counteracts activation of the canonical renin-angiotensin system (RAS). Although inhibition of canonical RAS could delay the progression of physiological aging, we recently reported that deletion of Mas had no impact on the aging process in mice. Here, we used male mice with a deletion of only AT2 or a double deletion of AT2 and Mas to clarify whether these receptors contribute to the aging process in a complementary manner, primarily by focusing on aging-related muscle weakness. Methods and Results Serial changes in grip strength of these mice up to 24 months of age showed that AT2/Mas knockout mice, but not AT2 knockout mice, had significantly weaker grip strength than wild-type mice from the age of 18 months. AT2/Mas knockout mice exhibited larger sizes, but smaller numbers and increased frequency of central nucleation (a marker of aged muscle) of single skeletal muscle fibers than AT2 knockout mice. Canonical RAS-associated genes, inflammation-associated genes, and senescence-associated genes were highly expressed in skeletal muscles of AT2/Mas knockout mice. Muscle angiotensin II content increased in AT2/Mas knockout mice. Conclusions Double deletion of AT2 and Mas in mice exaggerated aging-associated muscle weakness, accompanied by signatures of activated RAS, inflammation, and aging in skeletal muscles. Because aging-associated phenotypes were absent in single deletions of the receptors, AT2 and Mas could complement each other in preventing local activation of RAS during aging.
Collapse
MESH Headings
- Age Factors
- Animals
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Hand Strength
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Strength/genetics
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/pathology
- Muscle Weakness/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Phenotype
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Renin-Angiotensin System/genetics
- Mice
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Yamamoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mogi
- Department of PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Yu Wang
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Nozato
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Taku Fujimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Serina Yokoyama
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Futoshi Nakagami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Takami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yasushi Takeya
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Sugimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Hiromi Rakugi
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
43
|
Yoon JH, Kwon KS. Receptor-Mediated Muscle Homeostasis as a Target for Sarcopenia Therapeutics. Endocrinol Metab (Seoul) 2021; 36:478-490. [PMID: 34218646 PMCID: PMC8258343 DOI: 10.3803/enm.2021.1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is a disease characterized by age-related decline of skeletal muscle mass and function. The molecular mechanisms of the pathophysiology of sarcopenia form a complex network due to the involvement of multiple interconnected signaling pathways. Therefore, signaling receptors are major targets in pharmacological strategies in general. To provide a rationale for pharmacological interventions for sarcopenia, we herein describe several druggable signaling receptors based on their role in skeletal muscle homeostasis and changes in their activity with aging. A brief overview is presented of the efficacy of corresponding drug candidates under clinical trials. Strategies targeting the androgen receptor, vitamin D receptor, Insulin-like growth factor-1 receptor, and ghrelin receptor primarily focus on promoting anabolic action using natural ligands or mimetics. Strategies involving activin receptors and angiotensin receptors focus on inhibiting catabolic action. This review may help to select specific targets or combinations of targets in the future.
Collapse
Affiliation(s)
- Jong Hyeon Yoon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
- Aventi Inc., Daejeon, Korea
| |
Collapse
|
44
|
Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, Xiao WF, Li YS. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle 2021; 12:538-554. [PMID: 33951340 PMCID: PMC8200444 DOI: 10.1002/jcsm.12709] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is a progressive and widespread skeletal muscle disease that is related to an increased possibility of adverse consequences such as falls, fractures, physical disabilities and death, and its risk increases with age. With the deepening of the understanding of sarcopenia, the disease has become a major clinical disease of the elderly and a key challenge of healthy ageing. However, the exact molecular mechanism of this disease is still unclear, and the selection of treatment strategies and the evaluation of its effect are not the same. Most importantly, the early symptoms of this disease are not obvious and are easy to ignore. In addition, the clinical manifestations of each patient are not exactly the same, which makes it difficult to effectively study the progression of sarcopenia. Therefore, it is necessary to develop and use animal models to understand the pathophysiology of sarcopenia and develop therapeutic strategies. This paper reviews the mouse models that can be used in the study of sarcopenia, including ageing models, genetically engineered models, hindlimb suspension models, chemical induction models, denervation models, and immobilization models; analyses their advantages and disadvantages and application scope; and finally summarizes the evaluation of sarcopenia in mouse models.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Deng-Jie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Xiu-Hua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Kim HJ, Lee JH, Kim SW, Lee SH, Jung DW, Williams DR. Investigation of niclosamide as a repurposing agent for skeletal muscle atrophy. PLoS One 2021; 16:e0252135. [PMID: 34038481 PMCID: PMC8153455 DOI: 10.1371/journal.pone.0252135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is a feature of aging (termed sarcopenia) and various diseases, such as cancer and kidney failure. Effective drug treatment options for muscle atrophy are lacking. The tapeworm medication, niclosamide is being assessed for repurposing to treat numerous diseases, including end-stage cancer metastasis and hepatic steatosis. In this study, we investigated the potential of niclosamide as a repurposing drug for muscle atrophy. In a myotube atrophy model using the glucocorticoid, dexamethasone, niclosamide did not prevent the reduction in myotube diameter or the decreased expression of phosphorylated FOXO3a, which upregulates the ubiquitin-proteasome pathway of muscle catabolism. Treatment of normal myotubes with niclosamide did not activate mTOR, a major regulator of muscle protein synthesis, and increased the expression of atrogin-1, which is induced in catabolic states. Niclosamide treatment also inhibited myogenesis in muscle precursor cells, enhanced the expression of myoblast markers Pax7 and Myf5, and downregulated the expression of differentiation markers MyoD, MyoG and Myh2. In an animal model of muscle atrophy, niclosamide did not improve muscle mass, grip strength or muscle fiber cross-sectional area. Muscle atrophy is also feature of cancer cachexia. IC50 analyses indicated that niclosamide was more cytotoxic for myoblasts than cancer cells. In addition, niclosamide did not suppress the induction of iNOS, a key mediator of atrophy, in an in vitro model of cancer cachexia and did not rescue myotube diameter. Overall, these results suggest that niclosamide may not be a suitable repurposing drug for glucocorticoid-induced skeletal muscle atrophy or cancer cachexia. Nevertheless, niclosamide may be employed as a compound to study mechanisms regulating myogenesis and catabolic pathways in skeletal muscle.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Sang-Hoon Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| |
Collapse
|
46
|
Awad AS, Nour El-Din M, Kamel R. CoQ10 augments candesartan protective effect against tourniquet-induced hind limb ischemia-reperfusion: Involvement of non-classical RAS and ROS pathways. Saudi Pharm J 2021; 29:724-733. [PMID: 34400868 PMCID: PMC8347674 DOI: 10.1016/j.jsps.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Tourniquet is a well-established model of hind limb ischemia–reperfusion (HLI/R) in rats. Nevertheless, measures should be taken to alleviate the expected injury from ischemia/ reperfusion (I/R). In the present study, 30 adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6): control, HLI/R, HLI/R given candesartan (1 mg/kg, P.O); HLI/R given Coenzyme Q10 (CoQ10) (10 mg/kg, P.O); HLI/R given candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). The drugs were administered for 7 days starting one hour after reperfusion. Candesartan and CoQ10 as well as their combination suppressed gastrocnemius content of angiotensin II while they raised angiotensin-converting enzyme 2 (ACE2) activity, angiotensin (1–7) expression, and Mas receptor mRNA level. Consequently, candesartan and/or CoQ10 reversed the oxidative stress and inflammatory changes that occurred following HLI/R as demonstrated by the rise of SOD activity and the decline of MDA, TNF-α, and IL-6 skeletal muscle content. Additionally, candesartan and/or CoQ10 diminished gastrocnemius active caspase-3 level and phospho-p38 MAPK protein expression. Our study proved that CoQ10 enhanced the beneficial effect of candesartan in a model of tourniquet-induced HLI/R by affecting classical and non-classical renin-angiotensin system (RAS) pathway. To our knowledge, this is the first study showing the impact of CoQ10 on skeletal muscle RAS in rats.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
47
|
Katano S, Yano T, Shimizu M, Ohori K, Kouzu H, Koyama M, Nagaoka R, Inoue T, Takamura Y, Ishigo T, Takashima H, Katayose M, Ohnishi H, Miura T. Does renin-angiotensin system inhibition have impacts on muscle mass and bone mineral density in heart failure patients? ESC Heart Fail 2021; 8:2617-2624. [PMID: 34002947 PMCID: PMC8318416 DOI: 10.1002/ehf2.13430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aims Results of experimental studies have indicated the possibility of muscle and bone mass being negatively regulated by renin‐angiotensin system (RAS) activation, but that possibility has not been analysed in patients with heart failure (HF). Methods and results Data for HF patients who received a dual‐energy X‐ray absorptiometry scan in our hospital were reviewed. Propensity scores for the use of RAS inhibitors (RASIs) were calculated using a multivariate logistic regression model to minimize selection bias. One hundred sixty pairs of patients were extracted. Plasma aldosterone concentration was significantly lower in the RASIs group than in the no‐RASIs group (119 [IQR 71–185] vs. 94 [IQR 60–131] pg/mL, P = 0.003), confirming RAS inhibition in the RASIs group. Skeletal muscle mass index tended to be higher in the RASIs group than in the non‐RASIs group (15.6 [IQR 14.0–17.2] vs. 15.0 [IQR 13.3–16.6] pg/mL, P = 0.065). The proportion of patients with muscle wasting, defined as appendicular skeletal muscle mass indexes of <7.00 and <5.40 kg/m2 for males and females, respectively, was significantly lower in the RASIs group than in the non‐RASIs group (53% vs. 64%, P = 0.041). Multivariate logistic regression analysis showed that the no use of RASIs was associated with presence of muscle wasting independently of age, presence of diabetes, renal function, and severity of HF. Bone mineral densities and proportions of patients with osteoporosis were similar in the two groups. Conclusions Renin‐angiotensin system inhibition is associated with a lower prevalence of muscle wasting in HF patients independently of established risk factors.
Collapse
Affiliation(s)
- Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan.,Department of Cardiology, Hokkaido Cardiovascular Hospital, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan.,Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Takuya Inoue
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Yuhei Takamura
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Tomoyuki Ishigo
- Division of Hospital Pharmacy, Sapporo Medical University Hospital, Sapporo, Japan
| | - Hiroyuki Takashima
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Masaki Katayose
- Second Division of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
48
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
49
|
Kinney CJ, O'Neill A, Noland K, Huang W, Muriel J, Lukyanenko V, Kane MA, Ward CW, Collier AF, Roche JA, McLenithan JC, Reed PW, Bloch RJ. μ-Crystallin in Mouse Skeletal Muscle Promotes a Shift from Glycolytic toward Oxidative Metabolism. Curr Res Physiol 2021; 4:47-59. [PMID: 34746826 PMCID: PMC8562245 DOI: 10.1016/j.crphys.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023] Open
Abstract
μ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, β-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that μ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of μ-crystallin are associated with a shift toward greater fat metabolism.
Collapse
Affiliation(s)
- Christian J. Kinney
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Andrea O'Neill
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Kaila Noland
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joaquin Muriel
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher W. Ward
- Department of Orthopedics School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa F. Collier
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joseph A. Roche
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - John C. McLenithan
- Department of Medicine School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Patrick W. Reed
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Robert J. Bloch
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| |
Collapse
|
50
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|