1
|
Al Khodair KM, Al-Shabebi A, Al-Thnaian TA, Alturki OIM, Marwa-Babiker A, Al-Ramadan SY, Ali AM, Elseory AM. Beta-defensin 126 (DEFB126) localization and expression in the sperms and male reproductive tract of the dromedary camel ( Camelus dromedarius) during the rutting season. Open Vet J 2025; 15:1206-1216. [PMID: 40276191 PMCID: PMC12017708 DOI: 10.5455/ovj.2025.v15.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/13/2025] [Indexed: 04/26/2025] Open
Abstract
Background Numerous plant and animal species have β-defensins, antimicrobial peptides involved in immunity and reproduction. Beta-defensin 126 (DEFB126) belongs to the β-defensin family and is a vital component of sperm function. It regulates the capacitation and sperm-egg interaction. Aim Clarify the expression of DEFB126 in the dromedary camel's sperm and reproductive tract. Methods The current work used immunohistochemical (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) methods to clarify the distribution and expression of DEFB126 in the sperm and male reproductive tract (MRT) of dromedary camels in the time of rutting. Samples of fresh and epididymal sperm, testicular, epididymis, ductus deferens, and male accessory gland tissues were obtained from 20 male camels. Results The results of IHC showed that the fresh and epididymal sperms had a positive immunoreaction to DEFB126 antibodies. Also, all parts of the testicles, epididymis, vas deferens, prostate, and bulbourethral glands were positively stained to various degrees with a strong immunoreaction in the epididymal's tail. qRT-PCR results showed that expression levels of DEFB126 mRNA varied in the fresh and epididymal sperms and throughout all parts of the MRT; the tail of the epididymis had the most significant expression levels (p < 0.05). Conclusion This study's results indicated that DEFB126 protein is expressed in the sperm and MRT of the dromedary camel, with the acrosomal cap of the sperm and the epididymis tail exhibiting the highest levels of expression. These findings imply that DEFB126 could be involved in the reproductive processes of sperm maturation, capacitation, and sperm-zona recognition.
Collapse
Affiliation(s)
- Khalid M. Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulkarem Al-Shabebi
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
- Veterinary Department, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Thnaian A. Al-Thnaian
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Osamah I. M. Alturki
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - A.M. Marwa-Babiker
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum North, Sudan
| | - Saeed Y Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelhay M. Ali
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelrahman M.A. Elseory
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| |
Collapse
|
2
|
Sidekli O, Hollox EJ, Fair S, Meade KG. Impact of β-defensin 103 (DEFB103) copy number variation on bull sperm parameters and post-insemination uterine gene expression. PLoS One 2025; 20:e0319281. [PMID: 39999087 PMCID: PMC11856272 DOI: 10.1371/journal.pone.0319281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Pregnancy rates for elite bulls used in artificial insemination (AI) can vary significantly and therefore the identification of molecular markers for fertility and targets to improve bull selection is important. β-defensin peptides have diverse regulatory roles in sperm function across multiple species but the role of copy number variation (CNV) on fertility parameters has not been previously evaluated. In this study, Holstein-Friesian bulls were screened based on reliable field fertility data to identify two groups (High and Low fertility (HF and LF, respectively)) of n = 10 bulls/group which were genotyped for β-defensin 103 (DEFB103) gene CNV by droplet digital PCR. Overall, low DEFB103 copy number (CN) was associated with increased sperm motility across all bulls (n = 20, p < 0.05). As genetic diversity of DEFB103 CN was only apparent in the LF group, three bulls per CNV class (low, intermediate and high CN) were chosen for more detailed comparative functional analysis. Sperm from low CN bulls exhibited higher binding to the oviductal epithelium, while high CN increased sperm membrane fluidity in vitro (p < 0.05). To investigate the functional effect of DEFB103 CNV on the uterine response in vivo, 18 heifers were inseminated with sperm from bulls with low, intermediate and high CN. Transcriptomic analysis on uterine tissue harvested 12 h post-insemination showed differential expression of 58 genes (FDR < 0.1) involved in sperm migration, immune signalling and chemotaxis. Although field fertility results from a complex number of interactive factors, these novel results suggest a contributory role for DEFB103 CN in both sperm function and the uterine response to bull sperm, thereby potentially contributing to pregnancy outcomes in cattle. Further analysis of the role of CNV in additional β-defensin genes in bull fertility is now warranted.
Collapse
Affiliation(s)
- Ozge Sidekli
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, United Kingdom
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Wang T, Zhang Z, Qu C, Song W, Li M, Shao X, Fukuda T, Gu J, Taniguchi N, Li W. Core fucosylation regulates the ovarian response via FSH receptor during follicular development. J Adv Res 2025; 67:105-120. [PMID: 38280716 PMCID: PMC11725149 DOI: 10.1016/j.jare.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
INTRODUCTION Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.
Collapse
Affiliation(s)
- Tiantong Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhiwei Zhang
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Changduo Qu
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wanli Song
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xiaoguang Shao
- Medical Center for Reproductive and Genetic Research, Dalian Municipal Women and Children's Medical Center, 878 Xibei Road, Gezhenbao Street, Dalian, Liaoning 116037, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China; Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
4
|
Sidekli O, Oketch J, Fair S, Meade KG, Hollox EJ. β-Defensin gene copy number variation in cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241154. [PMID: 39479249 PMCID: PMC11521603 DOI: 10.1098/rsos.241154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
β-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance. In this study, we comprehensively catalogue 55 β-defensin genes in cattle. By constructing a phylogenetic tree to identify human orthologues and lineage-specific expansions, we identify 1 : 1 human orthologues for 35 bovine β-defensins. We also discover extensive β-defensin gene CNV across breeds, with DEFB103, in particular, showing extensive multi-allelic CNV. By comparing β-defensin expression levels in testis from calves and adult bulls, we find that 14 β-defensins, including DEFB103, increase in expression during sexual maturation. Analysis of β-defensin gene expression levels in the caput of adult bull epididymis, and β-defensin gene copy number, in 94 matched samples shows expression levels of four β-defensins are correlated with genomic copy numbers, including DEFB103. We therefore demonstrate extensive CNV in bovine β-defensin genes, in particular DEFB103, with potential functional consequences for fertility.
Collapse
Affiliation(s)
- Ozge Sidekli
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - John Oketch
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Jin J, Yim HCH, Chang HME, Wang Y, Choy KHK, Chan SY, Alqawasmeh OAM, Liao J, Jiang XT, Chan DYL, Fok EKL. DEFB119 stratifies dysbiosis with distorted networks in the seminal microbiome associated with male infertility. PNAS NEXUS 2024; 3:pgae419. [PMID: 39359400 PMCID: PMC11443970 DOI: 10.1093/pnasnexus/pgae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Infertility is associated with the alteration of the seminal microbiome. However, the onset of dysbiosis remains controversial and the involvement of host factors remains elusive. This study investigates the alterations of the seminal microbiome in male infertility and examines the association and function of DEFB119, a reproductive-tract-specific host antimicrobial peptide, on the seminal microbiome and male fertility. While we observed comparable genera, diversity and evenness of bacterial communities, a marked decrease in the modularity of the metacommunities was observed in patients with abnormal spermiogram (n = 57) as compared to the control (n = 30). A marked elevation of DEFB119 was observed in a subpopulation of male infertile patients (n = 5). Elevated seminal DEFB119 was associated with a decrease in the observed genera, diversity and evenness of bacterial communities, and further distortion of the metacommunities. Mediation analysis suggests the involvement of elevated DEFB119 and dysbiosis of the seminal microbiome in mediating the abnormalities in the spermiogram. Functional experiments showed that recombinant DEFB119 significantly decrease the progressive motility of sperm in patients with abnormal spermiogram. Moreover, DEFB119 demonstrated species-specific antimicrobial activity against common seminal and nonseminal species. Our work identifies an important host factor that mediates the host-microbiome interaction and stratifies the seminal microbiome associated with male infertility. These results may lead to a new diagnostic method for male infertility and regimens for formulating the microbiome in the reproductive tract and other organ systems.
Collapse
Affiliation(s)
- Jing Jin
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Howard Chi Ho Yim
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - Hsiao Mei Ellie Chang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yiwei Wang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kathleen Hoi Kei Choy
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sze Yan Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Odai A M Alqawasmeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jinyue Liao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiao-Tao Jiang
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ellis Kin Lam Fok
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
6
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
7
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
8
|
Voss ER, Nachman MW. Mating system variation and gene expression in the male reproductive tract of Peromyscus mice. Mol Ecol 2024:e17433. [PMID: 39031829 PMCID: PMC11662088 DOI: 10.1111/mec.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Genes involved in reproduction often evolve rapidly at the sequence level due to postcopulatory sexual selection (PCSS) driven by male-male competition and male-female sexual conflict, but the impact of PCSS on gene expression has been under-explored. Further, though multiple tissues contribute to male reproductive success, most studies have focused on the testes. To explore the influence of mating system variation on reproductive tract gene expression in natural populations, we captured adult males from monogamous Peromyscus californicus and polygynandrous P. boylii and P. maniculatus. We generated RNAseq libraries, quantified gene expression in the testis, seminal vesicle, epididymis, and liver, and identified 3627 mating system-associated differentially expressed genes (MS-DEGs), where expression shifted in the same direction in P. maniculatus and P. boylii relative to P. californicus. Gene expression variation was most strongly associated with mating behaviour in the seminal vesicles, where 89% of differentially expressed genes were MS-DEGs, including the key seminal fluid proteins Svs2 and Pate4. We also used published rodent genomes to test for positive and relaxed selection on Peromyscus-expressed genes. Though we did not observe more overlap than expected by chance between MS-DEGs and positively selected genes, 203 MS-DEGs showed evidence of positive selection. Fourteen reproductive genes were under tree-wide positive selection but convergent relaxed selection in P. californicus and Microtus ochrogaster, a distantly related monogamous species. Changes in transcript abundance and gene sequence evolution in association with mating behaviour suggest that male mice may respond to sexual selection intensity by altering aspects of sperm motility, sperm-egg binding and copulatory plug formation.
Collapse
Affiliation(s)
- Erin R Voss
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Haratian K, Borjian Boroujeni P, Sabbaghian M, Maghareh Abed E, Moazenchi M, Mohseni Meybodi A. DEFB126 2-nt Deletion (rs11467417) as a Potential Risk Factor for Chlamydia Trachomatis Infection and Subsequent Infertility in Iranian Men. J Reprod Infertil 2024; 25:20-27. [PMID: 39157277 PMCID: PMC11330205 DOI: 10.18502/jri.v25i1.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 08/20/2024] Open
Abstract
Background Chlamydia trachomatis (CT) is one of the most prevalent sexually transmitted infections, causing genital tract infections and infertility. Defensins have an immunomodulatory function and play an important role in sperm maturation, motility, and fertilization. DEFB126 is present on ejaculated spermatozoa and is essential for them to pass through the female reproductive tract. The purpose of the study was to determine the frequency of the 2-nt deletion of the DEFB126 (rs11467417) in Iranian infertile males with a recurrent history of CT. Methods Semen samples of 1080 subfertile males were investigated. Among patients who had CT-positive results, sperm DNA from 50 symptomatic and 50 asymptomatic patients were collected for the DEFB126 genotype analysis. Additionally, a control group comprising 100 DNA samples from individuals with normal spermogram and testing negative for CT was included in the study. The PCR-sequencing for detecting the 2-nt deletion of the second exon of the DEFB126 was performed. Results The Chi-squared test comparing all three groups revealed no significant difference across the different genotypes. Moreover, no significant difference between the symptomatic and asymptomatic groups was seen. However, analysis within CT-positive patients and controls demonstrated significant difference between the frequencies of homozygous del/del. Conclusion The higher frequency of the 2-nt deletion of the DEFB126 in CT- positive patients suggests that the occurrence of mutations in the DEFB-126 may cause the impairment of the antimicrobial activity of the DEFB126 protein and consequently makes individuals more susceptible to infections such as CT.
Collapse
Affiliation(s)
- Kaveh Haratian
- Department of Pathology and Laboratory Medicine, Western University, Ontario, Canada
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Maghareh Abed
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Pathology and Laboratory Medicine, Western University, Ontario, Canada
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Fesahat F, Firouzabadi AM, Zare-Zardini H, Imani M. Roles of Different β-Defensins in the Human Reproductive System: A Review Study. Am J Mens Health 2023; 17:15579883231182673. [PMID: 37381627 PMCID: PMC10334010 DOI: 10.1177/15579883231182673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
13
|
Wang P, Zhang X, Huo H, Li W, Liu Z, Wang L, Li L, Sun YH, Huo J. Transcriptomic analysis of testis and epididymis tissues from Banna mini-pig inbred line boars with single-molecule long-read sequencing†. Biol Reprod 2023; 108:465-478. [PMID: 36477198 DOI: 10.1093/biolre/ioac216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.
Collapse
Affiliation(s)
- Pei Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang, China
| | - Hailong Huo
- Yunnan Vocational and Technical college of Agriculture, Kunming, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lina Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Luogang Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
14
|
Huang J, Chen H, Li N, Zhao Y. Emerging microfluidic technologies for sperm sorting. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
15
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
16
|
β-Defensin 19/119 mediates sperm chemotaxis and is associated with idiopathic infertility. Cell Rep Med 2022; 3:100825. [PMID: 36513070 PMCID: PMC9797948 DOI: 10.1016/j.xcrm.2022.100825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Sperm chemotaxis is required for guiding sperm toward the egg. However, the molecular identity of physiological chemoattractant and its involvement in infertility remain elusive. Here, we identify DEFB19/119 (mouse/human orthologs) as a physiological sperm chemoattractant. The epithelia of the female reproductive tract and the cumulus-oocyte complex secrete DEFB19/119 that elicits calcium mobilization via the CatSper channel and induces sperm chemotaxis in capacitated sperm. Manipulating the level of DEFB19 in mice determines the number of sperm arriving at the fertilization site. Importantly, we identify exon mutations in the DEFB119 gene in idiopathic infertile women with low level of DEFB119 in the follicular fluid. The level of DEFB119 correlates with the chemotactic potency of follicular fluid and predicts the infertile outcome with positive correlation. This study reveals the pivotal role of DEFB19/119 in sperm chemotaxis and demonstrates its potential application in the diagnosis of idiopathic infertility.
Collapse
|
17
|
Jin J, Li X, Ye M, Qiao F, Chen H, Fok KL. Defb19 regulates the migration of germ cell and is involved in male fertility. Cell Biosci 2022; 12:188. [PMID: 36414976 PMCID: PMC9682749 DOI: 10.1186/s13578-022-00924-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
β-defensins are small antimicrobial peptides that play essential roles in male fertility. Although several members of the β-defensin family are preferentially expressed in the testis, their involvement in spermatogenesis remains elusive. In this study, we have characterized the expression and function of Defb19 in mouse testis. Our results showed that Defb19 is expressed in both Sertoli cells and germ cells. Overexpression of Defb19 in the 15P-1 Sertoli cell line decreases the expression of cell junction molecules and promotes the matrix adhesion and migration of Sertoli cells. Recombinant DEFB19 and conditioned medium of Defb19-overexpressed 15P-1 cells promote the migration of GC2-spd spermatocyte cell line. Knockout of Defb19 in mouse by CRISPR/Cas9 resulted in male subfertility with testicular and epididymal atrophy. A marked increase in apoptosis and a significant decrease in the sperm count were observed in the KO mice. Together, our study has uncovered an important role of Defb19 in male fertility by regulating the migration of both the Sertoli cells and the germ cells. Our study has shed new light on the functions of β-defensins in the testis.
Collapse
|
18
|
Analysis of amplification and association polymorphisms in the bovine beta-defensin 129 (BBD129) gene revealed its function in bull fertility. Sci Rep 2022; 12:19042. [PMID: 36352091 PMCID: PMC9646896 DOI: 10.1038/s41598-022-23654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
β-defensins are adsorbable on the sperm surface in the male reproductive tract (MRT) and enhance sperm functional characteristics. The beta-defensin 129 (DEFB129) antimicrobial peptide is involved in sperm maturation, motility, and fertilization. However, its role in bovine fertility has not been well investigated. This study examines the relationship between the bovine BBD129 gene and Bos indicus x Bos taurus bull fertility. The complete coding sequence of BBD129 mRNA was identified by RNA Ligase Mediated-Rapid Amplification of cDNA End (RLM-RACE) and Sanger sequencing methodologies. It consisted of 582 nucleotides (nts) including 5' untranslated region (UTR) (46nts) and 3'UTR (23nts). It conserves all beta-defensin-like features. The expression level of BBD129 was checked by RT-qPCR and maximal expression was detected in the corpus-epididymis region compared to other parts of MRT. Polymorphism in BBD129 was also confirmed by Sanger sequencing of 254 clones from 5 high fertile (HF) and 6 low fertile (LF) bulls at two positions, 169 T > G and 329A > G, which change the S57A and N110S in the protein sequence respectively. These two mutations give rise to four types of BBD129 haplotypes. The non-mutated TA-BBD129 (169 T/329A) haplotype was substantially more prevalent among high-fertile bulls (P < 0.005), while the double-site mutated GG-BBD129 (169 T > G/329A > G) haplotype was significantly more prevalent among low-fertile bulls (P < 0.005). The in silico analysis confirmed that the polymorphism in BBD129 results in changes in mRNA secondary structure, protein conformations, protein stability, extracellular-surface availability, post-translational modifications (O-glycosylation and phosphorylation), and affects antibacterial and immunomodulatory capabilities. In conclusion, the mRNA expression of BBD129 in the MRT indicates its region-specific dynamics in sperm maturation. BBD129 polymorphisms were identified as the deciding elements accountable for the changed proteins with impaired functionality, contributing to cross-bred bulls' poor fertility.
Collapse
|
19
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
20
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
21
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
22
|
Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update 2022; 29:24-44. [PMID: 36066418 PMCID: PMC9825272 DOI: 10.1093/humupd/dmac033] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.
Collapse
Affiliation(s)
| | | | - J Richard Pilsner
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Oleg Sergeyev
- Correspondence address. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, Moscow 119992, Russia. E-mail: https://orcid.org/0000-0002-5745-3348
| |
Collapse
|
23
|
Yu SX, Liu Y, Wu Y, Luo H, Huang R, Wang YJ, Wang X, Gao H, Shi H, Jing G, Liu YJ. Cervix chip mimicking cervical microenvironment for quantifying sperm locomotion. Biosens Bioelectron 2022; 204:114040. [PMID: 35151944 DOI: 10.1016/j.bios.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
As the gate for sperm swimming into the female reproductive tract, cervix is full of cervical mucus, which plays an important role in sperm locomotion. The fact that sperm cannot pass through the cervical mucus-cervix microenvironment will cause the male infertility. However, how the sperm swim across the cervix microenvironment remains elusive. We used hyaluronic acid (HA), a substitute of cervical mucus to mimic cervix microenvironment and designed a cervix chip to study sperm selection and behavior. An accumulation of sperm in HA confirmed that HA served as a reservoir for sperm, similar to cervical mucus. We found that sperm escaping from HA exhibited higher motility than the sperm accessing into HA, suggesting that HA functions as a filter to select sperm with high activity. Our findings construct a practical platform to explore the sophisticated interaction of sperm with cervix microenvironment, with elaborate swimming indicators thus provide a promising cervix chip for sperm selection with kinematic features on-demand. What's more, the cervix chip allows the convenient use in clinical infertility diagnosis, owing to the advantage of simple, fast and high efficiency.
Collapse
Affiliation(s)
- Sai-Xi Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanan Liu
- School of Physics, State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an, 710069, China
| | - Yi Wu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Luo
- School of Physics, State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an, 710069, China
| | - Rufei Huang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, 200032, China
| | - Ya-Jun Wang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuemei Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Hai Gao
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huijuan Shi
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China.
| | - Guangyin Jing
- School of Physics, State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an, 710069, China.
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Yang Y, Chen F, Qiao K, Zhang H, Chen HY, Wang KJ. Two Male-Specific Antimicrobial Peptides SCY2 and Scyreprocin as Crucial Molecules Participated in the Sperm Acrosome Reaction of Mud Crab Scylla paramamosain. Int J Mol Sci 2022; 23:3373. [PMID: 35328805 PMCID: PMC8952799 DOI: 10.3390/ijms23063373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) identified in the reproductive system of animals have been widely studied for their antimicrobial activity, but only a few studies have focused on their physiological roles. Our previous studies have revealed the in vitro antimicrobial activity of two male gonadal AMPs, SCY2 and scyreprocin, from mud crab Scylla paramamosain. Their physiological functions, however, remain a mystery. In this study, the two AMPs were found co-localized on the sperm apical cap. Meanwhile, progesterone was confirmed to induce acrosome reaction (AR) of mud crab sperm in vitro, which intrigued us to explore the roles of the AMPs and progesterone in AR. Results showed that the specific antibody blockade of scyreprocin inhibited the progesterone-induced AR without affecting intracellular Ca2+ homeostasis, while the blockade of SCY2 hindered the influx of Ca2+. We further showed that SCY2 could directly bind to Ca2+. Moreover, progesterone failed to induce AR when either scyreprocin or SCY2 function was deprived. Taken together, scyreprocin and SCY2 played a dual role in reproductive immunity and sperm AR. To our knowledge, this is the first report on the direct involvement of AMPs in sperm AR, which would expand the current understanding of the roles of AMPs in reproduction.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hua Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.Y.); (F.C.); (K.Q.); (H.Z.); (H.-Y.C.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
25
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
26
|
Mbuayama KR, Taute H, Strӧmstedt AA, Bester MJ, Gaspar ARM. Antifungal activity and mode of action of synthetic peptides derived from the tick OsDef2 defensin. J Pept Sci 2021; 28:e3383. [PMID: 34866278 DOI: 10.1002/psc.3383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Candida albicans is the principal opportunistic fungal pathogen in nosocomial settings and resistance to antifungal drugs is on the rise. Antimicrobial peptides from natural sources are promising novel therapeutics against C. albicans. OsDef2 defensin was previously found to be active against only Gram-positive bacteria, whereas derived fragments Os and its cysteine-free analogue, Os-C, are active against Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, OsDef2-derived analogues and fragments were screened for anticandidal activity with the aim to identify peptides with antifungal activity and in so doing obtain a better understanding of the structural requirements for activity and modes of action. Os, Os-C and Os(11-22)NH2 , a Os-truncated carboxy-terminal-amidated fragment, had the most significant antifungal activities, with minimum fungicidal concentrations (MFCs) in the micromolar range (6-28 μM). C. albicans killing was rapid and occurred within 30-60 min. Further investigations showed all three peptides interacted with cell wall derived polysaccharides while both Os and Os(11-22)NH2 permeabilized fungal liposomes. Confocal laser scanning microscopy confirmed that Os-C and Os(11-22)NH2 could enter the cytosol of live cells and subsequent findings suggest that the uptake of Os and Os-C, in contrast to Os(11-22)NH2 , is energy dependent. Although Os, Os-C and Os(11-22)NH2 induced the production of reactive oxygen species (ROS), co-incubation with ascorbic acid revealed that only ROS generated by Os-C and to a lesser extent Os(11-22)NH2 resulted in cell death. Overall, Os, Os-C and Os(11-22)NH2 are promising candidacidal agents.
Collapse
Affiliation(s)
- Kabuzi R Mbuayama
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adam A Strӧmstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
28
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|
29
|
Batra V, Bhushan V, Ali SA, Sarwalia P, Pal A, Karanwal S, Solanki S, Kumaresan A, Kumar R, Datta TK. Buffalo sperm surface proteome profiling reveals an intricate relationship between innate immunity and reproduction. BMC Genomics 2021; 22:480. [PMID: 34174811 PMCID: PMC8235841 DOI: 10.1186/s12864-021-07640-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Low conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint that limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. Results The raw mass spectra data searched against an in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a glycosylphosphatidylinositol (GPI) anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst other buffalo sperm surface proteins. The presence of these proteins was subsequently confirmed by RT-qPCR, immunofluorescence and in vitro fertilization (IVF) experiments. Conclusions The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted (glyco) proteins like BDs and the GPI-anchored proteins (GPI-APs). The glycosylation pattern of buffalo sperm-surface, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BDs on the sperm surface strengthens our hypothesis that the buffalo BDs (BuBDs) assist the spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD that could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its role in the regulation of male fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07640-z.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vanya Bhushan
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Parul Sarwalia
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenology Lab, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
30
|
Aram R, Chan PTK, Cyr DG. Beta-defensin126 is correlated with sperm motility in fertile and infertile men†. Biol Reprod 2021; 102:92-101. [PMID: 31504198 DOI: 10.1093/biolre/ioz171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
A crucial function of the epididymis is providing a surface glycocalyx that is important for sperm maturation and capacitation. Defensins are antimicrobial peptides expressed in the epididymis. In the macaque epididymis, defensin beta 126 (DEFB126) is important for sperm motility, however, it is not known whether this is the case in humans. The objectives were to determine: (1) if DEFB126 on human ejaculated sperm was correlated with sperm motility in fertile and infertile men, (2) that recombinant DEFB126 could induce immature sperm motility in vitro. Immunofluorescence staining indicated that the proportion of DEFB126-positive sperm was significantly higher in motile sperm. Furthermore, the proportion of DEFB126-labeled sperm was positively correlated with sperm motility and normal morphology. Additional studies indicated that the proportion of DEFB126-positive spermatozoa in fertile volunteers was significantly higher than in volunteers with varicocele, and in infertile volunteers with semen deficiencies. To determine the role of DEFB126 on sperm motility, the DEFB126 gene was cloned and used to generate recombinant DEFB126 in H9C2 cells (rat embryonic heart myoblast cells). Deletion mutations were created into two regions of the protein, which have been linked to male infertility. Immotile testicular spermatozoa were incubated with cells expressing the different forms of DEFB126. Full-length DEFB126 significantly increased motility of co-cultured spermatozoa. However, no increase in sperm motility was observed with the mutated forms of DEFB126. In conclusion, these results support the notion that DEFB126 is important in human sperm maturation and the potential use of DEFB126 for in vitro sperm maturation.
Collapse
Affiliation(s)
- Raheleh Aram
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Peter T K Chan
- Department of Urology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
31
|
Ahmed S, Tao J, Wang M, Zhai Y, Liu W, Jayachandran M, Chu C, Qu S, Zhang J, Zhang Y, Fei Z. An improved lentiviral system for efficient expression and purification of β-defensins in mammalian cells. Biotechnol J 2021; 16:e2100023. [PMID: 34053189 DOI: 10.1002/biot.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
β-Defensins are a family of conserved small cationic antimicrobial peptides with different significant biological functions. The majority of mammalian β-defensins are expressed in epididymis, and many of them are predicted to have post-translational modifications. However, only a few of its members have been well studied due to the limitations of expressing and purifying bioactive proteins with correct post-translational modifications efficiently. Here we developed a novel Fc tagged lentiviral system and Fc tagged prokaryotic expression systems provided new options for β-defensins expression and purification. The novel lentiviral system contains a secretive signal peptide, an N-terminal IgG Fc tag, a green fluorescent protein (GFP), and a puromycin selection marker to facilitate efficient expression and fast purification of β-defensins by protein A magnetic or agarose beads. It also enables stable and large-scale expression of β-defensins with regular biological activities and post-translational modification. Purified β-defensins such as Bin1b and a novel human β-defensin hBD129 showed antimicrobial activity, immuno-regulatory activity, and expected post-translational phosphorylation, which were not found in Escherichia coli (E. coli) in expressed form. Furthermore, we successfully applied the novel system to identify mBin1b interacting proteins, explaining Bin1b in a better way. These results suggest that the novel lentiviral system is a powerful approach to produce correct post-translational processed β-defensins with bioactivities and is useful to identify their interacting proteins. This study has laid the foundation for future studies to characterize function and mechanism of novel β-defensins.
Collapse
Affiliation(s)
- Shiraz Ahmed
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Jiang Tao
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Miaochen Wang
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zhai
- Department of General dentistry, Shanghai Ninth People's Hospita, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhai Liu
- Immunomic Therapeutics, No.15010 Broschart Road, Rockville, Maryland, 20850, USA
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Chen Chu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jin Zhang
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, No.12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| | - Zhaoliang Fei
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospita, School of Medicine, Tongji University, No. 301 Middle Yanchang Road, Shanghai, 200072, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, No.320 Yueyang Road, Shanghai, 200031, China
| |
Collapse
|
32
|
Oluwayiose OA, Wu H, Saddiki H, Whitcomb BW, Balzer LB, Brandon N, Suvorov A, Tayyab R, Sites CK, Hill L, Marcho C, Pilsner JR. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci Rep 2021; 11:3216. [PMID: 33547328 PMCID: PMC7864951 DOI: 10.1038/s41598-020-80857-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Parental age at time of offspring conception is increasing in developed countries. Advanced male age is associated with decreased reproductive success and increased risk of adverse neurodevelopmental outcomes in offspring. Mechanisms for these male age effects remain unclear, but changes in sperm DNA methylation over time is one potential explanation. We assessed genome-wide methylation of sperm DNA from 47 semen samples collected from male participants of couples seeking infertility treatment. We report that higher male age was associated with lower likelihood of fertilization and live birth, and poor embryo development (p < 0.05). Furthermore, our multivariable linear models showed male age was associated with alterations in sperm methylation at 1698 CpGs and 1146 regions (q < 0.05), which were associated with > 750 genes enriched in embryonic development, behavior and neurodevelopment among others. High dimensional mediation analyses identified four genes (DEFB126, TPI1P3, PLCH2 and DLGAP2) with age-related sperm differential methylation that accounted for 64% (95% CI 0.42-0.86%; p < 0.05) of the effect of male age on lower fertilization rate. Our findings from this modest IVF population provide evidence for sperm methylation as a mechanism of age-induced poor reproductive outcomes and identifies possible candidate genes for mediating these effects.
Collapse
Affiliation(s)
- Oladele A Oluwayiose
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - Hachem Saddiki
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Laura B Balzer
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Nicole Brandon
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rahil Tayyab
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Cynthia K Sites
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Lisa Hill
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Chelsea Marcho
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
33
|
Zhao W, Ahmed S, Ahmed S, Yangliu Y, Wang H, Cai X. Analysis of long non-coding RNAs in epididymis of cattleyak associated with male infertility. Theriogenology 2020; 160:61-71. [PMID: 33181482 DOI: 10.1016/j.theriogenology.2020.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Cattleyak (CY), is a cross breed between cattle and yak (YK), which display equal adaptability to the harsh environment as YK and much higher performances than YK. However, the CY is female fertile and male sterile. Previous studies were conducted on testes tissues to investigate the mechanism of male infertility in CY. There is no systematic research on genes, especially lncRNAs between CY and YK epididymis. In this study, Illumina Hiseq was performed to profile the epididymis transcriptome (lncRNA and mRNA) of CY and YK. In total 18859 lncRNAs were identified, from which lincRNAs 12458, antisense lncRNAs 2345, intronic lncRNAs 3101, and sense lncRNAs 955 respectively. We have identified 345 DE lncRNAs and 3008 DE mRNAs between YK and CY epididymis. Thirteen DEGs were validated by quantitative real-time PCR. Combing with DEG, 14 couples of lncRNAs and their target genes were both DE, and 6 of them including CCDC39, KCNJ16, NECTIN2, MRPL20, PSMC4, and DEFB112 show their potential infertility-related terms such as cellular motility, sperm maturation, sperm storage, cellular junction, folate metabolism, and capacitation. On the other hand, several down-regulated genes such as DEFB124, DEFB126, DEFB125, DEFB127, DEFB129, CES5A, TKDP1, CST3, RNASE9 and CD52 in CY compared to YK were involved in the immune response and sperm maturation. Therefore, comprehensive analysis for lncRNAs and their target genes may enhance our understanding of the molecular mechanisms underlying the process of sperm maturation in CY and may provide important resources for further research.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Saeed Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Siraj Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan, 610041, China; Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
34
|
Pujianto DA, Muliawati D, Rizki MD, Parisudha A, Hardiyanto L. Mouse defensin beta 20 (Defb20) is expressed specifically in the caput region of the epididymis and regulated by androgen and testicular factors. Reprod Biol 2020; 20:536-540. [PMID: 33060057 DOI: 10.1016/j.repbio.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022]
Abstract
Sperm cells undergo maturation during their transit throughout the epididymis. This process takes place in region-specific manner in which sperm are battered by proteins secreted by epithelium lining the epididymal duct. Most of the genes that encode for the proteins involved in the sperm maturation remain uncharacterized. Previous studies showed that family of β-defensins preferentially eaxpressed in male reproductive tracts and play an important role in both innate immunity and sperm fertility. In this study we characterized Defb20 to gain insight on its role in sperm maturation. Bioinformatic tools were used to analyzed functional domains and signal peptide. qRT-PCR analyses were used to analyzed tissue distribution, dependency on androgen and testicular factors and developmental-regulated expression analysis. Defb20 sequence contains important domains such as N-myristoilation and kinase binding sites which are putatively involved in the protein activation and protein-plasma membrane interaction. Moreover, DEFB20 contains a signal peptide indicating characteristic of secretory proteins. Defb20 was expressed exclusively in the epididymis with the highest expression in the caput region and was down-regulated by gonadectomy. Defb20 was also regulated by testicular factors in which the expression was down-regulated after efferent duct ligation (EDL). The dependency on the androgen was further confirmed by postnatal expression analysis in which Defb20 began to express at day-20 postnatal indicating specific stage of expression after initial development of the testis. In conclusion, Defb20 have a potential to be involved in the epididymal sperm maturation process.
Collapse
Affiliation(s)
- Dwi Ari Pujianto
- Department of Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Dewi Muliawati
- Master Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Meidika Dara Rizki
- Master Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Annisa Parisudha
- Master Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lutfi Hardiyanto
- Department of Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
35
|
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A Higher Abundance of O-Linked Glycans Confers a Selective Advantage to High Fertile Buffalo Spermatozoa for Immune-Evasion From Neutrophils. Front Immunol 2020; 11:1928. [PMID: 32983120 PMCID: PMC7483552 DOI: 10.3389/fimmu.2020.01928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The glycans on the plasma membrane of cells manifest as the glycocalyx, which serves as an information-rich frontier that is directly in contact with its immediate milieu. The glycoconjugates (GCs) that adorn most of the mammalian cells are also abundant in gametes, especially the spermatozoa where they perform unique reproduction-specific functions e.g., inter-cellular recognition and communication. This study aimed to implicate the sperm glycosylation pattern as one of the factors responsible for low conception rates observed in buffalo bulls. We hypothesized that a differential abundance of glycans exists on the spermatozoa from bulls of contrasting fertilizing abilities endowing them with differential immune evasion abilities. Therefore, we investigated the role of glycan abundance in the phagocytosis and NETosis rates exhibited by female neutrophils (PMNs) upon exposure to such spermatozoa. Our results indicated that the spermatozoa from high fertile (HF) bulls possessed a higher abundance of O-linked glycans e.g., galactosyl (β-1,3)N-acetylgalactosamine and N-linked glycans like [GlcNAc]1-3, N-acetylglucosamine than the low fertile (LF) bull spermatozoa. This differential glycomic endowment appeared to affect the spermiophagy and NETosis rates exhibited by the female neutrophil cells (PMNs). The mean percentage of phagocytizing PMNs was significantly different (P < 0.0001) for HF and LF bulls, 28.44 and 59.59%, respectively. Furthermore, any introduced perturbations in the inherent sperm glycan arrangements promoted phagocytosis by PMNs. For example, after in vitro capacitation the mean phagocytosis rate (MPR) rate in spermatozoa from HF bulls significantly increased to 66.49% (P < 0.01). Likewise, the MPR increased to 70.63% (p < 0.01) after O-glycosidase & α2-3,6,8,9 Neuraminidase A treatment of spermatozoa from HF bulls. Moreover, the percentage of PMNs forming neutrophil extracellular traps (NETs) was significantly higher, 41.47% when exposed to spermatozoa from LF bulls vis-à-vis the spermatozoa from HF bulls, 15.46% (P < 0.0001). This is a pioneer report specifically demonstrating the role of O-linked glycans in the immune responses mounted against spermatozoa. Nevertheless, further studies are warranted to provide the measures to diagnose the sub-fertile phenotype thus preventing the losses incurred by incorrect selection of morphologically normal sperm in the AI/IVF reproduction techniques.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
36
|
Fair S, Meade KG, Reynaud K, Druart X, de Graaf SP. The biological mechanisms regulating sperm selection by the ovine cervix. Reproduction 2020; 158:R1-R13. [PMID: 30921769 DOI: 10.1530/rep-18-0595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/28/2019] [Indexed: 01/11/2023]
Abstract
In species where semen is deposited in the vagina, the cervix has the unique function of facilitating progress of spermatozoa towards the site of fertilisation while also preventing the ascending influx of pathogens from the vagina. For the majority of species, advances in assisted reproduction techniques facilitate the bypassing of the cervix and therefore its effect on the transit of processed spermatozoa has been largely overlooked. The exception is in sheep, as it is currently not possible to traverse the ovine cervix with an inseminating catheter due to its complex anatomy, and semen must be deposited at the external cervical os. This results in unacceptably low pregnancy rates when frozen-thawed or liquid stored (>24 h) semen is inseminated. The objective of this review is to discuss the biological mechanisms which regulate cervical sperm selection. We assess the effects of endogenous and exogenous hormones on cervical mucus composition and discuss how increased mucus production and flow during oestrus stimulates sperm rheotaxis along the crypts and folds of the cervix. Emerging results shedding light on the sperm-cervical mucus interaction as well as the dialogue between spermatozoa and the innate immune system are outlined. Finally, ewe breed differences in cervical function and the impact of semen processing on the success of fertilisation, as well as the most fruitful avenues of further investigation in this area are proposed.
Collapse
Affiliation(s)
- S Fair
- Laboratory of Animal Reproduction, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - K G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
| | - K Reynaud
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - X Druart
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Shelley JR, Davidson DJ, Dorin JR. The Dichotomous Responses Driven by β-Defensins. Front Immunol 2020; 11:1176. [PMID: 32595643 PMCID: PMC7304343 DOI: 10.3389/fimmu.2020.01176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Defensins are short, rapidly evolving, cationic antimicrobial host defence peptides with a repertoire of functions, still incompletely realised, that extends beyond direct microbial killing. They are released or secreted at epithelial surfaces, and in some cases, from immune cells in response to infection and inflammation. Defensins have been described as endogenous alarmins, alerting the body to danger and responding to inflammatory signals by promoting both local innate and adaptive systemic immune responses. However, there is now increasing evidence that they exert variable control on the response to danger; creating a dichotomous response that can suppress inflammation in some circumstances but exacerbate the response to danger and damage in others and, at higher levels, lead to a cytotoxic effect. Focussing in this review on human β-defensins, we discuss the evidence for their functions as proinflammatory, immune activators amplifying the response to infection or damage signals and/or as mediators of resolution of damage, contributing to a return to homeostasis. Finally, we consider their involvement in the development of autoimmune diseases.
Collapse
Affiliation(s)
- Jennifer R Shelley
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Donald J Davidson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| | - Julia R Dorin
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland
| |
Collapse
|
38
|
Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, Kumar R, Datta TK. Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evol Biol 2019; 19:214. [PMID: 31771505 PMCID: PMC6878701 DOI: 10.1186/s12862-019-1535-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The buffalo, despite its superior milk-producing ability, suffers from reproductive limitations that constrain its lifetime productivity. Male sub-fertility, manifested as low conception rates (CRs), is a major concern in buffaloes. The epididymal sperm surface-binding proteins which participate in the sperm surface remodelling (SSR) events affect the survival and performance of the spermatozoa in the female reproductive tract (FRT). A mutation in an epididymal secreted protein, beta-defensin 126 (DEFB-126/BD-126), a class-A beta-defensin (CA-BD), resulted in decreased CRs in human cohorts across the globe. To better understand the role of CA-BDs in buffalo reproduction, this study aimed to identify the BD genes for characterization of the selection pressure(s) acting on them, and to identify the most abundant CA-BD transcript in the buffalo male reproductive tract (MRT) for predicting its reproductive functional significance. RESULTS Despite the low protein sequence homology with their orthologs, the CA-BDs have maintained the molecular framework and the structural core vital to their biological functions. Their coding-sequences in ruminants revealed evidence of pervasive purifying and episodic diversifying selection pressures. The buffalo CA-BD genes were expressed in the major reproductive and non-reproductive tissues exhibiting spatial variations. The Buffalo BD-129 (BuBD-129) was the most abundant and the longest CA-BD in the distal-MRT segments and was predicted to be heavily O-glycosylated. CONCLUSIONS The maintenance of the structural core, despite the sequence divergence, indicated the conservation of the molecular functions of the CA-BDs. The expression of the buffalo CA-BDs in both the distal-MRT segments and non-reproductive tissues indicate the retention the primordial microbicidal activity, which was also predicted by in silico sequence analyses. However, the observed spatial variations in their expression across the MRT hint at their region-specific roles. Their comparison across mammalian species revealed a pattern in which the various CA-BDs appeared to follow dissimilar evolutionary paths. This pattern appears to maintain only the highly efficacious CA-BD alleles and diversify their functional repertoire in the ruminants. Our preliminary results and analyses indicated that BuBD-129 could be the functional ortholog of the primate DEFB-126. Further studies are warranted to assess its molecular functions to elucidate its role in immunity, reproduction and fertility.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | | | - Komal Dagar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Sandeep Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Apoorva Soni
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - A Kumaresan
- Theriogenology Lab, SRS of NDRI, Bengaluru, 560030, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - T K Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
39
|
RANJAN R, SINGH SP, GURURAJ K, JINDAL SK, CHAUHAN MS. Status of beta defensin-1 in Indian goat breeds. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i10.95001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study was carried out to know the status of Beta Defensin-1 in goat semen before and after cryopreservation with beta defensin-1 supplemented semen diluent and in blood of different breeds of goat (Barbari, Jamunapari and Jakhrana). Goat semen (N-10) from each breed was collected by artificial vagina method. Immediately after collection, the volume, colour, consistency, and mass motility of ejaculate were assessed and were extended with Tris-Egg yolk-Fructose diluent having 10% (v/v) egg yolk and glycerol 6% (v/v). Samples were divided for estimation of beta defensin–1 and rest parts were cryopreserved with semen diluent having beta defensin-1 @ 10 ng/mL. Blood samples (N-30) were also collected from the same animal after semen collection. The samples were stored at –20°C until assayed. Plasma membrane of sperm was broken by freeze thaw followed by ultracentrifugation (20,000 × g for 5 min) at room temperature before ELISA test. The samples were diluted with Phosphate buffer (1:2) before analysis. The samples were analyzed using goat specific beta defensin–1 commercial kit (EO6D0419) as per the manufacturer’s instruction. The result showed that with supplementation of beta defensin-1 in goat semen, diluent maintains the concentration of beta defensin-1 even after cryopreservation. There was significant decrease (P<0.05) in beta defensin-1 concentration in sample which had no supplement in semen diluent after cryopreservation. The supplementation of beta defensin-1 in goat semen diluent improved the post-thaw immune modulatory properties of semen.
Collapse
|
40
|
Bacterial Virus Lambda Gpd-Fusions to Cathelicidins, α- and β-Defensins, and Disease-Specific Epitopes Evaluated for Antimicrobial Toxicity and Ability to Support Phage Display. Viruses 2019; 11:v11090869. [PMID: 31533281 PMCID: PMC6784203 DOI: 10.3390/v11090869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022] Open
Abstract
We showed that antimicrobial polypeptides, when translated as gene fusions to the bacteriophage lambda capsid decoration protein gpD, formed highly toxic molecules within E. coli, suggesting that they can retain their antimicrobial activity conformation when fused to gpD. These include gpD-fusions to human and porcine cathelicidins LL37 and PR39, β-defensins HBD3 and DEFB126-Δ (deleted for its many COOH-terminal glycosylation sites), and α-defensin HD5. Antimicrobial toxicity was only observed when the peptides were displayed from the COOH-terminal, and not the NH2-terminal end, of gpD. This suggests that COOH-terminal displayed polypeptides of gpD-fusions can more readily form an active-state conformation than when they are displayed from the NH2-terminal end of gpD. The high toxicity of the COOH-displayed gpD-defensins suggests either that the fused defensin peptides can be oxidized, forming three correct intramolecular disulfide bonds within the cytosol of bacterial cells, or that the versions without disulfide bonds are highly toxigenic. We showed the high efficiency of displaying single epitope 17 amino-acid fusions to gpD on LDP (lambda display particles), even when the gpD-fusion protein was toxic. The efficient formation of high display density LDP, displaying a single disease specific epitope (DSE), suggests the utility of LDP-DSE constructs for use as single epitope vaccines (SEV).
Collapse
|
41
|
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod 2019; 24:567-592. [PMID: 30215807 DOI: 10.1093/molehr/gay040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Internet, magazine articles, and even biomedical journal articles, are full of cartoons of spermatozoa that bear minimal resemblance to real spermatozoa, especially human spermatozoa, and this had led to many misconceptions about what spermatozoa look like and how they are constituted. This review summarizes the historical and current state of knowledge of mammalian sperm ultrastructure, with particular emphasis on and relevance to human spermatozoa, combining information obtained from a variety of electron microscopic (EM) techniques. Available information on the composition and configuration of the various ultrastructural components of the spermatozoon has been related to their mechanistic purpose and roles in the primary aspects of sperm function and fertilization: motility, hyperactivation, capacitation, the acrosome reaction and sperm-oocyte fusion.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada
| |
Collapse
|
42
|
Lin Y, Liang A, He Y, Li Z, Li Z, Wang G, Sun F. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Mol Reprod Dev 2019; 86:1094-1105. [PMID: 31215738 DOI: 10.1002/mrd.23224] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory of Embryo Original Diseases, School of MedicineShanghai Jiao Tong UniversityShanghai China
| | - Ajuan Liang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai China
| | - Yue He
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory of Embryo Original Diseases, School of MedicineShanghai Jiao Tong UniversityShanghai China
| | - Zhengzheng Li
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory of Embryo Original Diseases, School of MedicineShanghai Jiao Tong UniversityShanghai China
| | - Zhenhua Li
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory of Embryo Original Diseases, School of MedicineShanghai Jiao Tong UniversityShanghai China
| | - Guishuan Wang
- Medical School, Institute of Reproductive MedicineNantong UniversityNantong China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory of Embryo Original Diseases, School of MedicineShanghai Jiao Tong UniversityShanghai China
- Medical School, Institute of Reproductive MedicineNantong UniversityNantong China
| |
Collapse
|
43
|
The role of DEFB126 variation in male infertility and medically assisted reproduction technique outcome. Reprod Biomed Online 2019; 39:649-657. [PMID: 31474436 DOI: 10.1016/j.rbmo.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 11/23/2022]
Abstract
RESEARCH QUESTION Human DEFB126 is an important component of the glycocalyx of human spermatozoa. Beta-defensins play a primary role in male infertility due to their involvement in maturation and capacitation of spermatozoa. A 2-nt deletion of DEFB126 affects sperm function and so this study investigated the possible association between DEFB126 variants and its protein expression on medically assisted reproduction (MAR) technique outcome in Iranian infertile males. DESIGN The presence of a 2-nt deletion of DEFB126, and its protein expression in spermatozoa, were investigated by standard polymerase chain reaction (PCR) sequencing and immunocytochemistry, respectively. MAR technique outcome according to clinical pregnancy rates was assessed in 277 Iranian males with unexplained infertility, including 139 patients who underwent intrauterine insemination (IUI) and 103 patients who underwent IVF/intracytoplasmic sperm injection (ICSI), as well as 35 infertile males who declined to use any MAR treatment. As the control group, 100 fertile males with a normal spermiogram were enrolled. RESULTS The 2-nt deletion of DEFB126 was significantly higher in infertile patients than controls (P ≤ 0.05). The presence of this deletion resulted in significantly lower clinical pregnancy rates following IUI (P ≤ 0.05); however, there were no differences in IVF/ICSI outcomes according to genotype. The protein expression in del/del males was also remarkably lower than that of the other genotypes. CONCLUSIONS This sequence variation of DEFB126 may impair male reproductive function and can be related to male infertility. Interestingly, males with the del/del genotype have a normal spermiogram; however, their spermatozoa are evidently functionally impaired, which can affect IUI treatment outcome, but not treatment by IVF/ICSI.
Collapse
|
44
|
Human β-defensin 1 in follicular fluid and semen: impact on fertility. J Assist Reprod Genet 2019; 36:787-797. [PMID: 30712073 DOI: 10.1007/s10815-019-01409-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE β-defensins are antimicrobial peptides expressed at mucosal level of male and female genito-urinary tract, where they exert protective functions against infections, possibly preserving human health and fertility. In our study, we investigated the possible involvement of β-defensins in female and male infertility in Italian infertile couples (i) evaluating the presence of human β-defensin 1 (hBD-1) in follicular fluid (FF) and its correlation with in vitro fertilization (IVF) outcomes; (ii) investigating the relationship between hBD-1 levels in semen and IVF outcomes (comprising correlation with sperm parameters); and (iii) exploring the effect of hBD-1 peptide on spermatozoa motility in vitro. METHODS A perspective observational analytic pilot study was conducted. hBD-1 concentration was measured with ELISA assay in FF and semen from 50 couples that underwent assisted procreation technique procedures due to infertility status. Moreover, hBD-1 exogenous peptide was administered to 29 normozoospermic semen and their motility was recorded. RESULTS hBD-1 was detected in FF and its levels were significantly higher in women with good fertilization rate (≥ 75%), respect to those with a poor fertilization rate (< 75%). The hBD-1 semen concentrations in oligo-asthenozoospermic subjects were significantly lower than that in normozoospermic men. Instead, hBD-1 level in sperm and FF not correlated with pregnancy rate. Finally, incubation of sperm with exogenous hBD-1 significantly increased progressive motility after 1 h and 24 h. CONCLUSIONS Being aware of the relatively small sample size and medium power, our results possibly suggest that hBD-1 could influence oocyte and sperm quality, and could improve, when exogenously added, sperm motility.
Collapse
|
45
|
Weber A, Alves J, Abujamra AL, Bustamante‐Filho IC. Structural modeling and mRNA expression of epididymal β‐defensins in GnRH immunized boars: A model for secondary hypogonadism in man. Mol Reprod Dev 2018; 85:921-933. [DOI: 10.1002/mrd.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Augusto Weber
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Jayse Alves
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Ana L. Abujamra
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | | |
Collapse
|
46
|
Alkhodair K, Almhanna H, McGetrick J, Gedair S, Gallagher ME, Fernandez-Fuertes B, Tharmalingam T, Larsen PB, Fitzpatrick E, Lonergan P, Evans ACO, Carrington SD, Reid CJ. Siglec expression on the surface of human, bull and ram sperm. Reproduction 2018; 155:361-371. [PMID: 29581386 DOI: 10.1530/rep-17-0475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/06/2018] [Indexed: 01/11/2023]
Abstract
Sialic acid (Sia) is a major constituent of both the sperm glycocalyx and female reproductive mucosal surface and is involved in regulating sperm migration, uterotubal reservoir formation and oocyte binding. Siglecs (sialic acid-binding immunoglobulin - like lectins) commonly found on immune cells, bind to Sia in a linkage- and sugar-specific manner and often mediate cell-to-cell interactions and signalling. Proteomic and transcriptomic analysis of human and bovine sperm have listed Siglecs, but to date, their presence and/or localisation on sperm has not been studied. Therefore, the aim of this study was to characterise the presence of Siglecs on the surface of bovine, human and ovine sperm using both immunostaining and Western blotting. Siglec 1, 2, 5, 6, 10 and 14 were identified and displayed both species- and regional-specific expression on sperm. Almost universal expression across Siglecs and species was evident in the sperm neck and midpiece region while variable expression among Siglecs, similar among species, was detected in the head and tail regions of the sperm. The possible role for these proteins on sperm is discussed.
Collapse
Affiliation(s)
- K Alkhodair
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - H Almhanna
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland.,School of Veterinary MedicineUniversity of Kufa, Kufa, Iraq
| | - J McGetrick
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - S Gedair
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - M E Gallagher
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - B Fernandez-Fuertes
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - T Tharmalingam
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - P B Larsen
- Cryos International - Denmark ApSAarhus, Denmark
| | - E Fitzpatrick
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - P Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - A C O Evans
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - S D Carrington
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - C J Reid
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Wang Y, Gu Y, Gao H, Gao Y, Shao J, Pang W, Dong W. Exploring boar sperm sialylation during capacitation using boronic acid-functionalized beads. Reproduction 2018; 155:25-36. [PMID: 29269442 DOI: 10.1530/rep-17-0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 11/08/2022]
Abstract
Sialic acid (SA), which usually occupies the terminal position of oligosaccharide chains in mammalian spermatozoa, has important functions in fertilization. Compared with other methods, such as lectin probing, boronic acid could recognize and bind SA with a higher affinity and specificity at pH 6.9. In this study, two boronic acid carriers, 3-aminophenylboronic acid-labeled fluorescent latex (CML-APBA) and magnetic beads (CMM-APBA were applied to explore surface sialylation profile and sialoglycoproteins of the boar sperm. There are three binding sections of CML-APBA on the head of ejaculated sperm: acrosomal region, equatorial segment and the head posterior, which are the major regions undergoing sialylation. After capacitation in vitro, two major binding patterns of CML-APBA exists on sperm head. On some spermatozoa, sialylation exists on the equatorial segment and the posterior head, whilst on other spermatozoa, sialylation occurs on the acrosomal region and equatorial segment. Flow cytometry analysis suggested that the level of sialylation on boar sperm membrane decreases after capacitation. Furthermore, using CMM-APBA, we pulled down sialylated proteins from spermatozoa. Among them, two decapacitation factors associating on sperm surface, AWN and PSP-1, were identified. The levels of the two proteins reduced during capacitation, which might contribute to the decrease of sialylation on boar sperm surface.
Collapse
Affiliation(s)
- Yuanxian Wang
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| | - Yihua Gu
- NPFPC Key Laboratory of Contraceptives and DevicesShanghai Institute of Planned Parenthood Research (SIPPR), Shanghai, China.,Institutes of Reproduction and DevelopmentFudan University, Shanghai, China
| | - Huihui Gao
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| | - Yao Gao
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| | - Jianhang Shao
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| | - Weijun Pang
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| | - Wuzi Dong
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, China
| |
Collapse
|
48
|
RANJAN R, SINGH SP, GURURAJ K, JINDAL SK, CHAUHAN MS. Effect of beta defensin-1 on post-thaw quality of cryopreserved Barbari buck semen. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i10.84085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Abstract
β-Defensins are small antimicrobial proteins expressed in various organisms and have great potential for improving animal health and selective breeding programs. Giant pandas have a distinctive lineage in Carnivora, and it is unclear whether β-defensin genes have experienced different selective pressures during giant panda evolution. We therefore characterized the giant panda (Ailuropoda melanoleuca) β-defensin gene family through gap filling, TBLASTN, and HMM searches. Among 36 β-defensins identified, gastrointestinal disease may induce the expression of the DEFB1 and DEFB139 genes in the digestive system. Moreover, for DEFB139, a significant positive selection different from that of its homologs was revealed through branch model comparisons. A Pro-to-Arg mutation in the giant panda DEFB139 mature peptide may have enhanced the peptide’s antimicrobial potency by increasing its stability, isoelectric point, surface charge and surface hydrophobicity, and by stabilizing its second β-sheet. Broth microdilution tests showed that the increase in net charge caused by the Pro-to-Arg mutation has enhanced the peptide’s potency against Staphylococcus aureus, although the increase was minor. We expect that additional gene function and expression studies of the giant panda DEFB139 gene could improve the existing conservation strategies for the giant panda.
Collapse
|
50
|
[Capacitation and acrosome reaction are associated with changes in sialic acid location and head morphometry in human sperm]. Rev Int Androl 2018; 16:20-27. [PMID: 30063019 DOI: 10.1016/j.androl.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/13/2017] [Accepted: 03/12/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Assess changes in sialic acid distribution during capacitation and acrosome reaction processes, and evaluate head sperm morphometrics modifications in these physiological conditions in human sperm. MATERIAL AND METHOD In this prospective study, we included 6 normozoospermics sperm samples. Sialic acid distribution was evaluated by Wheat germ agglutinin lectin in different physiological conditions: before, after capacitation and after acrosome reaction. Head shape and size of each stage were analyzed by means of geometric morphometric methods. RESULTS After capacitation, 73.07±21.43% of sperm showed sialic acid in acrosomal region, linked with an acrosome expansion and equatorial segment contraction. Otherwise, after acrosome reaction higher allometric effect between stages was recorded since sperm undergo further expansion of equatorial segment. Regarding Wheat germ agglutinin location, we found that sperm percentage significant decline in acrosomal fluorescence and an increase of equatorial band labeling. CONCLUSIONS Our findings demonstrate that modifications in Wheat germ agglutinin expression covariate with dramatic changes in sperm head morphometry, suggesting important implications in capacitation and acrosome reaction processes.
Collapse
|