1
|
Caniff KE, Al Musawa M, Judd C, Shupp M, Veve MP, Alangaden G, Claeys KC, Scipione MR, Walsh TJ, Rybak MJ. Evaluating antimicrobial stewardship strategies in candidemia: a novel desirability of outcome ranking (DOOR) analysis comparing blood culture versus T2Candida diagnostic approaches. J Clin Microbiol 2025; 63:e0004325. [PMID: 40214232 PMCID: PMC12077142 DOI: 10.1128/jcm.00043-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 05/15/2025] Open
Abstract
The T2Candida Panel (T2 Biosystems, Lexington, MA) is a rapid diagnostic test that detects Candida from whole blood within 3-5 hours. We developed and applied a desirability of outcome ranking (DOOR) analysis to investigate if an antimicrobial stewardship program (ASP) strategy centered on T2Candida diagnosis is associated with improved outcomes compared to an ASP strategy that relies on conventional blood culture diagnosis in critically ill patients with candidemia. This is a retrospective, observational cohort of patients with candidemia identified ≤72 h of intensive care unit admission at two medical centers in Detroit, MI (one T2Candida site and one blood culture site) from 2016 to 2023. Management strategies for candidemia were compared using an original DOOR analysis with inverse probability of treatment weighting (IPTW) to account for confounding. Two hundred patients were included, 100 from each site. Baseline illness severity, race, and Candida species varied between groups; however, source control procedures, echocardiogram, and ophthalmologic exam occurred at similar frequencies. T2Candida/ASP was associated with faster median (interquartile range [IQR]) detection of candidemia (7.0 [5.0-10.75] h vs 45.5 h [34.25-68.75], P < 0.001) and timelier median (IQR) initiation of directed antifungal therapy (6.0 [0-11.0] h vs 49.0 [34.0-77.0] h, P < 0.001). T2Candida/ASP patients had a 58.0% probability of achieving an overall better outcome compared to those managed with blood culture/ASP (95% confidence interval: 50.4-65.2%) in IPTW-adjusted DOOR analysis. An ASP strategy incorporating T2Candida was associated with an overall better patient outcome compared to patients managed via conventional blood culture diagnosis.IMPORTANCECandida species are a significant cause of bloodstream infections in critically ill patients. Conventional diagnostic methods, such as blood cultures, have poor sensitivity and delayed results. The T2Candida Panel is a diagnostic tool that rapidly detects Candida directly from the blood in 3-5 h, enabling faster initiation of antifungal therapy. Antimicrobial stewardship programs (ASPs) optimize the management of bloodstream infections and may benefit from incorporating T2Candida to improve patient outcomes. This study examined whether an ASP intervention based on T2Candida diagnosis, compared to one relying on traditional blood culture methods, could improve outcomes in candidemia using a desirability of outcome ranking (DOOR) analysis. The DOOR method provides a comprehensive evaluation by integrating multiple outcomes into a single end point, which is ideal given the complexity of patients with candidemia. The T2Candida/ASP intervention resulted in an overall better patient outcome, considering infectious complications, treatment failure, and all-cause mortality.
Collapse
Affiliation(s)
- Kaylee E. Caniff
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Mohammed Al Musawa
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Chloe Judd
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Macy Shupp
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Michael P. Veve
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Henry Ford Health System, Detroit, Michigan, USA
| | | | | | - Marco R. Scipione
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael J. Rybak
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
2
|
Zvyagina JY, Safiullin RR, Boginskaya IA, Slipchenko EA, Afanas‘ev KN, Sedova MV, Krylov VB, Yashunsky DV, Argunov DA, Nifantiev NE, Ryzhikov IA, Merzlikin AM, Lagarkov AN. Selective Detection of Fungal and Bacterial Glycans with Galactofuranose (Galf) Residues by Surface-Enhanced Raman Scattering and Machine Learning Methods. Int J Mol Sci 2025; 26:4218. [PMID: 40362455 PMCID: PMC12071545 DOI: 10.3390/ijms26094218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Specific monosaccharide residue, β-D-galactofuranose (Galf) featuring a five-membered ring structure, is found in the glycans of fungi and bacteria, but is normally absent in healthy mammals and humans. In this study, synthetic oligosaccharides mimicking bacterial and fungal glycans were investigated by SERS (Surface-Enhanced Raman Scattering) techniques for the first time to distinguish between different types of glycan chains. SERS spectra of oligosaccharides related to fungal α-(1→2)-mannan, β-(1→3)-glucan, β-(1→6)-glucan, galactomannan of Aspergillus, galactan I of Klebsiella pneumoniae, and diheteroglycan of Enterococcus faecalis were measured. To analyze the spectra, a number of machine learning methods were used that complemented each other: principal component analysis (PCA), confidence interval estimation (CIE), and logistic regression with L1 regularization. Each of the methods has shown own effectiveness in analyzing spectra. Namely, PCA allows the visualization of the divergence of spectra in the principal component space, CIE visualizes the degree of overlap of spectra through confidence interval analysis, and logistic regression allows researchers to build a model for determining the belonging of the analyte to a given class of carbohydrate structures. Additionally, the methods complement each other, allowing the determination of important features representing the main differences in the spectra containing and not containing Galf residue. The developed mathematical models enabled the reliable identification of Galf residues within glycan compositions. Given the high sensitivity of SERS, this spectroscopic technique serves as a promising basis for developing diagnostic test systems aimed at detecting biomarkers of fungal and bacterial infections.
Collapse
Affiliation(s)
- Julia Yu. Zvyagina
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Robert R. Safiullin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Irina A. Boginskaya
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Ekaterina A. Slipchenko
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Konstantin N. Afanas‘ev
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Marina V. Sedova
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilya A. Ryzhikov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Alexander M. Merzlikin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Andrey N. Lagarkov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| |
Collapse
|
3
|
Lim J, Koprowski K, Wester M, Valera E, Bashir R. Review on biphasic blood drying method for rapid pathogen detection in bloodstream infections. SLAS Technol 2025; 32:100276. [PMID: 40127716 DOI: 10.1016/j.slast.2025.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Rapid and accurate detection of pathogenic microorganisms in blood is critical for diagnosing life-threatening conditions such as bloodstream infections (BSIs). Current methods for the detection and identification of bacteria from large volumes of blood (5 mL) involve culture steps followed by DNA extraction/purification/concentration and Polymerase Chain Reaction (PCR)-based nucleic acid amplification. DNA extraction and amplification directly from blood samples is hampered by the complexity of the blood matrix, resulting in time-consuming and labor-intensive processes. This review delves into recent advancements in molecular diagnostics based on blood drying, coined as 'biphasic reaction', and highlights this new technique that attempts to overcome the limitations of traditional sample preparation and amplification processes. The biphasic blood drying method, in combination with isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA), has recently been shown to improve the sensitivity of detection of bacterial, viral, and fungal pathogens from ∼1 mL of whole blood, while minimizing DNA loss and avoiding the use of extraction/purification/concentration kits. Furthermore, the biphasic approach in combination with LAMP has been shown to be a culture-free method capable of detecting bacteria in clinical samples with a sensitivity of ∼1 CFU/mL in ∼2.5 h. This represents a significant reduction in detection and identification time compared to current clinical procedures based on bacterial culture prior to PCR amplification. This review paper aims to be a guide to identify new opportunities for future advancements and applications of the biphasic technology.
Collapse
Affiliation(s)
- Jongwon Lim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katherine Koprowski
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew Wester
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA; Chan Zuckerberg Biohub Chicago, Chicago, IL 60642, USA..
| |
Collapse
|
4
|
Schroeder JA, Wilson CM, Pappas PG. Invasive Candidiasis. Infect Dis Clin North Am 2025; 39:93-119. [PMID: 39706747 DOI: 10.1016/j.idc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Invasive candidiasis (IC) is a term that refers to a group of infectious syndromes caused by a variety of Candida species, 6 of which cause the vast majority of cases globally. Candidemia is probably the most commonly recognized syndrome associated with IC; however, Candida species can cause invasive infection of any organ, especially visceral organs, vasculature, bones and joints, eyes, and central nervous system. The optimal use of these newer diagnostics coupled with a thoughtful clinical assessment of at-risk patients and the judicious use of effective antifungal therapy is a key to achieving good antifungal stewardship and improved patient outcomes.
Collapse
Affiliation(s)
- Julia A Schroeder
- The University of Alabama at Birmingham, 1900 University Boulevard, 223 THT, Birmingham, AL 35294, USA
| | - Cameron M Wilson
- The University of Alabama at Birmingham, 1900 University Boulevard, 223 THT, Birmingham, AL 35294, USA
| | - Peter G Pappas
- The University of Alabama at Birmingham, 1900 University Boulevard, 223 THT, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
ELMeneza S, Agaba N, Fawaz RAES, Abd Elgawad SS. Review of Precision Medicine and Diagnosis of Neonatal Illness. Diagnostics (Basel) 2025; 15:478. [PMID: 40002629 PMCID: PMC11854428 DOI: 10.3390/diagnostics15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Precision medicine is a state-of-the-art medicine tactic that tailors information about people's genes, environment, and lifestyle to aid the prevention, diagnosis, and treatment of various diseases to provide an overview of the currently available knowledge and applicability of precision medicine in the diagnosis of different cases admitted to the NICU, such as encephalopathies, respiratory distress syndrome of prematurity, hemodynamic instability, acute kidney injury, sepsis, and hyperbilirubinemia. Methods: The authors searched databases, such as PubMed and PubMed Central, for the terms neonatal "precision medicine", "personalized medicine", "genomics", and "metabolomics", all related to precision medicine in the diagnosis of neonatal illness. The related studies were collected. Results: The review highlights the diagnostic approach that serves to implement precision medicine in the NICU and provide precision diagnosis, monitoring, and treatment. Conclusions: In this review, we projected several diagnostic approaches that provide precision identification of health problems among sick neonates with complex illnesses in the NICU; some are noninvasive and available in ordinary healthcare settings, while others are invasive or not feasible or still in ongoing research as machine learning algorithms. Future studies are needed for the wide implementation of artificial intelligence tools in the diagnosis of neonatal illnesses.
Collapse
Affiliation(s)
- Safaa ELMeneza
- Pediatrics Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (N.A.); (R.A.E.S.F.); (S.S.A.E.)
| | | | | | | |
Collapse
|
6
|
Yu D, Ekwall-Larson A, Özenci V. Performance of T2Bacteria in relationship to blood cultures - a retrospective comparative study. Eur J Clin Microbiol Infect Dis 2024; 43:1977-1987. [PMID: 39096321 PMCID: PMC11405434 DOI: 10.1007/s10096-024-04916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Blood culture (BC) is the gold standard for diagnosing blood stream infections (BSI) but is limited by long turnaround times (TAT) and low detection rate. The T2 Magnetic Resonance method (T2MR) offers a rapid, culture-independent alternative. The objective of this study was to compare the performance of the T2Bacteria assay to BCs in a real-world setting. METHODS Retrospective comparative study consisting of T2Bacteria samples and BCs sampled within 72 h from the T2Bacteria sample. The primary outcome was detections by BC and T2Bacteria, respectively. The secondary outcome was difference in TAT. RESULTS In total, 640 episodes were included, consisting of 640 T2Bacteria samples and 2,117 BCs. A median of three BCs was collected for each T2Bacteria sample. Overall positivity was 101 (15.8%) by either method. In 29 (28.7%) episodes, both T2Bacteria and BC were concordantly positive. In discordant episodes, 46/101 (45.5%) episodes were T2Bacteria positive/BC negative and 26/101 (25.7%) were T2Bacteria negative/BC positive (McNemar χ2, p < 0,05). In T2Bacteria positive/BC negative episodes, eight had growth of the same microorganism in a non-BC culture. Median (IQR) TAT for BC was 35 h and 30 min (25 h 50 min - 45 h 24 min), compared to 21 h and 3 min (17 h 6 min - 27 h 30 m) for T2Bacteria (p < 0.001), with longer delays for samplings occurring outside work hours. CONCLUSIONS The study highlights a high discordance between T2Bacteria and BC and suggests complementary roles of the methods in BSI diagnostics. Furthermore, it is crucial to improve TAT by reducing preanalytical delays.
Collapse
Affiliation(s)
- David Yu
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Stockholm, Hälsovägen, Stockholm, Sweden.
- Functional Area of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
| | - Anna Ekwall-Larson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Stockholm, Hälsovägen, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Stockholm, Hälsovägen, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Chen W, Zhang K, Huang F, Zhao L, Waldren G, Jiang Q, Chen S, Wang B, Guo W, Zhang D, Zhang J. Advancing quantitative PCR with color cycle multiplex amplification. Nucleic Acids Res 2024; 52:e81. [PMID: 39119904 PMCID: PMC11417387 DOI: 10.1093/nar/gkae683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Quantitative PCR (qPCR) is the gold standard for detection and quantitation of known DNA targets, but the scarcity of spectrally distinct fluorophores and filter sets limits the number of detectable targets. Here, we introduce color cycle multiplex amplification (CCMA) to significantly increase the number of detectable DNA targets in a single qPCR reaction using standard instrumentation. In CCMA, presence of one DNA target species results in a pre-programmed pattern of fluorescence increases. This pattern is distinguished by cycle thresholds (Cts) through rationally designed delays in amplification. For example, we design an assay wherein Staphylococcus aureus sequentially induces FAM, then Cy5.5, then ROX fluorescence increases with more than 3 cycles between each signal. CCMA offers notably higher potential for multiplexing because it uses fluorescence permutation rather than combination. With 4 distinct fluorescence colors, CCMA theoretically allows the detection of up to 136 distinct DNA target sequences using fluorescence permutation. Experimentally, we demonstrated a single-tube qPCR assay screening 21 sepsis-related bacterial DNA targets in samples of blood, sputum, pleural effusion and bronchoalveolar lavage fluid, with 89% clinical sensitivity and 100% clinical specificity, showing its potential as a powerful tool for advanced quantitative screening in molecular diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Kerou Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | | | - Qi Jiang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Sherry X Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Bonnie Wang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - David Y Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Jinny X Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| |
Collapse
|
8
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
9
|
Camp I, Füszl A, Selitsch B, Kröckel I, Kovac K, Wahrmann M, Steinlechner B, Weber J, Schellongowski P, Zauner C, Sengölge G, Seitz T, Zoufaly A, Ströbele B, Fuchs S, Lass-Flörl C, Burgmann H, Kundi M, Willinger B. Is the T2MR Candida Panel a suitable alternative to the SeptiFast for the rapid diagnosis of candidemia in routine clinical practice? Clin Microbiol Infect 2024; 30:816-821. [PMID: 38432432 DOI: 10.1016/j.cmi.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The diagnosis of invasive Candida infection remains challenging because of tests with slow turnaround times or mediocre performance. T2magnetic resonance imaging is a new diagnostic tool. We investigated the diagnostic accuracy of the T2Candida panel (T2) in comparison with blood culture (BC) and the SeptiFast (SF) for the detection of five different Candida species among high-risk intensive care unit patients with suspected candidemia. METHODS We analysed blood samples collected from patients with suspected candidemia (177 samples from 138 patients) from August 2018 to April 2020. Blood samples were collected and analysed concurrently by BC, SF, and T2Candida. Subsequently, based on clinical and microbiological findings, patient samples were assigned to specific risk categories (proven, probable, and no candidemia). RESULTS Twenty-two samples from 17 patients were classified as proven candidemia, and 15 samples from 14 patients were classified as probable candidemia. A sensitivity of 68.2% (95% CI, 45-86%) was observed for the BC and the SF, and a sensitivity of 63.6% (95% CI, 41-83%) was observed for the T2 when only cases with proven candidemia were evaluated. For proven and probable candidemia, the sensitivity was 40.5% (95% CI, 23-58%) for BC, 81.1% (95% CI, 65-92%) for SF, and 73.0% (95% CI, 56-86%) for T2. DISCUSSION The diagnostic performance of SF and T2 was similar. For samples with proven/probable candidemia, SF and T2 had a higher sensitivity compared to BC. Used in conjunction with other diagnostic methods, T2 can replace the no longer available SF for the diagnosis of candidemia, enabling the timely initiation of targeted antifungal therapy.
Collapse
Affiliation(s)
- Iris Camp
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Astrid Füszl
- Institute for Medical Microbiology and Hygiene, Österreichische Agentur für Gesundheit und Ernährungssicherheit (AGES), Vienna, Austria
| | - Brigitte Selitsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivonne Kröckel
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Katharina Kovac
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Martin Wahrmann
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Barbara Steinlechner
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Johannes Weber
- University Department of Anesthesia, Intensive Care Medicine and Pain Medicine, Intensive Care Unit 9D, Medical University of Vienna, Vienna, Austria
| | - Peter Schellongowski
- Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Center, Center of Excellence in Medical Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Christian Zauner
- Department of Medicine III, Intensive Care Unit 13H1, Medical University of Vienna, Vienna, Austria
| | - Guerkan Sengölge
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Tamara Seitz
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Klinik Favoriten, Austria and Sigmund Freud University Vienna, Vienna, Austria
| | - Alexander Zoufaly
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Klinik Favoriten, Austria and Sigmund Freud University Vienna, Vienna, Austria
| | - Barbara Ströbele
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St Pölten, Austria
| | - Stefan Fuchs
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Burgmann
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Medical University Vienna, Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
11
|
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, Xu J. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS NANO 2024; 18:7711-7738. [PMID: 38427687 DOI: 10.1021/acsnano.3c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Jiaji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wentai Cai
- The First Clinical College, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaowei Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Peri AM, O’Callaghan K, Rafiei N, Graves B, Sinclair H, Brischetto A, Lim K, Parkes-Smith J, Eustace M, Davidson N, Tabah A, Stewart A, Chatfield MD, Harris PNA, Paterson DL. Persistence of Detectable Pathogens by Culture-Independent Systems (T2 Magnetic Resonance) in Patients With Bloodstream Infection: Prognostic Role and Possible Clinical Implications. Clin Infect Dis 2024; 78:283-291. [PMID: 37890109 PMCID: PMC10874273 DOI: 10.1093/cid/ciad663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Persistent Staphylococcus aureus bacteremia is associated with metastatic infection and adverse outcomes, whereas gram-negative bacteremia is normally transient and shorter course therapy is increasingly advocated for affected patients. Whether the prolonged detection of pathogen DNA in blood by culture-independent systems could have prognostic value and guide management decisions is unknown. METHODS We performed a multicenter, prospective, observational study on 102 patients with bloodstream infection (BSI) to compare time to bloodstream clearance according to T2 magnetic resonance and blood cultures over a 4-day follow-up. We also explored the association between duration of detectable pathogens according to T2 magnetic resonance (magnetic resonance-DNAemia [MR-DNAemia]) and clinical outcomes. RESULTS Time to bloodstream clearance according to T2 magnetic resonance was significantly longer than blood culture clearance (HR, .54; 95% CI, .39-.75) and did not differ according to the causative pathogen (P = .5). Each additional day of MR-DNAemia increased the odds of persistent infection (defined as metastatic infection or delayed source control) both in the overall population (OR, 1.98; 95% CI, 1.45-2.70) and in S. aureus (OR, 1.92; 95% CI, 1.12-3.29) and gram-negative bacteremia (OR, 2.21; 95% CI, 1.35-3.60). MR-DNAemia duration was also associated with no improvement in Sequential Organ Failure Assessment score at day 7 from infection onset (OR, 1.76; 95% CI, 1.21-2.56). CONCLUSIONS T2 magnetic resonance may help diagnose BSI in patients on antimicrobials with negative blood cultures as well as to identify patients with metastatic infection, source control failure, or adverse short-term outcome. Future studies may inform its usefulness within the setting of antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Anna Maria Peri
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin O’Callaghan
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Nastaran Rafiei
- Infectious Diseases Unit, Caboolture Hospital, Caboolture, Queensland, Australia
| | - Bianca Graves
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
| | - Holly Sinclair
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Anna Brischetto
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Karen Lim
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Jill Parkes-Smith
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Matthew Eustace
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Natalie Davidson
- Infectious Diseases Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Adam Stewart
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark D Chatfield
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick N A Harris
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Herston, Brisbane, Queensland, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Reinicke M, Braun SD, Diezel C, Lemuth O, Engelmann I, Liebe T, Ehricht R. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics (Basel) 2024; 13:161. [PMID: 38391548 PMCID: PMC10886392 DOI: 10.3390/antibiotics13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
One of the greatest challenges to the use of molecular methods for diagnostic purposes is the detection of target DNA that is present only in low concentrations. One major factor that negatively impacts accuracy, diagnostic sensitivity, and specificity is the sample matrix, which hinders the attainment of the required detection limit due to the presence of residual background DNA. To address this issue, various methods have been developed to enhance sensitivity through targeted pre-amplification of marker sequences. Diagnostic sensitivity to the single molecular level is critical, particularly when identifying bloodstream infections. In cases of clinically manifest sepsis, the concentration of bacteria in the blood may reach as low as one bacterial cell/CFU per mL of blood. Therefore, it is crucial to achieve the highest level of sensitivity for accurate detection. In the present study, we have established a method that fills the analytical gap between low concentrations of molecular markers and the minimum requirements for molecular testing. For this purpose, a sample preparation of whole blood samples with a directly downstream pre-amplification was developed, which amplifies specific species and resistance markers in a multiplex procedure. When applying pre-amplification techniques, the sensitivity of the pathogen detection in whole blood samples was up to 100 times higher than in non-pre-amplified samples. The method was tested with blood samples that were spiked with several Gram-positive and Gram-negative bacterial pathogens. By applying this method to artificial spiked blood samples, it was possible to demonstrate a sensitivity of 1 colony-forming unit (CFU) per millilitre of blood for S. aureus and E. faecium. A detection limit of 28 and 383 CFU per ml of blood was achieved for E. coli and K. pneumoniae, respectively. If the sensitivity is also confirmed for real clinical blood samples from septic patients, the novel technique can be used for pathogen detection without cultivation, which might help to accelerate diagnostics and, thus, to decrease sepsis mortality rates.
Collapse
Affiliation(s)
- Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Daniel Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Oliver Lemuth
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ines Engelmann
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Theresa Liebe
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
14
|
Zacharioudakis IM, Zervou FN, Marsh K, Siegfried J, Yang J, Decano A, Dubrovskaya Y, Mazo D, Aguero-Rosenfeld M. Utility of incorporation of beta-D-glucan and T2Candida testing for diagnosis and treatment of candidemia. Diagn Microbiol Infect Dis 2024; 108:116107. [PMID: 38071859 DOI: 10.1016/j.diagmicrobio.2023.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 01/22/2024]
Abstract
The additive role of non-culture-based methods for the diagnosis of candidemia remains unknown. We evaluated 2 clinical practices followed in our hospitals for the diagnosis of candidemia, namely practice#1 including a combination of blood cultures and T2Candida, and practice#2 that also included Beta-D-glucan (BDG). Three out of 96 patients testing positive with practice#1 received a complete antifungal course. Of the 120 patients evaluated with practice#2, 29 were positive. Only 55.2% of those received a complete course. We observed significant differences in antifungal utilization, with 268.5 antifungal days/1000 patient-days for practice#1, as opposed to 371.9 days for practice#2, a nearly 40% difference. However, we found similar rates of antifungal discontinuation among negative patients at 3 days of testing (36.8% and 37.0% respectively). No differences were detected in death and/or subsequent diagnosis of candidemia. In summary, addition of BDG was interpreted variably by clinicians, was associated with an increase in antifungal utilization, and did not correlate with measurable clinical benefits for patients.
Collapse
Affiliation(s)
- Ioannis M Zacharioudakis
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| | - Fainareti N Zervou
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Kassandra Marsh
- Department of Pharmacy, NYU Langone Health, New York, NY, USA
| | | | - Jenny Yang
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Arnold Decano
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Department of Pharmacy, NYU Langone Health, New York, NY, USA
| | - Yanina Dubrovskaya
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Department of Pharmacy, NYU Langone Health, New York, NY, USA
| | - Dana Mazo
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Aguero-Rosenfeld
- Division of Infectious Diseases and Immunology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Huang R, Hu Q, Ko CN, Tang FK, Xuan S, Wong HM, Jin L, Li X, Leung KCF. Nano-based theranostic approaches for infection control: current status and perspectives. MATERIALS CHEMISTRY FRONTIERS 2024; 8:9-40. [DOI: 10.1039/d3qm01048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nano-based theranostic platforms constructed from various nanomaterials possess unique advantages in tackling bacterial and fungal infections while detecting pathogenic cells, making them a potential modality for addressing global healthcare burdens.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chung-Nga Ko
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
16
|
O’Donnell M, Shields RK, Marini RV, Groetzinger LM, Potoski BA, Falcione BA, Shah S, McCreary EK, Clarke L, Brant E, McVerry BJ, Liegey S, Pasculle AW, Clancy CJ, Nguyen MH. Stewardship-Guided T2Candida Testing Shortens Time to Antifungal Treatment and Reduces Antifungal Usage Among Medical Intensive Care Unit Patients With Septic Shock. Open Forum Infect Dis 2023; 10:ofad538. [PMID: 38023565 PMCID: PMC10651185 DOI: 10.1093/ofid/ofad538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diagnosis of invasive candidiasis (IC) is limited by insensitivity and slow turnaround of cultures. Our objectives were to define the performance of T2Candida, a nonculture test, under guidance of a diagnostic stewardship program, and evaluate impact on time to antifungal initiation and antifungal utilization. Methods This was a retrospective study of adult medical intensive care unit (MICU) patients with septic shock for whom T2Candida testing was performed from March 2017 to March 2020. Patients with positive T2Candida results during this period were compared to MICU patients who did not undergo T2Candida testing but had septic shock and blood cultures positive for Candida from January 2016 through March 2020. Results Overall, 155 T2Candida tests from 143 patients were included. Nine percent of T2Candida tests were positive compared to 4.5% of blood cultures. Sensitivity, specificity, positive predictive value, and negative predictive value of T2Candida for proven and probable IC were 78%, 95%, 50%, and 99%, respectively. Patients who tested positive for T2Candida (n = 14) were diagnosed earlier and initiated on antifungal therapy sooner than patients with IC (n = 14) diagnosed by blood culture alone (median, 5.6 vs 60 hours; P < .0001). Median antifungal days of therapy/1000 patient-days were 23.3/month preimplementation and 15/month postimplementation (P = .007). Following a negative T2Candida result, empiric antifungals were either not administered in 58% or discontinued within 72 hours in 96% of patients. Conclusions Diagnostic stewardship guided T2Candida testing resulted in reduced time to IC diagnosis, faster initiation of antifungal therapy, and lower antifungal usage among MICU patients with septic shock.
Collapse
Affiliation(s)
- Matthew O’Donnell
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
| | - Rachel V Marini
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Brian A Potoski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bonnie A Falcione
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sunish Shah
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
| | - Erin K McCreary
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
| | - Lloyd Clarke
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
| | - Emily Brant
- Department of Critical Care Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, UPMC, Pittsburgh, Pennsylvania, USA
| | - Susan Liegey
- Division of Clinical Microbiology, UPMC, Pittsburgh, Pennsylvania, USA
| | - A William Pasculle
- Division of Clinical Microbiology, UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania, USA
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, UPMC, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, UPMC, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Lorenzo-Villegas DL, Gohil NV, Lamo P, Gurajala S, Bagiu IC, Vulcanescu DD, Horhat FG, Sorop VB, Diaconu M, Sorop MI, Oprisoni A, Horhat RM, Susan M, MohanaSundaram A. Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms. Life (Basel) 2023; 13:2099. [PMID: 37895480 PMCID: PMC10608220 DOI: 10.3390/life13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Candida is the largest genus of medically significant fungi. Although most of its members are commensals, residing harmlessly in human bodies, some are opportunistic and dangerously invasive. These have the ability to cause severe nosocomial candidiasis and candidemia that affect the viscera and bloodstream. A prompt diagnosis will lead to a successful treatment modality. The smart solution of biosensing technologies for rapid and precise detection of Candida species has made remarkable progress. The development of point-of-care (POC) biosensor devices involves sensor precision down to pico-/femtogram level, cost-effectiveness, portability, rapidity, and user-friendliness. However, futuristic diagnostics will depend on exploiting technologies such as multiplexing for high-throughput screening, CRISPR, artificial intelligence (AI), neural networks, the Internet of Things (IoT), and cloud computing of medical databases. This review gives an insight into different biosensor technologies designed for the detection of medically significant Candida species, especially Candida albicans and C. auris, and their applications in the medical setting.
Collapse
Affiliation(s)
| | - Namra Vinay Gohil
- Department of Internal Medicne, Medical College Baroda, Vadodara 390001, India;
- Department of Internal Medicne, SSG Hospital Vadodara, Gotri, Vadodara 390021, India
| | - Paula Lamo
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.D.)
| | - Mircea Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Razvan Mihai Horhat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - ArunSundar MohanaSundaram
- School of Pharmacy, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India;
| |
Collapse
|
18
|
Alcicek S, Put P, Kubrak A, Alcicek FC, Barskiy D, Gloeggler S, Dybas J, Pustelny S. Zero- to low-field relaxometry of chemical and biological fluids. Commun Chem 2023; 6:165. [PMID: 37542142 PMCID: PMC10403525 DOI: 10.1038/s42004-023-00965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Nuclear magnetic resonance (NMR) relaxometry is an analytical method that provides information about molecular environments, even for NMR "silent" molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique is performed at fields much higher than Earth's magnetic field, but our work focuses on NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operating under such conditions allows us to investigate slow (bio)chemical processes occurring on a timescale from milliseconds to seconds, which coincide with spin evolution. ZULFs also minimize T2 line broadening in heterogeneous samples resulting from magnetic susceptibility. Here, we use ZULF NMR relaxometry to analyze (bio)chemical compounds containing 1H-13C, 1H-15N, and 1H-31P spin pairs. We also detected high-quality ULF NMR spectra of human whole-blood at 0.8 μT, despite a shortening of spin relaxation by blood proteomes (e.g., hemoglobin). Information on proton relaxation times of blood, a potential early biomarker of inflammation, can be acquired in under a minute using inexpensive, portable/small-size NMR spectrometers based on atomic magnetometers.
Collapse
Affiliation(s)
- Seyma Alcicek
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, 60528, Frankfurt am Main, Germany.
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland.
| | - Piotr Put
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Adam Kubrak
- Faculty of Chemistry, Jagiellonian University in Kraków, 30-387, Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Danila Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg-Universität, 55128, Mainz, Germany
| | - Stefan Gloeggler
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Szymon Pustelny
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland.
| |
Collapse
|
19
|
Oliva A, De Rosa FG, Mikulska M, Pea F, Sanguinetti M, Tascini C, Venditti M. Invasive Candida infection: epidemiology, clinical and therapeutic aspects of an evolving disease and the role of rezafungin. Expert Rev Anti Infect Ther 2023; 21:957-975. [PMID: 37494128 DOI: 10.1080/14787210.2023.2240956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Invasive Candida Infections (ICIs) have undergone a series of significant epidemiological, pathophysiological, and clinical changes during the last decades, with a shift toward non-albicans species, an increase in the rate of exogenous infections and clinical manifestations ranging from candidemia to an array of highly invasive and life-threatening clinical syndromes. The long-acting echinocandin rezafungin exhibits potent in-vitro activity against most wild-type and azole-resistant Candida spp. including C.auris. AREAS COVERED The following topics regarding candidemia only and ICIs were reviewed and addressed: i) pathogenesis; ii) epidemiology and temporal evolution of Candida species; iii) clinical approach; iv) potential role of the novel long-acting rezafungin in the treatment of ICIs. EXPERT OPINION Authors' expert opinion focused on considering the potential role of rezafungin in the evolving context of ICIs. Rezafungin, which combines a potent in-vitro activity against Candida species, including azole-resistant strains and C.auris, with a low likelihood of drug-drug interactions and a good safety profile, may revolutionize the treatment of candidemia/ICI. Indeed, it may shorten the length of hospital stays when clinical conditions allow and extend outpatient access to treatment of invasive candidiasis, especially when prolonged treatment duration is expected.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases, City of Health and Sciences, Turin, Italy
| | - Malgorzata Mikulska
- Division of Infectious Diseases Department of Health Sciences (DISSAL), University of Genoa IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario "A. Gemelli"; IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic: Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
21
|
Zheng H, Chen X, Li W, Lu J, Chen X. Establishment of a Fast Diagnostic Method for Sepsis Pathogens Based on M1 Bead Enrichment. Curr Microbiol 2023; 80:166. [PMID: 37022487 DOI: 10.1007/s00284-023-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Blood culture-based sepsis diagnostic methods usually cannot obtain positive results in a timely manner. Molecular diagnostic methods, such as real-time PCR without blood culture, would be more time-saving and suitable for pathogenic diagnosis of sepsis, while their sensitivities have always been unsatisfactory for the usually low concentration of pathogens in the blood of sepsis patients. In this study, we established a fast diagnostic method using magnetic beads coated with human recombined mannose-binding lectin that makes it possible to concentrate pathogens from human plasma that have low concentrations of pathogens. With subsequent microculture (MC) and real-time PCR, this method allowed the detection of 1-10 CFUs/ml of Staphylococcus aureus, Group A Streptococcus, Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis, or C. albicans from human plasma within 9.5 h, which was 21-80 h earlier than blood culture. The combination of pathogen enrichment and MC made the detection of sepsis-causing pathogens more time-saving and more sensitive than blood culture or real-time PCR alone.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaoli Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jinxing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaoping Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
22
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
23
|
Duan R, Wang P. Rapid and Simple Approaches for Diagnosis of Staphylococcus aureus in Bloodstream Infections. Pol J Microbiol 2022; 71:481-489. [PMID: 36476633 PMCID: PMC9944965 DOI: 10.33073/pjm-2022-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important causative pathogen of bloodstream infections. An amplification assay such as real-time PCR is a sensitive, specific technique to detect S. aureus. However, it needs well-trained personnel, and costs are high. A literature review focusing on rapid and simple methods for diagnosing S. aureus was performed. The following methods were included: (a) Hybrisep in situ hybridization test, (b) T2Dx system, (c) BinaxNow Staphylococcus aureus and PBP2a, (d) Gram staining, (e) PNA FISH and QuickFISH, (f) Accelerate PhenoTM system, (g) MALDI-TOF MS, (h) BioFire FilmArray, (i) Xpert MRSA/SA. These rapid and simple methods can rapidly identify S. aureus in positive blood cultures or direct blood samples. Furthermore, BioFire FilmArray and Xpert MRSA/SA identify methicillin-resistant S. aureus (MRSA), and the Accelerate PhenoTM system can also provide antimicrobial susceptibility testing (AST) results. The rapidity and simplicity of results generated by these methods have the potential to improve patient outcomes and aid in the prevention of the emergence and transmission of MRSA.
Collapse
Affiliation(s)
- Rui Duan
- Department of Laboratory Medicine and Blood Transfusion, The First People’s Hospital of Jingmen, Jingmen, Hubei Province, China
| | - Pei Wang
- Department of Laboratory Medicine and Blood Transfusion, The First People’s Hospital of Jingmen, Jingmen, Hubei Province, China, E-mail:
| |
Collapse
|
24
|
A Closer Look at the Laboratory Impact of Utilizing ePlex Blood Culture Identification Panels: a Workflow Analysis Using Rapid Molecular Detection for Positive Blood Cultures. Microbiol Spectr 2022; 10:e0179622. [PMID: 36069598 PMCID: PMC9602361 DOI: 10.1128/spectrum.01796-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rapid identification of pathogens is critical in bloodstream infections. We evaluated the diagnostic performance of the GenMark Dx ePlex blood culture identification (BCID) panels and the adoption of the ePlex system into the clinical laboratory workflow. Nonduplicate remnant specimens of positive blood cultures were prospectively tested using ePlex panels between January and March 2020. A total of 313 unique positive blood culture specimens were tested. The identified organisms consisted of 98 Gram-negative rods (GNR), 90 Gram-positive cocci (GPC) in clusters, 62 GPC in chains, 21 Gram-positive rods, and 20 yeasts; 22 organisms were off panel. The positive percent agreement was 100% across all organisms tested after discordancy resolution, while the negative percent agreement was 100% across all targets except Corynebacterium spp., where it was 99.7%. The ePlex BCID panels accurately detected 5 pan targets and 42 antimicrobial resistance gene markers, including 31 mecA, 4 vanA, 6 CTX-M, and 1 KPC gene. The median times to result were calculated as 2.5 h for Xpert MRSA/SA in GPC in clusters, 9.5 h for Accelerate Pheno (identification and susceptibility) in GNR, 6 h for peptide nucleic acid fluorescent in situ hybridization [PNA-FISH] in yeasts, 27 h for the latex agglutination test in S. aureus, 29 h for Lancefield serotyping in GPC in chains, and 29 h for Vitek-MS in GNR. In our laboratory, the ePlex panels could substantially reduce the time to result for bloodstream infection (BSI) caused by Streptococcus spp., Enterococcus spp., and Candida spp. The highly accurate ePlex panels can help streamline laboratory efficiency in the blood bench workflow, reducing the time to result for identification of BSI pathogens. IMPORTANCE Sepsis is a leading cause of morbidity and mortality worldwide. Rapid identification of the causative agent is of critical importance for the prompt initiation of the appropriate antibiotic treatment. In this study, we evaluated the diagnostic performance of the GenMark Dx ePlex blood culture identification (BCID) panels and their adoption into the clinical laboratory workflow. We prospectively tested 313 blood culture isolates and found that ePlex BCID panels had a positive percent agreement of 100% across all organisms tested after discordancy resolution. The negative percent agreement was 100% across all targets except Corynebacterium spp., where it was 99.7%. This new rapid technology (turnaround time of ~90 min) can help streamline laboratory efficiency in the blood bench workflow, reducing the time to result for identification of BSI pathogens. Adoption should be individualized based on the needs of the patient population and capabilities of the laboratory.
Collapse
|
25
|
Schmitz JE, Stratton CW, Persing DH, Tang YW. Forty Years of Molecular Diagnostics for Infectious Diseases. J Clin Microbiol 2022; 60:e0244621. [PMID: 35852340 PMCID: PMC9580468 DOI: 10.1128/jcm.02446-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nearly 40 years have elapsed since the invention of the PCR, with its extremely sensitive and specific ability to detect nucleic acids via in vitro enzyme-mediated amplification. In turn, more than 2 years have passed since the onset of the coronavirus disease 2019 (COVID-19) pandemic, during which time molecular diagnostics for infectious diseases have assumed a larger global role than ever before. In this context, we review broadly the progression of molecular techniques in clinical microbiology, to their current prominence. Notably, these methods now entail both the detection and quantification of microbial nucleic acids, along with their sequence-based characterization. Overall, we seek to provide a combined perspective on the techniques themselves, as well as how they have come to shape health care at the intersection of technologic innovation, pathophysiologic knowledge, clinical/laboratory logistics, and even financial/regulatory factors.
Collapse
Affiliation(s)
- Jonathan E. Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David H. Persing
- Medical and Scientific Affairs, Cepheid, Sunnyvale, California, USA
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| |
Collapse
|
26
|
Ganguli A, Lim J, Mostafa A, Saavedra C, Rayabharam A, Aluru NR, Wester M, White KC, Kumar J, McGuffin R, Frederick A, Valera E, Bashir R. A culture-free biphasic approach for sensitive and rapid detection of pathogens in dried whole-blood matrix. Proc Natl Acad Sci U S A 2022; 119:e2209607119. [PMID: 36161889 PMCID: PMC9546527 DOI: 10.1073/pnas.2209607119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria, gram-negative Escherichia coli bacteria, and Candida albicans (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.
Collapse
Affiliation(s)
- Anurup Ganguli
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Jongwon Lim
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Ariana Mostafa
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Carlos Saavedra
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Narayana R. Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Matthew Wester
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Karen C. White
- Critical Care, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - James Kumar
- Hospital Medicine, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - Reubin McGuffin
- Specimen Procurement Service Center in the Research Department, Carle Foundation Hospital, Urbana, IL-61801, USA
| | - Ann Frederick
- Microbiology, Carle Foundation Hospital, Urbana,IL-61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801,USA
- Department of Biomedical and Translational Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| |
Collapse
|
27
|
The Changing Landscape of Invasive Fungal Infections in ICUs: A Need for Risk Stratification to Better Target Antifungal Drugs and the Threat of Resistance. J Fungi (Basel) 2022; 8:jof8090946. [PMID: 36135671 PMCID: PMC9500670 DOI: 10.3390/jof8090946] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
The landscape of invasive candidiasis and invasive aspergillosis has changed dramatically in intensive care units over the past two decades. Today, we are faced with new risk factors such as the emergence of resistance, but are also equipped with new therapeutic strategies and diagnostic tools which are changing epidemiological data and diagnostic algorithms. Some common points need to be addressed: (i) the best way to use microbiological tools and to integrate their results in decisional algorithms; (ii) the need to find the optimum balance between under-diagnosis and overtreatment; (iii) and the need to decipher pathophysiology. In this short review, we will try to illustrate these points.
Collapse
|
28
|
Matzko ME, Sephton-Clark PCS, Young EL, Jhaveri TA, Martinsen MA, Mojica E, Boykin R, Pierce VM, Cuomo CA, Bhattacharyya RP. A novel rRNA hybridization-based approach to rapid, accurate Candida identification directly from blood culture. Med Mycol 2022; 60:6674770. [PMID: 36002024 PMCID: PMC9989835 DOI: 10.1093/mmy/myac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023] Open
Abstract
Invasive fungal infections are increasingly common and carry high morbidity and mortality, yet fungal diagnostics lag behind bacterial diagnostics in rapidly identifying the causal pathogen. We previously devised a fluorescent hybridization-based assay to identify bacteria within hours directly from blood culture bottles without subculture, called phylogeny-informed rRNA-based strain identification (Phirst-ID). Here, we adapt this approach to unambiguously identify 11 common pathogenic Candida species, including C. auris, with 100% accuracy from laboratory culture (33 of 33 strains in a reference panel, plus 33 of 33 additional isolates tested in a validation panel). In a pilot study on 62 consecutive positive clinical blood cultures from two hospitals that showed yeast on Gram stain, Candida Phirst-ID matched the clinical laboratory result for 58 of 59 specimens represented in the 11-species reference panel, without misclassifying the 3 off-panel species. It also detected mixed Candida species in 2 of these 62 specimens, including the one discordant classification, that were not identified by standard clinical microbiology workflows; in each case the presence of both species was validated by both clinical and experimental data. Finally, in three specimens that grew both bacteria and yeast, we paired our prior bacterial probeset with this new Candida probeset to detect both pathogen types using Phirst-ID. This simple, robust assay can provide accurate Candida identification within hours directly from blood culture bottles, and the conceptual approach holds promise for pan-microbial identification in a single workflow. LAY SUMMARY Candida bloodstream infections cause considerable morbidity and mortality, yet slow diagnostics delay recognition, worsening patient outcomes. We develop and validate a novel molecular approach to accurately identify Candida species directly from blood culture one day faster than standard workflows.
Collapse
Affiliation(s)
- Michelle E Matzko
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Poppy C S Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Eleanor L Young
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tulip A Jhaveri
- Microbiology Laboratory, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Melanie A Martinsen
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Mojica
- Microbiology Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rich Boykin
- NanoString Technologies, Inc., Seattle, WA 98109, USA
| | - Virginia M Pierce
- Microbiology Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Roby P Bhattacharyya
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Zhang W, Sun H, He S, Chen X, Yao L, Zhou L, Wang Y, Wang P, Hong W. Compound Raman microscopy for rapid diagnosis and antimicrobial susceptibility testing of pathogenic bacteria in urine. Front Microbiol 2022; 13:874966. [PMID: 36090077 PMCID: PMC9449455 DOI: 10.3389/fmicb.2022.874966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Rapid identification and antimicrobial susceptibility testing (AST) of bacteria are key interventions to curb the spread and emergence of antimicrobial resistance. The current gold standard identification and AST methods provide comprehensive diagnostic information but often take 3 to 5 days. Here, a compound Raman microscopy (CRM), which integrates Raman spectroscopy and stimulated Raman scattering microscopy in one system, is presented and demonstrated for rapid identification and AST of pathogens in urine. We generated an extensive bacterial Raman spectral dataset and applied deep learning to identify common clinical bacterial pathogens. In addition, we employed stimulated Raman scattering microscopy to quantify bacterial metabolic activity to determine their antimicrobial susceptibility. For proof-of-concept, we demonstrated an integrated assay to diagnose urinary tract infection pathogens, S. aureus and E. coli. Notably, the CRM system has the unique ability to provide Gram-staining classification and AST results within ~3 h directly from urine samples and shows great potential for clinical applications.
Collapse
Affiliation(s)
- Weifeng Zhang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyi Sun
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shipei He
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xun Chen
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China
- Lin Yao,
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yi Wang
- Department of Clinical Laboratory, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Pu Wang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Pu Wang,
| | - Weili Hong
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Weili Hong,
| |
Collapse
|
30
|
Combining T2Bacteria and T2Candida Panels for Diagnosing Intra-Abdominal Infections: A Prospective Multicenter Study. J Fungi (Basel) 2022; 8:jof8080832. [PMID: 36012820 PMCID: PMC9409936 DOI: 10.3390/jof8080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The T2Bacteria panel is a direct-from-blood assay that delivers rapid results, targeting E. coli, S. aureus, K. pneumoniae, A. baumanii, P. aeruginosa, and E. faecium (ESKAPE pathogens). In this study, T2Bacteria and T2Candida (targeting C. albicans/C. tropicalis, C. glabrata/C. krusei, and C. parapsilosis) were evaluated in parallel with blood cultures in 101 consecutive surgical patients with suspected intra-abdominal infection admitted to the intensive care unit or high dependency unit. Fifteen patients had bacteremia, with T2Bacteria correctly identifying all on-panel (n = 8) pathogens. T2Bacteria was positive in 19 additional patients, 11 of whom had supportive cultures from other normally sterile sites (newly inserted drains, perioperative cultures or blood cultures) within seven days. Six of these eleven patients (55%) received broad-spectrum antibiotics at the sampling time. T2Candida identified the two cases of blood-culture-positive candidemia and was positive in seven additional patients, three of whom were confirmed to have intra-abdominal candidiasis. Of four patients with concurrent T2Bacteria and T2Candida positivity, only one patient had positive blood cultures (candidemia), while three out of four patients had supporting microbiological evidence of a mixed infection. T2Bacteria and T2Candida were fast and accurate in diagnosing on-panel bloodstream infections, and T2Bacteria was able to detect culture-negative intra-abdominal infections.
Collapse
|
31
|
Costa SP, Carvalho CM. Burden of bacterial bloodstream infections and recent advances for diagnosis. Pathog Dis 2022; 80:6631550. [PMID: 35790126 DOI: 10.1093/femspd/ftac027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bloodstream infections (BSIs) and subsequent organ dysfunction (sepsis and septic shock) are conditions that rank among the top reasons for human mortality and have a great impact on healthcare systems. Their treatment mainly relies on the administration of broad-spectrum antimicrobials since the standard blood culture-based diagnostic methods remain time-consuming for the pathogen's identification. Consequently, the routine use of these antibiotics may lead to downstream antimicrobial resistance and failure in treatment outcomes. Recently, significant advances have been made in improving several methodologies for the identification of pathogens directly in whole blood especially regarding specificity and time to detection. Nevertheless, for the widespread implementation of these novel methods in healthcare facilities, further improvements are still needed concerning the sensitivity and cost-effectiveness to allow a faster and more appropriate antimicrobial therapy. This review is focused on the problem of BSIs and sepsis addressing several aspects like their origin, challenges, and causative agents. Also, it highlights current and emerging diagnostics technologies, discussing their strengths and weaknesses.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.,International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Rua Alves Redol, 9 1000-029 Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
32
|
Seitz T, Holbik J, Hind J, Gibas G, Karolyi M, Pawelka E, Traugott M, Wenisch C, Zoufaly A. Rapid Detection of Bacterial and Fungal Pathogens Using the T2MR versus Blood Culture in Patients with Severe COVID-19. Microbiol Spectr 2022; 10:e0014022. [PMID: 35695564 PMCID: PMC9241933 DOI: 10.1128/spectrum.00140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
A high rate of bacterial and fungal superinfections was reported in critically ill patients with COVID-19. However, diagnosis can be challenging. The aim of this study is to evaluate the sensitivity and the clinical utility of the point-of-care method T2 magnetic resonance (T2MR) with the gold standard: the blood culture. T2MR can potentially detect five different Candida species and six common bacteria (so-called "ESKAPE" pathogens including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinet`obacter baumanii, Pseudomonas aeruginosa, and Enterococcus faecium). If superinfection was suspected in patients with COVID-19 admitted to the intensive care unit, blood culture and two panels of T2MR were performed. Eighty-five diagnostic bundles were performed in 60 patients in total. T2MR detected an ESKAPE pathogen in 9 out of 85 (10.6%) samples, compared to BC in 3 out of 85 (3.5%). A Candida species was detected in 7 of 85 (8.2%) samples of T2MR compared to 1 out of 85(1.2%) in blood culture. The mean time to positive test result in samples with concordant positive results was 4.5 h with T2MR and 52.5 h with blood culture. The additional use of T2MR enables a highly sensitive and rapid detection of ESKAPE and Candida pathogens. IMPORTANCE Coronavirus disease 2019 (COVID-19) has led to a high number of deaths since the beginning of the pandemic worldwide. One of the reasons is the high number of bacterial and fungal superinfections in patients suffering from critical disease. However, diagnosis is often challenging. In this study we could show that the additional use of the culture-independent method T2MR did not only show a much higher detection rate of bacterial and fungal pathogens but also a significantly shorter time until detection and therapy change compared to the gold standard: the blood culture. The implementation of T2MRin the care of patients with severe course of COVID-19 might lead to an earlier sufficient antimicrobial therapy and as a result lower mortality and less use of broad-spectrum unnecessary therapy reducing the risk of resistance development.
Collapse
Affiliation(s)
- Tamara Seitz
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Johannes Holbik
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Julian Hind
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Georg Gibas
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Erich Pawelka
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Marianna Traugott
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Christoph Wenisch
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Alexander Zoufaly
- Department of Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
33
|
Gago J, Filardo TD, Conderino S, Magaziner SJ, Dubrovskaya Y, Inglima K, Iturrate E, Pironti A, Schluter J, Cadwell K, Hochman S, Li H, Torres VJ, Thorpe LE, Shopsin B. Pathogen Species Is Associated With Mortality in Nosocomial Bloodstream Infection in Patients With COVID-19. Open Forum Infect Dis 2022; 9:ofac083. [PMID: 35607701 PMCID: PMC8992347 DOI: 10.1093/ofid/ofac083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The epidemiology of nosocomial bloodstream infections (NBSIs) in patients with coronavirus disease 2019 (COVID-19) is poorly understood, due in part to substantial disease heterogeneity resulting from multiple potential pathogens. Methods We identified risk factors for NBSIs and examined the association between NBSIs and mortality in a retrospective cohort of patients hospitalized with COVID-19 in 2 New York City hospitals during the height of the pandemic. We adjusted for the potential effects of factors likely to confound that association, including age, race, illness severity upon admission, and underlying health status. Results Between January 1 and October 1, 2020, 1403 patients had a positive blood culture, and 79 and 101 met the stringent criteria for NBSI among non-COVID-19 and COVID-19 patients, respectively. NBSIs occurred almost exclusively among patients who were severely ill with COVID-19 at hospital admission. NBSIs were associated with elevated mortality, even after adjusting for baseline differences in COVID-19 illness (55% cases vs 45% controls; P = .13). Mortality was concentrated in patients with early-onset pneumonia caused by S. aureus and gram-negative bacteria. Less virulent Candida (49%) and Enterococcus (12%) species were the predominant cause of NBSI in the latter stages of hospitalization, after antibiotic treatment and COVID-19 treatments that attenuate immune response. Most Enterococcus and Candida infections did not have an identifiable source and were not associated with common risk factors for infection by these organisms. Conclusions Pathogen species and mortality exhibited temporal differences. Early recognition of risk factors among COVID-19 patients could potentially decrease NBSI-associated mortality through early COVID-19 and antimicrobial treatment.
Collapse
Affiliation(s)
- Juan Gago
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, New York, USA
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Thomas D Filardo
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Sarah Conderino
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Samuel J Magaziner
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Yanina Dubrovskaya
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Tisch Hospital Department of Pharmacy, NYU Langone Health, New York, New York, USA
| | - Kenneth Inglima
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Eduardo Iturrate
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonas Schluter
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Institute for Computational Medicine, NYU Langone Health, New York, New York, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Sarah Hochman
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Infection Prevention and Control, NYU Langone Health, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, NYU Langone Health, New York, New York, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, NYU Langone Health, New York, New York, USA
| | - Lorna E Thorpe
- Division of Epidemiology, Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, NYU Langone Health, New York, New York, USA
| |
Collapse
|
34
|
Metabolic preference assay for rapid diagnosis of bloodstream infections. Nat Commun 2022; 13:2332. [PMID: 35484129 PMCID: PMC9050716 DOI: 10.1038/s41467-022-30048-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Bloodstream infections (BSIs) cause >500,000 infections and >80,000 deaths per year in North America. The length of time between the onset of symptoms and administration of appropriate antimicrobials is directly linked to mortality rates. It currently takes 2–5 days to identify BSI pathogens and measure their susceptibility to antimicrobials – a timeline that directly contributes to preventable deaths. To address this, we demonstrate a rapid metabolic preference assay (MPA) that uses the pattern of metabolic fluxes observed in ex-vivo microbial cultures to identify common pathogens and determine their antimicrobial susceptibility profiles. In a head-to-head race with a leading platform (VITEK 2, BioMérieux) used in diagnostic laboratories, MPA decreases testing timelines from 40 hours to under 20. If put into practice, this assay could reduce septic shock mortality and reduce the use of broad spectrum antibiotics. It is currently slow to identify bloodstream infection pathogens. Here the authors report a rapid metabolic preference assay that uses the pattern of metabolic fluxes observed in ex-vivo microbial cultures to identify common pathogens and determine their antimicrobial susceptibility profiles.
Collapse
|
35
|
Honore PM, Redant S, Preseau T, Moorthamers S, Kaefer K, Barreto Gutierrez L, Attou R, Gallerani A, De Bels D. T2MR can be used as a non-culture-based test together with biomarkers to improve detection of Candida in the bloodstream and reduce time delay in treating invasive candidiasis. Expert Rev Anti Infect Ther 2022; 20:327-329. [PMID: 34357835 DOI: 10.1080/14787210.2021.1964954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Patrick M Honore
- Faculty of Medicine at the ULB University, Brussels, Belgium
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Sebastien Redant
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Thierry Preseau
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Sofie Moorthamers
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Keitiane Kaefer
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | | | - Rachid Attou
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Andrea Gallerani
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - David De Bels
- ICU Dept, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| |
Collapse
|
36
|
Quirino A, Scaglione V, Marascio N, Mazzitelli M, Garofalo E, Divenuto F, Serapide F, Bruni A, Lionello R, Pavia G, Costa C, Giancotti A, Peronace C, Longhini F, Russo A, Liberto MC, Matera G, Torti C, Trecarichi EM. Role of the T2Dx magnetic resonance assay in patients with suspected bloodstream infection: a single-centre real-world experience. BMC Infect Dis 2022; 22:113. [PMID: 35105333 PMCID: PMC8805379 DOI: 10.1186/s12879-022-07096-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T2Dx was approved by the US Food and Drug Administration for the rapid detection of a modified panel of ESKAPE bacterial species or Candida spp. causing bloodstream infection (BSI). PATIENTS AND METHODS We performed a retrospective, observational study from January 1, 2018 to December 31, 2019 of all hospitalised patients with suspected BSI who underwent assessment using T2Dx in addition to standard blood culture (BC). T2-positive patients (cases) were compared to a matched group of patients with BSI documented only by BC (1:2 ratio) to investigate the possible impact of T2Dx on the appropriateness of empirical antimicrobial therapy and 21-day mortality. RESULTS In total, 78 T2Dx-analysed samples (49 patients) were analysed. The T2Dx assay result was positive for18 patients and negative for 31 patients. The concordance rates of the T2Bacteria Panel and T2Candida Panel results with those of standard BC were 74.4% and 91.4%, respectively. In the matched analysis, inappropriate empiric antimicrobial therapy administration was significantly less frequent in cases than in comparators (5.5% vs. 38.8%). The 21-day mortality rate was twofold lower in cases than in comparators (22.2% vs. 44.4%), although the difference was not significant. No other analysed variables were significantly different between the two groups. CONCLUSIONS This study illustrated that T2Dx might be associated with an increase in the appropriateness of empiric antimicrobial therapy in patients with BSI. Further studies are needed to evaluate whether the T2Dx assay can improve patient outcomes.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Vincenzo Scaglione
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Maria Mazzitelli
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | | | - Francesca Serapide
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Grazia Pavia
- "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Chiara Costa
- "Mater Domini" Teaching Hospital, Catanzaro, Italy
| | | | - Cinzia Peronace
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Federico Longhini
- Unit of Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Maria Carla Liberto
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| | - Carlo Torti
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy.
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro-"Mater Domini" Teaching Hospital, Catanzaro, Italy
| |
Collapse
|
37
|
T2Candida Assay in the Diagnosis of Intraabdominal Candidiasis: A Prospective Multicenter Study. J Fungi (Basel) 2022; 8:jof8010086. [PMID: 35050026 PMCID: PMC8778123 DOI: 10.3390/jof8010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The T2Candida magnetic resonance assay is a direct-from-blood pathogen detection assay that delivers a result within 3–5 h, targeting the most clinically relevant Candida species. Between February 2019 and March 2021, the study included consecutive patients aged >18 years admitted to an intensive care unit or surgical high-dependency unit due to gastrointestinal surgery or necrotizing pancreatitis and from whom diagnostic blood cultures were obtained. Blood samples were tested in parallel with T2Candida and 1,3-β-D-glucan. Of 134 evaluable patients, 13 (10%) were classified as having proven intraabdominal candidiasis (IAC) according to the EORTC/MSG criteria. Two of the thirteen patients (15%) had concurrent candidemia. The sensitivity, specificity, positive predictive value, and negative predictive value, respectively, were 46%, 97%, 61%, and 94% for T2Candida and 85%, 83%, 36%, and 98% for 1,3-β-D-glucan. All positive T2Candida results were consistent with the culture results at the species level, except for one case of dual infection. The performance of T2Candida was comparable with that of 1,3-β-D-glucan for candidemic IAC but had a lower sensitivity for non-candidemic IAC (36% vs. 82%). In conclusion, T2Candida may be a valuable complement to 1,3-β-D-glucan in the clinical management of high-risk surgical patients because of its rapid results and ease of use.
Collapse
|
38
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
39
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
40
|
Abstract
Sepsis remains a significant cause of neonatal mortality and morbidity, especially in low- and middle-income countries. Neonatal sepsis presents with nonspecific signs and symptoms that necessitate tests to confirm the diagnosis. Early and accurate diagnosis of infection will improve clinical outcomes and decrease the overuse of antibiotics. Current diagnostic methods rely on conventional culture methods, which is time-consuming, and may delay critical therapeutic decisions. Nonculture-based techniques including molecular methods and mass spectrometry may overcome some of the limitations seen with culture-based techniques. Biomarkers including hematological indices, cell adhesion molecules, interleukins, and acute-phase reactants have been used for the diagnosis of neonatal sepsis. In this review, we examine past and current microbiological techniques, hematological indices, and inflammatory biomarkers that may aid sepsis diagnosis. The search for an ideal biomarker that has adequate diagnostic accuracy early in sepsis is still ongoing. We discuss promising strategies for the future that are being developed and tested that may help us diagnose sepsis early and improve clinical outcomes. IMPACT: Reviews the clinical relevance of currently available diagnostic tests for sepsis. Summarizes the diagnostic accuracy of novel biomarkers for neonatal sepsis. Outlines future strategies including the use of omics technology, personalized medicine, and point of care tests.
Collapse
|
41
|
Willis ZI, de St Maurice A. A Piece of the Puzzle: The Role of Molecular Testing in Antimicrobial Stewardship. J Pediatric Infect Dis Soc 2021; 10:930-935. [PMID: 34129044 DOI: 10.1093/jpids/piab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 11/14/2022]
Abstract
Molecular testing may have an important role in expediting the diagnosis of infectious diseases. Pediatric infectious diseases specialists need to be cognizant of the strengths and limitations of these existing and emerging technologies in order to ensure that they are used and interpreted appropriately.
Collapse
Affiliation(s)
- Zachary I Willis
- Division of Infectious Diseases, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Annabelle de St Maurice
- Division of Infectious Diseases, Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
42
|
Dennis EK, Chaturvedi S, Chaturvedi V. So Many Diagnostic Tests, So Little Time: Review and Preview of Candida auris Testing in Clinical and Public Health Laboratories. Front Microbiol 2021; 12:757835. [PMID: 34691009 PMCID: PMC8529189 DOI: 10.3389/fmicb.2021.757835] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens. C. auris had likely remained unrecognized for a long time as accurate tests were not available. The laboratory community responded to the C. auris challenge by publishing 35 new or revised diagnostic methods between 2014 and early 2021. The commercial sector also modified existing diagnostic devices. These C. auris diagnostic tests run the gamut from traditional culture-based differential and selective media, biochemical assimilations, and rapid protein profiles, as well as culture-independent DNA-based diagnostics. We provide an overview of these developments, especially the tests with validation data that were subsequently adopted for common use. We share a workflow developed in our laboratory to process over 37,000 C. auris surveillance samples and 5,000 C. auris isolates from the outbreak in the New York metropolitan area. Our preview covers new devices and diagnostic approaches on the horizon based on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap, stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient isolation, admission screening, and environmental control. Among the urgent needs is a lateral flow assay or similar device for presumptive C. auris identification. All laboratories will benefit from devices that allow rapid antifungal susceptibility testing, including detection of mutations conferring drug resistance. Hopefully, multiplex test panels are on the horizon for synergy of C. auris testing with ongoing surveillance of other healthcare-associated infections. C. auris genome analysis has a proven role for outbreak investigations, and diagnostic laboratories need quick access to regional and national genome analysis networks.
Collapse
Affiliation(s)
- Emily K Dennis
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
43
|
Culture independent detection systems for bloodstream infection. Clin Microbiol Infect 2021; 28:195-201. [PMID: 34687856 DOI: 10.1016/j.cmi.2021.09.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sepsis and bloodstream infection are associated with significant morbidity and mortality, and early effective antimicrobial therapy has been demonstrated to improve patient outcomes. Traditional culture-based methods, however, have several limitations which hamper a prompt diagnosis in bloodstream infection, including long turnaround times and limited sensitivity. In the last years, advances have been made in the development of several technologies which allow the identification of pathogens and their resistance markers directly from whole blood, possibly representing promising alternatives to conventional culture methods. OBJECTIVES To review the currently commercially available emerging assays for the diagnosis of bloodstream infections directly from whole blood, including their performance and the available data about their impact on patients' outcome. SOURCES Peer-reviewed publications relevant to the topic have been searched through PubMed; manufacturers' websites have also been consulted as a data source. CONTENT We have reviewed available data about the following technologies: multiplex real-time PCR working directly from whole blood (Magicplex Sepsis Real-Time test, Seegene), PCR combined with T2 Magnetic Resonance (T2Candida and T2Bacteria panel, T2Biosystem), and metagenomics-based assays (including SepsiTest, Molzym; iDTECT Dx Blood, PathoQuest; Karius NGS plasma Test, Karius). Performance characteristics, advantages and pitfalls of each method are described, and available data about their impact on patients' clinical outcomes are discussed. IMPLICATIONS The potential of rapid diagnostic tests applied on whole blood in improving the management of patients with bloodstream infection and sepsis is high, both in terms of reducing turnaround times and improving the sensitivity of pathogen and antimicrobial resistance detection. However, overall, there is still a scarcity of data about the real-life performance of such tests, and well-designed studies are awaited for assessing the impact of these emerging technologies on patients' outcomes.
Collapse
|
44
|
Fungal Infection and Prevention in Lung Transplant. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Nichols ZE, Geddes CD. Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules 2021; 26:5666. [PMID: 34577137 PMCID: PMC8470389 DOI: 10.3390/molecules26185666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.
Collapse
Affiliation(s)
- Zach E. Nichols
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| | - Chris D. Geddes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| |
Collapse
|
46
|
Yan G, Chew KL, Chai LYA. Update on Non-Culture-Based Diagnostics for Invasive Fungal Disease. Mycopathologia 2021; 186:575-582. [PMID: 34213735 DOI: 10.1007/s11046-021-00549-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Diagnostic tests for fungi provide the mycological evidence to strengthen diagnosis of invasive fungal disease. Conventional microbiology and histopathology have their limitations. Recognizing this, there have been attempts at developing new methods to improve yield of diagnosing invasive fungal disease (IFD). The recent focus has been on non-culture-based antigen detection and molecular methods. The use of antigen detection of IFD through 1,3-β-D-glucan and galactomannan assay have been expanded, followed by development of lateral flow assays, and in combination with other diagnostic modalities to further increase diagnostic yield. The molecular diagnostic front has seen initiatives to standardize polymerase chain reaction methodologies to detect fungi and anti-fungal resistance, new platforms such as the T2Candida Biosystems and foray into fungal metagenomics. As these newer assays undergo stringent validation before incorporation into the diagnostic algorithm, the clinician needs to be mindful of their bedside utility as well as their limitation.
Collapse
Affiliation(s)
- Gabriel Yan
- Division of Microbiology, Department of Laboratory Medicine, National University Health System, Singapore, Singapore.,Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Ka Lip Chew
- Division of Microbiology, Department of Laboratory Medicine, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,National University Cancer Institute, Singapore, Singapore. .,Department of Medicine, Faculty of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
47
|
Li Y, Wu L, Wang Z, Tu K, Pan L, Chen Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Krylov VB, Solovev AS, Puchkin IA, Yashunsky DV, Antonets AV, Kutsevalova OY, Nifantiev NE. Reinvestigation of Carbohydrate Specificity of EBCA-1 Monoclonal Antibody Used for the Detection of Candida Mannan. J Fungi (Basel) 2021; 7:jof7070504. [PMID: 34202579 PMCID: PMC8303853 DOI: 10.3390/jof7070504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibody EBCA-1 is used in the sandwich immune assay for the detection of circulating Candida mannan in blood sera samples for the diagnosis of invasive candidiasis. To reinvestigate carbohydrate specificity of EBCA-1, a panel of biotinylated oligosaccharides structurally related to distinct fragments of Candida mannan were loaded onto a streptavidin-coated plate to form a glycoarray. Its use demonstrated that EBCA-1 recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man and not homo-α-(1→2)-linked pentamannoside, as was reported previously.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Ilya A. Puchkin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Anna V. Antonets
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Medical Genetic Center, Rostov-on-Don State Medical University, Nakhichevansky, 29, 344022 Rostov-on-Don, Russia
| | - Olga Y. Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Correspondence: ; Tel.: +7-499-135-87-84
| |
Collapse
|
49
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
50
|
Yuwen L, Qiu Q, Xiu W, Yang K, Li Y, Xiao H, Yang W, Yang D, Wang L. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomater Sci 2021; 9:4484-4495. [PMID: 34002742 DOI: 10.1039/d1bm00406a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious diseases associated with antibiotic-resistant bacteria are ever-growing threats to public health. Effective treatment and detection methods of bacterial infections are in urgent demand. Herein, novel phototheranostic nanoagents (MoS2@HA-Ce6 nanosheets, MHC NSs) with hyaluronidase (HAase)-responsive fluorescence imaging (FLI) and photothermal/photodynamic therapy (PTT/PDT) functions were prepared. In this design, Ce6 is used as both a photosensitizer and a fluorescent probe, while MoS2 nanosheets (MoS2 NSs) serve as both a fluorescence quencher and a photothermal agent. Hyaluronic acid conjugated with Ce6 (HA-Ce6) was assembled on the surface of MoS2 NSs to form MHC NSs. Without the HAase secreted by methicillin-resistant Staphylococcus aureus (MRSA), the fluorescence of Ce6 is quenched by MoS2 NSs, while in the presence of MRSA, HAase can degrade the HA and release Ce6, which restores the fluorescence and photodynamic activity of Ce6. The experimental results show that MHC NSs can fluorescently image the MRSA both in vitro and in vivo by HAase activation. Meanwhile, MHC NSs can serve as PTT/PDT dual-mode antibacterial agents for MRSA. In vitro antibacterial results show that MHC NSs can kill 99.97% MRSA under 635 nm and 785 nm laser irradiation. In vivo study further shows that MHC NSs can kill 99.9% of the bacteria in MRSA infected tissues in mice and prompt wound healing by combined PTT/PDT. This work provides novel HAase-responsive phototheranostic nanoagents for effective detection and treatment of bacterial infections.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Qiu Qiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yuqing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Hang Xiao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Wenjing Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|