1
|
Li Z, Peluffo G, Stevens LE, Qiu X, Seehawer M, Tawawalla A, Huang XY, Egri SB, Raval S, McFadden M, D'Santos CS, Papachristou E, Kingston NL, Nishida J, Evans KE, Seo JH, Clement K, Temko D, Ekram M, Li R, Rees MG, Ronan MM, Roth JA, Simeonov A, Kales SC, Rai G, Lal-Nag M, Maloney DJ, Jadhav A, Michor F, Meissner A, Balko JM, Carroll JS, Freedman ML, Jaffe JD, Papanastasiou M, Long HW, Polyak K. KDM4C inhibition blocks tumor growth in basal breast cancer by promoting cathepsin L-mediated histone H3 cleavage. Nat Genet 2025; 57:1463-1477. [PMID: 40457074 PMCID: PMC12165855 DOI: 10.1038/s41588-025-02197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2025] [Indexed: 06/16/2025]
Abstract
Basal breast cancer is a subtype with a poor prognosis in need of more effective therapeutic approaches. Here we describe a unique role for the KDM4C histone lysine demethylase in KDM4C-amplified basal breast cancers, where KDM4C inhibition reshapes chromatin and transcriptomic landscapes without substantial alterations of its canonical substrates, trimethylated histone H3 lysine 9 (H3K9me3) and lysine 36 (H3K36me3). Rather, KDM4C loss causes proteolytic cleavage of histone H3 mediated by cathepsin L (CTSL), resulting in decreased glutamate-cysteine ligase expression and increased reactive oxygen species. CTSL is recruited to the chromatin by the grainyhead-like 2 (GRHL2) transcription factor that is methylated at lysine 453 following KDM4C inhibition, triggering CTSL histone clipping activity. Deletion of CTSL rescued KDM4-loss-mediated tumor suppression. Our study reveals a function for KDM4C that connects cellular redox regulation and chromatin remodeling.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guillermo Peluffo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amatullah Tawawalla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shawn B Egri
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Shaunak Raval
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Maeve McFadden
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Clive S D'Santos
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Eva Papachristou
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Natalie L Kingston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle E Evans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kendell Clement
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Temko
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Muhammad Ekram
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew G Rees
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | | | | | - Anton Simeonov
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Franziska Michor
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alex Meissner
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Justin M Balko
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason S Carroll
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Jacob D Jaffe
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | | | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Temple AE, Walker SR. The Roles of STAT3 and STAT5 in Breast Cancer. Cancers (Basel) 2025; 17:1781. [PMID: 40507264 PMCID: PMC12153741 DOI: 10.3390/cancers17111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/20/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
STAT3 and STAT5 are two related transcription factors involved in normal mammary gland development and function. However, inappropriate activation of either STAT3 or STAT5 has been shown to play a role in breast cancer, where STAT3 is highly associated with aggressive tumors and STAT5 is associated with lower-grade and more differentiated tumors. As transcription factors, STAT3 and STAT5 transcriptionally regulate genes involved in proliferation, migration, and chemoresistance. Furthermore, STAT3 and STAT5 transcriptional activity can be modulated by several known cofactors, where these cofactors can influence how STAT3 and STAT5 interact with DNA and with other proteins, ultimately affecting transcriptional function. Interestingly, STAT3 and STAT5 share a subset of overlapping target genes and can compete for DNA binding of shared binding sites. These STATs have also been shown to have opposing effects on overlapping target gene expression, where gene expression is determined by the STAT protein occupying the promoter. This is particularly interesting since STAT5-driven breast tumors are molecularly distinct from STAT3-driven breast tumors. Furthermore, concurrent activation of STAT3 and STAT5 is associated with more favorable tumor types compared to tumors with activated STAT3 alone, suggesting that the relationship between these two STATs is critical. Developing a better understanding about the roles that STAT3 and STAT5 play in breast cancer will be important for successful treatment in the future.
Collapse
Affiliation(s)
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
3
|
Ma Y, Pan Y, Zhao Q, Zhang C, He H, Pan L, Jia J, Shi A, Yang Y, Zhang W. Exploring the therapeutic potential and in vitro validation of baicalin for the treatment of triple-negative breast cancer. Front Pharmacol 2025; 16:1530056. [PMID: 40356970 PMCID: PMC12066697 DOI: 10.3389/fphar.2025.1530056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Objective To explore the mechanism of action of baicalin (BA) in the treatment of triple-negative breast cancer (TNBC) based on network pharmacology, molecular docking and molecular dynamics simulations and in vitro validation. Methods The inhibitory effects of different concentrations of baicalin on the proliferation of MDA-MB-231, 4T1, MCF-7, and MCF-10A cell lines were evaluated by CCK8 assay with clone formation assay. Three compound target prediction platforms, Swiss Target Prediction, SEA and Pharmmapper, were used to predict baicalin-related targets, and mapped with the triple-negative breast cancer-related targets retrieved from GeneCards and OMMI databases to obtain the potential targets of baicalin for the treatment of triple-negative breast cancer; the STRING database and the STRING database and Cytoscape software were used to construct the protein interaction network and screen the core targets; GO and KEGG enrichment analyses were performed on the core targets; the binding of baicalin to the key targets of triple-negative breast cancer was verified by molecular docking and molecular dynamics simulation; and the expression of the relevant proteins was verified. Results Baicalin showed more obvious antiproliferative effects on triple-negative breast cancer cell lines at certain concentrations, and had less effect on the proliferation of normal breast cells. A total of nine core targets of baicalin in the treatment of triple-negative breast cancer, including AKT1, ESR1, TNF-α, SRC, EGFR, MMP9, JAK2, PPARG, and GSK3B, were identified through the construction of the PPI protein interactions network and the 'Traditional Chinese Medicine-Component-Target-Disease' network, and a total of 252 targets related to the intersected targets were identified in the GO analysis. GO analysis enriched a total of 2,526 Biological process, 105 Cellular component and 250 Molecular function related to the intersecting targets; KEGG analysis enriched a total of 128 signaling pathways related to the intersecting targets; molecular docking results and molecular dynamics studies found that baicalin was able to interact with MMP9, TNF-α, JAK2, PPARG, GSK3B, and other core targets of baicalin for the treatment of triple-negative breast, MMP9, TNF-α, and JAK2 target proteins, and had significant changes in the expression levels of the target proteins. Conclusion Baicalin inhibits the protein expression of MMP9, TNF-α and JAK2 and their related signaling pathways in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Yuan Ma
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Ying Pan
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chongheng Zhang
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Haitao He
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lihua Pan
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianling Jia
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Aiping Shi
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenfeng Zhang
- School of Basic Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Hong Y, He J, Deng D, Liu Q, Zu X, Shen Y. Targeting kinases that regulate programmed cell death: a new therapeutic strategy for breast cancer. J Transl Med 2025; 23:439. [PMID: 40229646 PMCID: PMC11995514 DOI: 10.1186/s12967-025-06367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors among women and ranks as the second leading cause of cancer-related deaths in females, primarily due to delays in diagnosis and shortcomings in treatment strategies. Consequently, there is a pressing need to identify reliable therapeutic targets and strategies. In recent years, the identification of effective biomarkers-particularly novel molecular therapeutic targets-has become a focal point in breast cancer research, aimed at predicting disease aggressiveness and monitoring treatment responses. Simultaneously, advancements in understanding the molecular mechanisms underlying cellular programmed death have opened new avenues for targeting kinase-regulated programmed cell death as a viable therapeutic strategy. This review summarizes the latest research progress regarding kinase-regulated programmed death (including apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis) in breast cancer treatment. It covers the key kinases involved in this mechanism, their roles in the onset and progression of breast cancer, and strategies for modulating these kinases through pharmacological interventions.
Collapse
Affiliation(s)
- Yun Hong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Deng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qinyue Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| |
Collapse
|
5
|
Ma Z, Mu R, Zhou Z, Hu Z, Shen M, Lu C, Wang H, Zhang C, Zhang M, Yi Z, Deng Z, Zhao Y, Zhu J, Wen G, Jin H, An J, Tuo B, Liu X, Li T. The mammalian acid chitinase promotes oncogenic properties of thyroid cancer cells through the JAK2/STAT3 pathway. Eur Thyroid J 2025; 14:e240311. [PMID: 40198658 PMCID: PMC12053917 DOI: 10.1530/etj-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025] Open
Abstract
Objective Mammalian acid chitinase (AMCase; CHIA) has potential as a biomarker and drug target in the fields of medicine and pharmacology, and its role in inhibiting tumor growth and Th2 cell-mediated asthma-related inflammation has become a research hotspot. However, the role of CHIA in thyroid cancer is unclear. Methods Tissue microarrays and thyroid cancer cell lines were used to detect CHIA expression and determine its clinical relevance. CHIA gene expression was altered in thyroid cancer cells to examine the effects of CHIA expression on the biological behavior of thyroid cancer cells, and the related molecular mechanisms involved were explored. Results We first examined CHIA expression in a thyroid tissue microarray using immunohistochemistry. We found that CHIA was significantly upregulated in thyroid cancer tissues relative to paired thyroid cancer adjacent tissues. After correlation analysis, we found that upregulated CHIA expression correlated with the tumor-node-metastasis (TNM) stage of patients with thyroid cancer. Similarly, CHIA expression was significantly higher in the thyroid cancer cell lines BCPAP, TPC-1, KTC-1 and FTC133 than in the human normal thyroid epithelial cell line Nthy-ori-3-1. CHIA promotes proliferation, migration and invasion; inhibits thyroid cancer cell apoptosis; and regulates markers of proliferation and epithelial-mesenchymal transition. Mechanistically, CHIA activated the JAK2/STAT3 signaling pathway in thyroid cancer cells. Conclusions CHIA upregulation promoted the proliferation, migration and invasion of thyroid cancer cells through JAK2/STAT3 signaling pathway activation. Therefore, CHIA could represent a potential new oncoprotein for patients with thyroid cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Renmin Mu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhengxing Zhou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zilai Hu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mimi Shen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengli Lu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengmin Zhang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingying Zhao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Feng D, Pu D, Ren J, Liu M, Sun X, Zhang Z, Li J. Mechanistic exploration of Traditional Chinese Medicine regulation on tumor immune microenvironment in the treatment of triple-negative breast cancer: based on CiteSpace and bioinformatics analysis. Front Immunol 2025; 15:1443648. [PMID: 39867914 PMCID: PMC11757242 DOI: 10.3389/fimmu.2024.1443648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis. Methods We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment. Results CiteSpace analysis highlighted key TCM formulations, including Sanhuang Decoction. Network pharmacology identified major bioactive components such as Mutatochrome, Physcion diglucoside, Procyanidin B-5,3'-O-gallate, gallic acid-3-O-(6'-O-galloyl)-glucoside, and isomucronulatol-7,2'-di-O-glucosiole, with core targets including Mitogen-Activated Protein Kinase 1 (MAPK1), Janus Kinase 2 (JAK2), and Lymphocyte-specific protein tyrosine kinase (LCK). These targets were found to be involved in immune regulation, particularly the modulation of CD8+ and CD4+ T cells. Additionally, core targets were associated with improved recurrence-free survival (RFS) and overall survival (OS) in TNBC patients. Conclusion The therapeutic effects of TCM in TNBC primarily involve immune modulation within the tumor microenvironment, particularly through the regulation of CD8+ and CD4+ T cells.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlu Ren
- Pharmaceutical college of Shandong Xiandai University, Jinan, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sun
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Guo X, Cao Y, Shi X, Xing J, Feng C, Wang T. Evaluating the prognostic potential of telomerase signature in breast cancer through advanced machine learning model. Front Immunol 2024; 15:1462953. [PMID: 39669558 PMCID: PMC11634871 DOI: 10.3389/fimmu.2024.1462953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Background Breast cancer prognosis remains a significant challenge due to the disease's molecular heterogeneity and complexity. Accurate predictive models are critical for improving patient outcomes and tailoring personalized therapies. Methods We developed a Machine Learning-assisted Telomerase Signature (MLTS) by integrating multi-omics data from nine independent breast cancer datasets. Using multiple machine learning algorithms, we identified six telomerase-related genes significantly associated with patient survival. The predictive performance of MLTS was evaluated against 66 existing breast cancer prognostic models across diverse cohorts. Results The MLTS demonstrated superior predictive accuracy, stability, and reliability compared to other models. Patients with high MLTS scores exhibited increased tumor mutational burden, chromosomal instability, and poor survival outcomes. Single-cell RNA sequencing analysis further revealed higher MLTS scores in aneuploid tumor cells, suggesting a role in cancer progression. Immune profiling indicated distinct tumor microenvironment characteristics associated with MLTS scores, potentially guiding therapeutic decisions. Conclusions Our findings highlight the utility of MLTS as a robust prognostic biomarker for breast cancer. The ability of MLTS to predict patient outcomes and its association with key genomic and cellular features underscore its potential as a target for personalized therapy. Future research may focus on integrating MLTS with additional molecular signatures to enhance its clinical application in precision oncology.
Collapse
Affiliation(s)
- Xiao Guo
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Yuyan Cao
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Xinlin Shi
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Jiaying Xing
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Chuanbo Feng
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
9
|
Regua AT, Bindal S, Najjar MK, Zhuang C, Khan M, Arrigo ABJ, Gonzalez AO, Zhang XR, Zhu JJ, Watabe K, Lo HW. Dual inhibition of the TrkA and JAK2 pathways using entrectinib and pacritinib suppresses the growth and metastasis of HER2-positive and triple-negative breast cancers. Cancer Lett 2024; 597:217023. [PMID: 38852701 PMCID: PMC11533721 DOI: 10.1016/j.canlet.2024.217023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
HER2-positive and triple-negative breast cancers (TNBC) are difficult to treat and associated with poor prognosis. Despite showing initial response, HER2-positive breast cancers often acquire resistance to HER2-targeted therapies, and TNBC lack effective therapies. To overcome these clinical challenges, we evaluated the therapeutic utility of co-targeting TrkA and JAK2/STAT3 pathways in these breast cancer subtypes. Here, we report the novel combination of FDA-approved TrkA inhibitors (Entrectinib or Larotrectinib) and JAK2 inhibitors (Pacritinib or Ruxolitinib) synergistically inhibited in vitro growth of HER2-positive breast cancer cells and TNBC cells. The Entrectinib-Pacritinib combination inhibited the breast cancer stem cell subpopulation, reduced expression of stemness genes, SOX2 and MYC, and induced apoptosis. The Entrectinib-Pacritinib combination suppressed orthotopic growth of HER2-positive Trastuzumab-refractory breast cancer xenografts and basal patient-derived xenograft (PDXs), reduced tumoral SOX2 and MYC, and induced apoptosis in both mouse models. The Entrectinib-Pacritinib combination inhibited overall metastatic burden, and brain and bone metastases of intracardially inoculated TNBC cells without toxicity. Together, our results demonstrate for the first time that co-inhibition of TrkA and JAK2 synergistically suppresses breast cancer growth and metastasis, thereby providing preclinical evidence that supports future clinical evaluations.
Collapse
Affiliation(s)
- Angelina T Regua
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shivani Bindal
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mariana K Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Munazza Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Austin B J Arrigo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anneliese O Gonzalez
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xinhai R Zhang
- Department of Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Laranga R, Pazzaglia L, Pedrini E, Sambri A, Ferrari C, Locatelli M, Sangiorgi L, Righi A, Scotlandi K, Bianchi G. p53 as a Potential Actionable Target in Myxofibrosarcoma: A Molecular and Pathologic Review of a Single-Institute Series. J Transl Med 2024; 104:102088. [PMID: 38825319 DOI: 10.1016/j.labinv.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Myxofibrosarcoma (MFS) is a common adult soft tissue sarcoma characterized by high-local recurrence rate, poorly understood molecular pathogenesis, lack of specific prognostic markers, and effective targeted therapies. To gain further insights into the disease, we analyzed a well-defined group of 133 primary MFS cases. Immunohistochemical (IHC) staining for p53, MET, RET, and RB was performed. Twenty-five cases were analyzed by targeted resequencing of known cancer driver hotspot mutations, whereas 66 and 64 MFSs were examined for the presence of genetic variants in TP53 and MET gene, respectively. All clinical, histologic, immunostaining, and genetic variables were analyzed for their impact on 5-years overall survival (OS) and 5-years event-free survival (EFS). In our series, no grade I tumors relapsed and high grade are related to a positive MET immunostaining (P = .034). Both local recurrence (P = .038) and distal metastases (P = .016) correlated to the presence of "single nucleotide variant (SNV) plus copy number variation (CNV)" in TP53. Multivariate analysis revealed that age (>60 years), metastasis at presentation, and positive IHC-p53 signal are risk factors for a poor OS (P = .003, P = .000, and P = .002), whereas age (>60 years), synchronous metastasis, and tumor size (>10 cm) predict an unfavorable 5-years EFS (P = .011, P = .000, and P = .023). Considering the smaller series (n = 66) that underwent molecular screening, the presence of "SNV+CNV" in TP53 represents a risk factor for a worse 5-years EFS (hazard ratio, 2.5; P = .017). The present series confirms that TP53 is frequently altered in MFS (86.4% of cases), appearing to play an important role in MFS tumorigenesis and being a potentially drugable target. A positive p53 immunostainings is related to a poor diagnosis, and it is the presence of a single nucleotide genetic alterations in TP53 that is essential in conferring MFS an aggressive phenotype, thus supporting the use of molecular profiling in MFS to better define the role of p53 as a prognostic factor.
Collapse
Affiliation(s)
- Roberta Laranga
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Pedrini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Andrea Sambri
- Orthopedic and Traumatology Unit, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Cristina Ferrari
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Locatelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Anatomy and Pathological Histology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Bianchi
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
12
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk. Future Sci OA 2024; 10:FSO979. [PMID: 38827789 PMCID: PMC11140649 DOI: 10.2144/fsoa-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Abdel-Hamid Z Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mai O Kadry
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Institute, National Research Center, El Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
13
|
Cheng W, Di F, Li L, Pu C, Wang C, Zhang J. Anti-Photodamage Effect of Agaricus blazei Murill Polysaccharide on UVB-Damaged HaCaT Cells. Int J Mol Sci 2024; 25:4676. [PMID: 38731895 PMCID: PMC11083510 DOI: 10.3390/ijms25094676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.
Collapse
Affiliation(s)
- Wenjing Cheng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Luyao Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Chunhong Pu
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| |
Collapse
|
14
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
15
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
16
|
Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, Borzacchiello A, Granata V, Sabbatino F, Savarese G, Cascella M, Perri F, Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023; 41:5. [PMID: 38038783 DOI: 10.1007/s12032-023-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Venere Celotto
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Antonio Fabozzi
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL Napoli 3, Pompei, 80045, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, ASL Napoli 3, Via Dell'amicizia 22, Nola, 80035, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale Srl, Via Padre Carmine Fico 24, Casalnuovo Di, 80013, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
17
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
18
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
19
|
Tian Y, Zhang P, Mou Y, Yang W, Zhang J, Li Q, Dou X. Silencing Notch4 promotes tumorigenesis and inhibits metastasis of triple-negative breast cancer via Nanog and Cdc42. Cell Death Discov 2023; 9:148. [PMID: 37149651 PMCID: PMC10164131 DOI: 10.1038/s41420-023-01450-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Elucidation of individual Notch protein biology in specific cancer is crucial to develop safe, effective, and tumor-selective Notch-targeting therapeutic reagents for clinical use [1]. Here, we explored the Notch4 function in triple-negative breast cancer (TNBC). We found that silencing Notch4 enhanced tumorigenic ability in TNBC cells via upregulating Nanog expression, a pluripotency factor of embryonic stem cells. Intriguingly, silencing Notch4 in TNBC cells suppressed metastasis via downregulating Cdc42 expression, a key molecular for cell polarity formation. Notably, downregulation of Cdc42 expression affected Vimentin distribution, but not Vimentin expression to inhibit EMT shift. Collectively, our results show that silencing Notch4 enhances tumorigenesis and inhibits metastasis in TNBC, indicating that targeting Notch4 may not be a potential strategy for drug discovery in TNBC.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Peipei Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Yajun Mou
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Wenxiu Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Junhong Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Qing Li
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Xiaowei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
20
|
Montoyo-Pujol YG, García-Escolano M, Ponce JJ, Delgado-García S, Martín TA, Ballester H, Castellón-Molla E, Martínez-Peinado P, Pascual-García S, Sempere-Ortells JM, Peiró G. Variable Intrinsic Expression of Immunoregulatory Biomarkers in Breast Cancer Cell Lines, Mammospheres, and Co-Cultures. Int J Mol Sci 2023; 24:4478. [PMID: 36901916 PMCID: PMC10003642 DOI: 10.3390/ijms24054478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Advances in immunotherapy have increased interest in knowing the role of the immune system in breast cancer (BC) pathogenesis. Therefore, immune checkpoints (IC) and other pathways related to immune regulation, such as JAK2 and FoXO1, have emerged as potential targets for BC treatment. However, their intrinsic gene expression in vitro has not been extensively studied in this neoplasia. Thus, we evaluated the mRNA expression of tumor-cell-intrinsic CTLA-4, PDCD1 (PD1), CD274 (PD-L1), PDCD1LG2 (PD-L2), CD276 (B7-H3), JAK2, and FoXO1 in different BC cell lines, derived mammospheres, and co-cultures with peripheral blood mononuclear cells (PBMCs) by real-time quantitative polymerase chain reaction (qRT-PCR). Our results showed that intrinsic CTLA-4, CD274 (PD-L1), and PDCD1LG2 (PD-L2) were highly expressed in triple-negative cell lines, while CD276 was predominantly overexpressed in luminal cell lines. In contrast, JAK2 and FoXO1 were under-expressed. Moreover, high levels of CTLA-4, PDCD1 (PD1), CD274 (PD-L1), PDCD1LG2 (PD-L2), and JAK2 were found after mammosphere formation. Finally, the interaction between BC cell lines and peripheral blood mononuclear cells (PBMCs) stimulates the intrinsic expression of CTLA-4, PCDC1 (PD1), CD274 (PD-L1), and PDCD1LG2 (PD-L2). In conclusion, the intrinsic expression of immunoregulatory genes seems very dynamic, depending on BC phenotype, culture conditions, and tumor-immune cell interactions.
Collapse
Affiliation(s)
- Yoel Genaro Montoyo-Pujol
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Medical Oncology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Marta García-Escolano
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - José J. Ponce
- Medical Oncology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Silvia Delgado-García
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Tina Aurora Martín
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Elena Castellón-Molla
- Pathology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Pascual Martínez-Peinado
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| | - Sandra Pascual-García
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| | - José Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Gloria Peiró
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Pathology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| |
Collapse
|
21
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
22
|
Predictive Biomarkers for Response to Immunotherapy in Triple Negative Breast Cancer: Promises and Challenges. J Clin Med 2023; 12:jcm12030953. [PMID: 36769602 PMCID: PMC9917763 DOI: 10.3390/jcm12030953] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a highly heterogeneous disease with a poor prognosis and a paucity of therapeutic options. In recent years, immunotherapy has emerged as a new treatment option for patients with TNBC. However, this therapeutic evolution is paralleled by a growing need for biomarkers which allow for a better selection of patients who are most likely to benefit from this immune checkpoint inhibitor (ICI)-based regimen. These biomarkers will not only facilitate a better optimization of treatment strategies, but they will also avoid unnecessary side effects in non-responders, and limit the increasing financial toxicity linked to the use of these agents. Huge efforts have been deployed to identify predictive biomarkers for the ICI, but until now, the fruits of this labor remained largely unsatisfactory. Among clinically validated biomarkers, only programmed death-ligand 1 protein (PD-L1) expression has been prospectively assessed in TNBC trials. In addition to this, microsatellite instability and a high tumor mutational burden are approved as tumor agnostic biomarkers, but only a small percentage of TNBC fits this category. Furthermore, TNBC should no longer be approached as a single biological entity, but rather as a complex disease with different molecular, clinicopathological, and tumor microenvironment subgroups. This review provides an overview of the validated and evolving predictive biomarkers for a response to ICI in TNBC.
Collapse
|
23
|
Stevens LE, Peluffo G, Qiu X, Temko D, Fassl A, Li Z, Trinh A, Seehawer M, Jovanović B, Alečković M, Wilde CM, Geck RC, Shu S, Kingston NL, Harper NW, Almendro V, Pyke AL, Egri SB, Papanastasiou M, Clement K, Zhou N, Walker S, Salas J, Park SY, Frank DA, Meissner A, Jaffe JD, Sicinski P, Toker A, Michor F, Long HW, Overmoyer BA, Polyak K. JAK-STAT Signaling in Inflammatory Breast Cancer Enables Chemotherapy-Resistant Cell States. Cancer Res 2023; 83:264-284. [PMID: 36409824 PMCID: PMC9845989 DOI: 10.1158/0008-5472.can-22-0423] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.
Collapse
Affiliation(s)
- Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Guillermo Peluffo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel Temko
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Callahan M Wilde
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Renee C Geck
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Natalie L Kingston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nicholas W Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vanessa Almendro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alanna L Pyke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shawn B Egri
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | | | - Kendell Clement
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Ningxuan Zhou
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline Salas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Jacob D Jaffe
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,The Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts.,The Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.,Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Beth A Overmoyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts.,The Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.,Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
24
|
Roesler AS, Malasi S, Koslosky L, Hartmayer P, Naab TJ, Carter JM, Zahrieh D, Hillman D, Leon-Ferre RA, Couch FJ, Goetz MP, Anderson KS, Pockaj BA, Barrett MT. PDJ amplicon in triple negative breast cancer. Sci Rep 2023; 13:618. [PMID: 36635351 PMCID: PMC9837184 DOI: 10.1038/s41598-023-27887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Amplification of chromosome 9p24.1 targeting PD-L1, PD-L2, and JAK2 (PDJ amplicon) is present in subsets of triple negative breast cancers (TNBCs) and is associated with poor clinical outcomes. However, the prevalence of PDJ+ TNBCs varies extensively across studies applying different methods for interrogating samples of interest. To rigorously assess the prevalence of PDJ amplicons in TNBC, its prognostic value and whether it is enriched by chemotherapy, we interrogated 360 TNBC samples including 74 surgical resections from patients treated in the neoadjuvant setting, and tissue microarrays (TMAs) with 31 cases from African American women and 255 resected non-metastatic cases, with a 3 color fluorescence in situ hybridization (FISH) assay targeting the 9p24.1 PDJ amplicon, 9q24.3, and 9q34.1. Samples with mean PDJ signal of > 4.5 copies, and ratios of PDJ/9q24 ≥ 2 and/or PDJ/9q34.1 ≥ 2 were called amplified (PDJ+). Correlative analyses included the association of tumor infiltrating lymphocytes (TILs) with PDJ amplicons in TNBCs. In addition, we investigated intratumor copy number of PDJ amplicons in PDJ+ and PDJ- TNBCs. Matched pre- and post-neoadjuvant treatment biopsies were available from patients (n = 6) to evaluate the effects of therapy on PDJ status. Our study provides a rigorous analysis of the prevalence, distribution, and clinical correlatives of the PDJ amplicon in TNBC.
Collapse
Affiliation(s)
- Alexander S Roesler
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
- School of Medicine, Duke University, Durham, NC, USA
| | - Smriti Malasi
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | | | | | - Tammey J Naab
- Department of Pathology, Howard University Hospital, Washington, DC, USA
| | - Jodi M Carter
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | - David Zahrieh
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Hillman
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Fergus J Couch
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Karen S Anderson
- Division of Hematology-Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Barbara A Pockaj
- Division of General Surgery, Section of Surgical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Michael T Barrett
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
25
|
Transcriptomic Analysis of Subtype-Specific Tyrosine Kinases as Triple Negative Breast Cancer Biomarkers. Cancers (Basel) 2023; 15:cancers15020403. [PMID: 36672350 PMCID: PMC9856281 DOI: 10.3390/cancers15020403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) shows impediment to the development of targeted therapies due to the absence of specific molecular targets. The high heterogeneity across TNBC subtypes, which can be classified to be at least four subtypes, including two basal-like (BL1, BL2), a mesenchymal (M), and a luminal androgen receptor (LAR) subtype, limits the response to cancer therapies. Despite many attempts to identify TNBC biomarkers, there are currently no effective targeted therapies against this malignancy. In this study, thus, we identified the potential tyrosine kinase (TK) genes that are uniquely expressed in each TNBC subtype, since TKs have been typically used as drug targets. Differentially expressed TK genes were analyzed from The Cancer Genome Atlas (TCGA) database and were confirmed with the other datasets of both TNBC patients and cell lines. The results revealed that each TNBC subtype expressed distinct TK genes that were specific to the TNBC subtype. The identified subtype-specific TK genes of BL1, BL2, M, and LAR are LYN, CSF1R, FGRF2, and SRMS, respectively. These findings could serve as a potential biomarker of specific TNBC subtypes, which could lead to an effective treatment for TNBC patients.
Collapse
|
26
|
He L, Liu J, Zhao HL, Zhang LC, Yu RL, Kang CM. De novo design of dual-target JAK2, SMO inhibitors based on deep reinforcement learning, molecular docking and molecular dynamics simulations. Biochem Biophys Res Commun 2023; 638:23-27. [PMID: 36436338 DOI: 10.1016/j.bbrc.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and the effectiveness of current therapies for them is limited. TNBC lacks effective therapies and HER2-positive cancer is often resistant to HER2-targeted drugs after an initial response. The recent studies have demonstrated that the combination of JAK2 inhibitors and SMO inhibitors can effectively inhibit the growth and metastasis of TNBC and HER2-positive drug resistant breast cancer cells. In this study, deep reinforcement learning was used to learn the characteristics of existing small molecule inhibitors of JAK2 and SMO, and to generate a novel library of small molecule compounds that may be able to inhibit both JAK2 and SMO. Subsequently, the molecule library was screened by molecular docking and a total of 7 compounds were selected out as dual inhibitors of JAK2 and SMO. Molecular dynamics simulations and binding free energies showed that the top three compounds stably bound to both JAK2 and SMO proteins. The binding free energies and hydrogen bond occupancy of key amino acids indicate that A8976 and A10625 has good properties and could be a potential dual-target inhibitor of JAK2 and SMO.
Collapse
Affiliation(s)
- Lei He
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui-Lin Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Li-Chuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Cong-Min Kang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
27
|
Alaaeldin R, Ali FEM, Bekhit AA, Zhao QL, Fathy M. Inhibition of NF-kB/IL-6/JAK2/STAT3 Pathway and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Azilsartan. Molecules 2022; 27:7825. [PMID: 36431925 PMCID: PMC9693603 DOI: 10.3390/molecules27227825] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
| | - Fares E. M. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Aptamer-Functionalized Nanoparticles Mediate PD-L1 siRNA Delivery for Effective Gene Silencing in Triple-Negative Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102225. [PMID: 36297659 PMCID: PMC9609037 DOI: 10.3390/pharmaceutics14102225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.
Collapse
|
29
|
Huo Y, Shao S, Liu E, Li J, Tian Z, Wu X, Zhang S, Stover D, Wu H, Cheng L, Li L. Subpathway Analysis of Transcriptome Profiles Reveals New Molecular Mechanisms of Acquired Chemotherapy Resistance in Breast Cancer. Cancers (Basel) 2022; 14:cancers14194878. [PMID: 36230801 PMCID: PMC9563670 DOI: 10.3390/cancers14194878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Chemoresistance has been a major challenge in the treatment of patients with breast cancer. The diverse omics platforms and small sample sizes reported in the current studies of chemoresistance in breast cancer limit the consensus regarding the underlying molecular mechanisms of chemoresistance and the applicability of these study findings. Therefore, we built two transcriptome datasets for patients with chemotherapy-resistant breast cancers—one comprising paired transcriptome samples from 40 patients before and after chemotherapy and the second including unpaired samples from 690 patients before and 45 patients after chemotherapy. Subsequent conventional pathway analysis and new subpathway analysis using these cohorts uncovered 56 overlapping upregulated genes (false discovery rate [FDR], 0.018) and 36 downregulated genes (FDR, 0.016). Pathway analysis revealed the activation of several pathways in the chemotherapy-resistant tumors, including those of drug metabolism, MAPK, ErbB, calcium, cGMP-PKG, sphingolipid, and PI3K-Akt, as well as those activated by Cushing’s syndrome, human papillomavirus (HPV) infection, and proteoglycans in cancers, and subpathway analysis identified the activation of several more, including fluid shear stress, Wnt, FoxO, ECM-receptor interaction, RAS signaling, Rap1, mTOR focal adhesion, and cellular senescence (FDR < 0.20). Among these pathways, those associated with Cushing’s syndrome, HPV infection, proteoglycans in cancer, fluid shear stress, and focal adhesion have not yet been reported in breast cancer chemoresistance. Pathway and subpathway analysis of a subset of triple-negative breast cancers from the two cohorts revealed activation of the identical chemoresistance pathways.
Collapse
Affiliation(s)
- Yang Huo
- School of Informatics, Indiana University, Indianapolis, IN 46032, USA
| | - Shuai Shao
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Enze Liu
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46032, USA
| | - Jin Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhen Tian
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xue Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shijun Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Stover
- Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Huanmei Wu
- Department of Health Service Administration and Policy, College of Public Health, Temple University, Philadelphia, PA 19122, USA
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +001-614-685-4685
| |
Collapse
|
30
|
Yu C, Fan Y, Zhang Y, Liu L, Guo G. LINC00893 inhibits the progression of prostate cancer through miR-3173-5p/SOCS3/JAK2/STAT3 pathway. Cancer Cell Int 2022; 22:228. [PMID: 35818076 PMCID: PMC9275192 DOI: 10.1186/s12935-022-02637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most common malignant tumors in the male urinary system. In recent years, the morbidity and mortality of PCa have been increasing due to the limited effects of existing treatment strategies. Long non-coding RNA (lncRNA) LINC00893 was reported to inhibit the proliferation and metastasis of papillary thyroid cancer cells, but its role in PCa has not been reported. This study aims to investigate the role and underlying mechanism of LINC00893 in regulating the progression of PCa cells. Methods We first compared LINC00893 expression levels between PCa tissues and normal prostate tissues through TCGA database. The relative LINC00893 expression levels were further validated in 66 pairs of PCa tissues and para-cancerous normal tissues, as well as in PCa cell lines. Gain-of-function experiment was performed by transfecting PCa cell with LINC00893 expression vector, and CCK (Cell count kit)-8, 5-Ethynyl-2′-deoxyuridine (EdU) incorporation, colony information and transwell assays were conducted to assess the functional phenotypes. Dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP) and RNA pull-down assays were performed to evaluate the molecular interactions. Results LINC00893 was downregulated in PCa tissues and cell lines, and patients with low expression of LINC00893 were associated with a poorer overall survival rate. LINC00893 overexpression hindered the proliferation, epithelial-mesenchymal transition (EMT) as well as the migratory ability of PCa cells, and suppressed the tumorigenesis of PCa cells in nude mice. We further demonstrated that LINC00893 acted as a sponge for miR-3173-5p and inhibited its activity, which in turn regulated the suppressor of cytokine signaling 3 (SOCS3)/Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis. Conclusions Our study demonstrated that LINC00893 suppresses the progression of PCa cells through targeting miR-3173-5p/SOCS3/JAK2/STAT3 axis. Our data uncovers a novel tumor-suppressor role of LINC00893 in PCa, which may serve as a potential strategy for targeted therapy in PCa. Grapical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02637-4.
Collapse
Affiliation(s)
- Chuigong Yu
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Yu Fan
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Yu Zhang
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Lupeng Liu
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Gang Guo
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
31
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
32
|
Yao J, Chen Q, Zhu J, Cai R. Targeted gene next‐generation sequencing reveals genomic profile in a cohort of 46 Chinese patients with breast cancer. J Gene Med 2022; 24:e3420. [PMID: 35470535 DOI: 10.1002/jgm.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jie Yao
- Department of Medical Oncology, Fu Xing Hospital Capital Medical University Beijing China
| | | | | | - Rui‐gang Cai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
33
|
JAK2 Inhibitor, Fedratinib, Inhibits P-gp Activity and Co-Treatment Induces Cytotoxicity in Antimitotic Drug-Treated P-gp Overexpressing Resistant KBV20C Cancer Cells. Int J Mol Sci 2022; 23:ijms23094597. [PMID: 35562984 PMCID: PMC9100550 DOI: 10.3390/ijms23094597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
P-glycoprotein (P-gp) overexpression is one of the major mechanisms of multidrug resistance (MDR). Previously, co-treatment with Janus kinase 2 (JAK2) inhibitors sensitized P-gp-overexpressing drug-resistant cancer cells. In this study, we assessed the cytotoxic effects of JAK2 inhibitor, fedratinib, on drug-resistant KBV20C cancer cells. We found that co-treatment with fedratinib at low doses induced cytotoxicity in KBV20C cells treated with vincristine (VIC). However, fedratinib-induced cytotoxicity was little effect on VIC-treated sensitive KB parent cells, suggesting that these effects are specific to resistant cancer cells. Fluorescence-activated cell sorting (FACS), Western blotting, and annexin V analyses were used to further investigate fedratinib’s mechanism of action in VIC-treated KBV20C cells. We found that fedratinib reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. G2 phase arrest and apoptosis in VIC–fedratinib-co-treated cells resulted from the upregulation of p21 and the DNA damaging marker pH2AX. Compared with dimethyl sulfoxide (DMSO)-treated cells, fedratinib-treated KBV20C cells showed two-fold higher P-gp-inhibitory activity, indicating that VIC–fedratinib sensitization is dependent on the activity of fedratinib. Similar to VIC, fedratinib co-treatment with other antimitotic drugs (i.e., eribulin, vinorelbine, and vinblastine) showed increased cytotoxicity in KBV20C cells. Furthermore, VIC–fedratinib had similar cytotoxic effects to co-treatment with other JAK2 inhibitors (i.e., VIC–CEP-33779 or VIC–NVP-BSK805) at the same dose; similar cytotoxic mechanisms (i.e., early apoptosis) were observed between treatments, suggesting that co-treatment with JAK2 inhibitors is generally cytotoxic to P-gp-overexpressing resistant cancer cells. Given that fedratinib is FDA-approved, our findings support its application in the co-treatment of P-gp-overexpressing cancer patients showing MDR.
Collapse
|
34
|
Di Raimondo C, Rao L, Lozzi F, Lombardo P, Silvaggio D, Vellucci L, Tofani L, Campione E, Bianchi L. Cemiplimab and ruxolitinib in concomitant cutaneous squamous cell carcinoma and myelofibrosis. Dermatol Ther 2022; 35:e15421. [DOI: 10.1111/dth.15421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ludovico Rao
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | - Flavia Lozzi
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | - Paolo Lombardo
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | | | - Laura Vellucci
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | - Lorenzo Tofani
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | - Elena Campione
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| | - Luca Bianchi
- Department of Dermatology University of Roma Tor Vergata Rome Italy
| |
Collapse
|
35
|
Li J, Xu X, Peng X. NDC80 Enhances Cisplatin-resistance in Triple-negative Breast Cancer. Arch Med Res 2022; 53:378-387. [PMID: 35346500 DOI: 10.1016/j.arcmed.2022.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Chemotherapy is a standard systemic treatment option for triple-negative breast cancer (TNBC). Cisplatin has been used to treat TNBC, but frequently leads to cisplatin resistance in patients. The aim of our study was to investigate cisplatin-resistant mechanism in TNBC. MATERIALS AND METHODS To identify the potential genes and pathways relative to cisplatin resistance, GSE103115 data were analyzed by the Limma package and Gene set enrichment analysis (GSEA). TNBC data from TCGA, GSE76250 and GSE115275 datasets were used to calculate NDC80 expression. Immunohistochemistry detected NDC80 protein expression in TNBC tissues from patients before and after cisplatin treatment. After expose to cisplatin treatment, the viability and proliferation of TNBC cells were measured by CCK-8 and colony formation assays, respectively. RESULTS NDC80 was regarded as a cisplatin-resistant gene because after cisplatin treatment NDC80 was downregulated in cisplatin-sensitive cells but was upregulated in cisplatin-resistant cells. NDC80 was over-expressed in TNBC tissues compared to normal tissues. Furthermore, NDC80 expression in TNBC patients was increased after cisplatin treatment. Cisplatin-sensitive TNBC patients showed lower NDC80 expression than cisplatin-resistant patients. Additionally, NDC80 expression was correlated with clinical stages, tumor size and chemotherapy of TNBC patients. Moreover, NDC80 overexpression promoted the viability and proliferation of TNBC cells and enhanced the cells resistance to cisplatin. The potential pathways relative to cisplatin resistance were obtained, such as p53 signaling pathway and Oxidative phosphorylation. CONCLUSION These findings provide new insights for understanding the mechanism of cisplatin resistance in TNBC, and NDC80 may be a potential therapeutic target for TNBC treatment.
Collapse
|
36
|
Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells. Front Oncol 2022; 12:807266. [PMID: 35223487 PMCID: PMC8867093 DOI: 10.3389/fonc.2022.807266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
37
|
Effects of Ruxolitinib and Calcitriol Combination Treatment on Various Molecular Subtypes of Breast Cancer. Int J Mol Sci 2022; 23:ijms23052535. [PMID: 35269680 PMCID: PMC8910493 DOI: 10.3390/ijms23052535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.
Collapse
|
38
|
Xu T, Dai T, Zeng P, Song Q, He K, Hu Z, Li Y, Li Z. Identification of RHEX as a novel biomarker related to progression and immunity of non-small cell lung carcinoma. Transl Cancer Res 2022; 10:3811-3828. [PMID: 35116680 PMCID: PMC8797495 DOI: 10.21037/tcr-21-1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Background The therapeutic response and prognosis of patients with non-small cell lung carcinoma (NSCLC) are widely related to immunity. To improve the prognosis of patients and provide reliable information to guide appropriate personalized treatment strategies, it is necessary to identify reliable prognostic or predictive indicators closely related to tumor phenotype and immune traits in NSCLC. Methods Based on The Cancer Genome Atlas (TCGA)-NSCLC mRNA expression profile data, a novel approach combining differential gene expression analysis, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network analysis (WGCNA) was used to screen hub genes. Subsequently, the regulator of hemoglobinization and erythroid cell expansion (RHEX) was identified as a key gene using the log-rank test and confirmed in the ArrayExpress database. The relationship between RHEX and clinicopathological parameters was analyzed using the Wilcoxon rank-sum test. More importantly, through gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithms, and with reference to the Tumor IMmune Estimation Resource (TIMER) database, we explored the relevant pathways of RHEX and its relationship with tumor-infiltrating immune cells (TICs). Finally, we depicted the association between RHEX and immunomodulators in the TCGA and a web portal TISIDB. Results The RHEX mRNA expression levels in tumor tissues were lower than those in normal tissues and declined with the progression of NSCLC. Meanwhile, RHEX overexpression was associated with high immune infiltration levels and a favorable clinical prognosis. RHEX may participate in tumor microenvironment (TME) regulation through multiple tumor-immune related pathways, especially the JAK-STAT signaling pathway. Furthermore, RHEX expression affected the infiltrating abundance of multiple TICs and positively correlated with most of the immunomodulators in NSCLC. Conclusions Our study is the first to propose that RHEX is an immune-related gene with prognostic value in NSCLC and reveals the underlying mechanism between RHEX and tumor-immune system interactions. These results ultimately provide guidance for prognosis and immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianyang Dai
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peiyuan Zeng
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Song
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiming He
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhi Hu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhou Li
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14020429. [PMID: 35053592 PMCID: PMC8773745 DOI: 10.3390/cancers14020429] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Many signaling pathways are overactive in breast cancer, and among them is the STAT3 signaling pathway. STAT3 is activated by secreted factors within the breast tumor, many of which are elevated and correlate to advanced disease and poor survival outcomes. This review examines how STAT3 signaling is activated in breast cancer by the proinflammatory, gp130 cytokines, interleukins 6 and 11. We evaluate how this signaling cascade functions in the various cells of the tumor microenvironment to drive disease progression and metastasis. We discuss how our understanding of these processes may lead to the development of novel therapeutics to tackle advanced disease. Abstract Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.
Collapse
|
40
|
Sommerville L, Howard J, Evans S, Kelly P, McCann A. Comparative gene expression study highlights molecular similarities between triple negative breast cancer tumours and feline mammary carcinomas. Vet Comp Oncol 2022; 20:535-538. [PMID: 35006637 PMCID: PMC9303714 DOI: 10.1111/vco.12800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 01/26/2023]
Abstract
Triple negative breast cancer (TNBC) is a rare, highly metastatic subtype of breast cancer that typically develops tumours of a high histological grade. As TNBC is negative for the oestrogen, progesterone and HER2 receptors it is also not eligible for targeted hormonal therapies. Therefore, those diagnosed with TNBC are faced with a very poor prognosis. Feline mammary carcinomas (FMCs) have been shown to share key characteristics of TNBC and are being investigated as novel animal models of this disease. A study by Granados‐Soler et al., investigating prognostic markers of FMCs provided the basis of this research, and their prognostic value in TNBC was evaluated using a ‘data‐mining’ research approach. Overall, the comparative genomic aspect of this research identified several potential prognostic markers translatable across TNBC and FMCs. These prognostic markers warrant further investigation in comparative oncology studies.
Collapse
Affiliation(s)
- Lara Sommerville
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Dublin, Ireland
| | - Jane Howard
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Dublin, Ireland
| | - Shane Evans
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Dublin, Ireland
| | - Pamela Kelly
- UCD School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
42
|
Jesser EA, Brady NJ, Huggins DN, Witschen PM, O'Connor CH, Schwertfeger KL. STAT5 is activated in macrophages by breast cancer cell-derived factors and regulates macrophage function in the tumor microenvironment. Breast Cancer Res 2021; 23:104. [PMID: 34743736 PMCID: PMC8573892 DOI: 10.1186/s13058-021-01481-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In breast cancer, complex interactions between tumor cells and cells within the surrounding stroma, such as macrophages, are critical for tumor growth, progression, and therapeutic response. Recent studies have highlighted the complex nature and heterogeneous populations of macrophages associated with both tumor-promoting and tumor-inhibiting phenotypes. Defining the pathways that drive macrophage function is important for understanding their complex phenotypes within the tumor microenvironment. Signal transducer and activator of transcription (STAT) transcription factors, such as STAT5, are key regulators of immune cell function. The studies described here investigate the functional contributions of STAT5 to tumor-associated macrophage function in breast cancer. METHODS Initial studies were performed using a panel of human breast cancer and mouse mammary tumor cell lines to determine the ability of tumor cell-derived factors to induce STAT5 activation in macrophages. Further studies used these models to identify soluble factors that activate STAT5 in macrophages. To delineate STAT5-specific contributions to macrophage function, a conditional model of myeloid STAT5 deletion was used for in vitro, RNA-sequencing, and in vivo studies. The effects of STAT5 deletion in macrophages on tumor cell migration and metastasis were evaluated using in vitro co-culture migration assays and an in vivo tumor cell-macrophage co-injection model. RESULTS We demonstrate here that STAT5 is robustly activated in macrophages by tumor cell-derived factors and that GM-CSF is a key cytokine stimulating this pathway. The analysis of RNA-seq studies reveals that STAT5 promotes expression of immune stimulatory genes in macrophages and that loss of STAT5 in macrophages results in increased expression of tissue remodeling factors. Finally, we demonstrate that loss of STAT5 in macrophages promotes tumor cell migration in vitro and mammary tumor metastasis in vivo. CONCLUSIONS Breast cancer cells produce soluble factors, such as GM-CSF, that activate the STAT5 pathway in macrophages and drive expression of inflammatory factors. STAT5 deletion in myeloid cells enhances metastasis, suggesting that STAT5 activation in tumor-associated macrophages protects against tumor progression. Understanding mechanisms that drive macrophage function in the tumor microenvironment will ultimately lead to new approaches that suppress tumor-promoting functions while enhancing their anti-tumor functions.
Collapse
Affiliation(s)
- Emily A Jesser
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Brady
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Danielle N Huggins
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA
| | - Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, USA
| | - Christine H O'Connor
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, 6Th St SE, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
43
|
JAK2 regulates paclitaxel resistance in triple negative breast cancers. J Mol Med (Berl) 2021; 99:1783-1795. [PMID: 34626199 DOI: 10.1007/s00109-021-02138-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
We investigated the molecular mechanisms of paclitaxel resistance in TNBC using seven patient-derived xenograft (PDX) models and TNBC cell lines. Among the seven PDX models, four models showed resistance to paclitaxel. Dysregulation of JAK/STAT pathways and JAK2 copy number gains were observed in the four paclitaxel-resistant PDX tumors. In TNBC cell lines, silencing the JAK2 gene showed a significant but mild synergistic effect when combined with paclitaxel in vitro. However, JAK1/2 inhibitor treatment resulted in restoration of paclitaxel sensitivity in two out of four paclitaxel-resistant PDX models and JAK1/2 inhibitor alone significantly suppressed the tumor growth in one out of the two remaining PDX models. Transcriptome data derived from the murine microenvironmental cells revealed an enrichment of genes involved in the cell cycle processes among the four paclitaxel-resistant PDX tumors. Histologic examination of those PDX tumor tissues showed increased Ki67-positive fibroblasts in the tumor microenvironment. Among the four different cancer-associated fibroblast (CAF) subtypes, cycling CAF exhibiting features of active cell cycle was enriched in the paclitaxel-resistant PDX tumors. Additionally, fibroblasts treated with the conditioned media from the JAK2-silenced breast cancer cells showed downregulation of cell cycle-related genes. Our data suggest that the JAK2 gene may play a critical role in determining responses of TNBC to paclitaxel by modulating the intrinsic susceptibility of cancer cells against paclitaxel and also by eliciting functional transitions of CAF subtypes in the tumor microenvironment. KEY MESSAGES : We investigated the molecular mechanisms of paclitaxel resistance in TNBC. JAK2 signaling was associated with paclitaxel resistance in TNBC PDX models. Paclitaxel-resistant PDX tumors were enriched with microenvironment cCAF subpopulation. JAK2 regulated paclitaxel-resistant CAF phenotype transition.
Collapse
|
44
|
Zhao H, Ma W, Fragoso RC, IV GRH, Ashok A, Li T. Durable clinical response to the multidisciplinary management of neurosurgery, radiation and chemoimmunotherapy in a patient with PD-L1/PD-L2/JAK2 (PDJ)-amplified, refractory triple-negative breast cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:115-121. [PMID: 39036375 PMCID: PMC11256669 DOI: 10.1016/j.jncc.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Patients with refractory metastatic triple-negative breast cancer (mTNBC) and symptomatic brain metastases have poor prognosis and are challenging to treat. The addition of an programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitor (pembrolizumab or atezolizumab) to first line chemotherapy has prolonged survivals in mTNBC patients with PD-L1-positive tumor and/or tumor-infiltrating immune cells. The clinical efficacy of the chemoimmunotherapy combination in patients with refractory mTNBC, especially brain metastasis, is unknown. Co-amplification of PD-L1, PD-L2, and Janus kinase 2 (PD-L1/PD-L2/JAK2) genes (PDJ amplification) is associated with high PD-L1 protein expression and a 65-87% response rate to PD-1/PD-L1 inhibitors in patients with lymphomas. But the utility of PDJ amplification as a biomarker predictive of response to PD-1/PD-L1 inhibitors is unknown for mTNBC patients. Here, we report a 46-year-old woman who had rapid tumor progression in the brain and lung within 3 months after chemotherapy, neurosurgery, and gamma knife stereotactic radiosurgery for brain metastasis. Next-generation sequencing of her brain metastasis specimen revealed 9 copies of PDJ amplification and a tumor mutational burden of 5 mutations per megabase. Although high PDJ mRNA expression levels were detected, PD-L1 protein expression was negative on tumor cells and 10% on tumor-associated immune cells. After the debulking brain tumor resection, she received pembrolizumab monotherapy, whole brain radiation, and then atezolizumab and nab-paclitaxel with good intracranial and extracranial responses for >16 months. To the best of our knowledge, this is the first report that PDJ amplification is associated with durable clinical response to the PD-1/PD-L1 inhibitor-containing, multidisciplinary management in a patient with refractory, PD-L1 protein-negative, PDJ-amplified mTNBC. Further study is warranted to understand the underlying mechanism and validate PDJ amplification as a biomarker for clinical response to PD-1/PD-L1 inhibitor-containing therapy in patients with mTNBC.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, USA
- Current address: Department of Thyroid & Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, USA
| | - Ruben C. Fragoso
- Department of Radiation Oncology, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, USA
| | - Griffith R. Harsh IV
- Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, USA
| | | | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, USA
| |
Collapse
|
45
|
Zhang S, Liu S, Liu X, Liu J, Wu W. Identification of JAK2 and FOXM1 expression as novel candidate biomarkers for predicting the benefit of immunotherapy in lung squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1081. [PMID: 34422993 PMCID: PMC8339858 DOI: 10.21037/atm-21-2186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for about 30% of all non-small cell lung cancers (NSCLC). However, only a small percentage of LUSC patients gain benefit from immune checkpoint inhibitors (ICIs). Methods This study analyzed LUSC patients from The Cancer Genome Atlas (TCGA), which were divided into 2 groups: PD-L1 high-expression/TMB-high (TPH) and PD-L1 low-expression/TMB-low (TPL) group based on programmed death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB) status. The differences in tumor-infiltrating immune cells were estimated between the 2 groups. The overlap of differentially expressed genes and proteins (DEGs and DEPs) between 2 groups were used as candidate biomarkers. Kaplan-Meier curves were used to evaluate the association between risk score and overall survival (OS). Results More abundant immune infiltration fractions were found in TPH group. Janus kinase 2 (JAK2) and forkhead box protein M1 (FOXM1) were identified as DEGs between the TPH and TPL groups. Subsequently, we developed a risk score that combined the expression of JAK2 and FOXM1 in an effort to accurately determine the survival risk of LUSC patients. Patients with high-risk [hazard ratio (HR), median OS, 43.1 months 1.924; 95% confidence interval (CI): 1.256 to 2.945; P=0.002) had shorter survival than those with low-risk (median OS, 70.0 months). External data verification found that JAK2 and FOXM1 were significantly expressed at a higher level in the responders receiving immunotherapy (P=0.038 and P=0.009, respectively). Conclusions The expressions of JAK2 and FOXM1 can be used as novel candidate biomarkers for predicting the benefit of immunotherapy in LUSC.
Collapse
Affiliation(s)
- Shixin Zhang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuai Liu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Liu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Liu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
46
|
Emens LA, Adams S, Cimino-Mathews A, Disis ML, Gatti-Mays ME, Ho AY, Kalinsky K, McArthur HL, Mittendorf EA, Nanda R, Page DB, Rugo HS, Rubin KM, Soliman H, Spears PA, Tolaney SM, Litton JK. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer 2021; 9:e002597. [PMID: 34389617 PMCID: PMC8365813 DOI: 10.1136/jitc-2021-002597] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has historically been a disease for which immunotherapy was largely unavailable. Recently, the use of immune checkpoint inhibitors (ICIs) in combination with chemotherapy for the treatment of advanced/metastatic triple-negative breast cancer (TNBC) has demonstrated efficacy, including longer progression-free survival and increased overall survival in subsets of patients. Based on clinical benefit in randomized trials, ICIs in combination with chemotherapy for the treatment of some patients with advanced/metastatic TNBC have been approved by the United States (US) Food and Drug Administration (FDA), expanding options for patients. Ongoing questions remain, however, about the optimal chemotherapy backbone for immunotherapy, appropriate biomarker-based selection of patients for treatment, the optimal strategy for immunotherapy treatment in earlier stage disease, and potential use in histological subtypes other than TNBC. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). The expert panel drew upon the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for breast cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence-based and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with breast cancer.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Langone, New York, New York, USA
| | - Ashley Cimino-Mathews
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Margaret E Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| | - David B Page
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Krista M Rubin
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Hatem Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patricia A Spears
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Satriyo PB, Su CM, Ong JR, Huang WC, Fong IH, Lin CC, Aryandono T, Haryana SM, Deng L, Huang CC, Tzeng YM, Chao TY, Liu HW, Yeh CT. 4-Acetylantroquinonol B induced DNA damage response signaling and apoptosis via suppressing CDK2/CDK4 expression in triple negative breast cancer cells. Toxicol Appl Pharmacol 2021; 422:115493. [PMID: 33727089 DOI: 10.1016/j.taap.2021.115493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has a more aggressive phenotype and poorer prognosis than hormone receptor (HR+) and human epidermal growth factor receptor (HER2 -) subtypes. Inhibition of cyclin-dependent kinase (CDK)4 and CDK6 was successful in patients with advanced metastatic HR+/HER2- breast cancer, but those with TNBC exhibited low or no response to this therapeutic approach. This study investigated the dual therapeutic targeting of CDK2 and CDK4 by using 4-acetyl-antroquinonol B (4-AAQB) against TNBC cells. METHODS We examined the effects of CDK2, CDK4, and CDK6 inhibition through 4-AAQB treatment on TNBC cell lines and established an orthotropic xenograft mouse model to confirm the in vitro results of inhibiting CDK2, CDK4, and CDK6 by 4-AAQB treatment. RESULTS High expression and alteration of CDK2 and CDK4 but not CDK6 significantly correlated with poor overall survival of patients with breast cancer. CDK2 and CDK4 were positively correlated with damage in DNA replication and repair pathways. Docking results indicated that 4-AAQB was bound to CDK2 and CDK4 with high affinity. Treatment of TNBC cells with 4-AAQB suppressed the expression of CDK2 and CDK4 in vitro. Additionally, 4-AAQB induced cell cycle arrest, DNA damage, and apoptosis in TNBC cells. In vivo study results confirmed that the anticancer activity of 4-AAQB suppressed tumor growth through the inhibition of CDK2 and CDK4. CONCLUSION The expression level of CDK2 and CDK4 and DNA damage response (DDR) signaling are prominent in TNBC cell cycle regulation. Thus, 4-AAQB is a potential agent for targeting CDK2/4 and DDR in TNBC cells.
Collapse
Affiliation(s)
- Pamungkas Bagus Satriyo
- College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Department of Pharmacology and Therapy, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chih Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jiann Ruey Ong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chien Huang
- Department of Medicine, MacKay Medical College, Taipei 110, Taiwan, ROC; Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 110, Taiwan, ROC
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Chih-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cellular Biology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Li Deng
- Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Amoy-BUCT Industrial Bio-Technovation Institute, Amoy 361022, China
| | - Chun-Chih Huang
- Center for General Education, National Taitung University, Taitung, Taiwan
| | - Yew-Min Tzeng
- Center for General Education, National Taitung University, Taitung, Taiwan
| | - Tsu-Yi Chao
- College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Hui-Wen Liu
- College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Chi-Tai Yeh
- College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan; Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
48
|
Regua AT, Aguayo NR, Jalboush SA, Doheny DL, Manore SG, Zhu D, Wong GL, Arrigo A, Wagner CJ, Yu Y, Thomas A, Chan MD, Ruiz J, Jin G, Strowd R, Sun P, Lin J, Lo HW. TrkA Interacts with and Phosphorylates STAT3 to Enhance Gene Transcription and Promote Breast Cancer Stem Cells in Triple-Negative and HER2-Enriched Breast Cancers. Cancers (Basel) 2021; 13:2340. [PMID: 34066153 PMCID: PMC8150921 DOI: 10.3390/cancers13102340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
JAK2-STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpressed and co-activated in triple-negative breast cancer (TNBC) and HER2-enriched breast cancer, as shown by immunohistochemical staining and data mining. Through immunofluorescence staining-confocal microscopy and immunoprecipitation-Western blotting, we found that TrkA and STAT3 co-localize and physically interact in the cytoplasm, and the interaction is dependent on STAT3-Y705 phosphorylation. TrkA-STAT3 interaction leads to STAT3 phosphorylation at Y705 by TrkA in breast cancer cells and cell-free kinase assays, indicating that STAT3 is a novel substrate of TrkA. β-NGF-mediated TrkA activation induces TrkA-STAT3 interaction, STAT3 nuclear transport and transcriptional activity, and the expression of STAT3 target genes, SOX2 and MYC. The co-activation of both pathways promotes breast cancer stem cells. Finally, we found that TNBC and HER2-enriched breast cancer with JAK2-STAT3 and TrkA co-activation are positively associated with poor overall metastasis-free and organ-specific metastasis-free survival. Collectively, our study uncovered that TrkA is a novel activating kinase of STAT3, and their co-activation enhances gene transcription and promotes breast cancer stem cells in TNBC and HER2-enriched breast cancer.
Collapse
Affiliation(s)
- Angelina T. Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Noah R. Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Daniel L. Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Calvin J. Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Yang Yu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.); (J.R.)
- Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Michael D. Chan
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.); (J.R.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Roy Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| |
Collapse
|
49
|
Delgir S, Bastami M, Ilkhani K, Safi A, Seif F, Alivand MR. The pathways related to glutamine metabolism, glutamine inhibitors and their implication for improving the efficiency of chemotherapy in triple-negative breast cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108366. [PMID: 34083056 DOI: 10.1016/j.mrrev.2021.108366] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is a heterogeneous cancer with multiple subtypes affecting women worldwide. Triple-negative breast cancer (TNBC) is a prominent subtype of BC with poor prognosis and an aggressive phenotype. Recent understanding of metabolic reprogramming supports its role in the growth of cancer cells and their adaptation to their microenvironment. The Warburg effect is characterized by the shift from oxidative to reductive metabolism and external secretion of lactate. The Warburg effect prevents the use of the required pyruvate in the tricarboxylic acid (TCA) cycle progressing through pyruvate dehydrogenase inactivation. Therefore, it is a major regulatory mechanism to promote glycolysis and disrupt the TCA cycle. Glutamine (Gln) can supply the complementary energy for cancer cells. Additionally, it is the main substrate to support bioenergetics and biosynthetic activities in cancer cells and plays a vital role in a wide array of other processes such as ferroptosis. Thus, the switching of glucose to Gln in the TCA cycle toward reductive Gln metabolism is carried out by hypoxia-inducible factors (HIFs) conducted through the Warburg effect. The literature suggests that the addiction of TNBC to Gln could facilitate the proliferation and invasiveness of these cancers. Thus, Gln metabolism inhibitors, such as CB-839, could be applied to manage the carcinogenic properties of TNBC. Such inhibitors, along with conventional chemotherapy agents, can potentially improve the efficiency and efficacy of TNBC treatment. In this review, we discuss the associations between glucose and Gln metabolism and control of cancer cell growth from the perspective that Gln metabolism inhibitors could improve the current chemotherapy drug effects.
Collapse
Affiliation(s)
- Soheila Delgir
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Liu F, Wu H. Identification of Prognostic Biomarkers and Molecular Targets Among JAK Family in Breast Cancer. J Inflamm Res 2021; 14:97-114. [PMID: 33469338 PMCID: PMC7813467 DOI: 10.2147/jir.s284889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Janus kinases (JAKs) are a family of non-receptor tyrosine kinases involved in multiple malignancies. However, clinical values of JAKs as prognostic markers and potential mechanism as molecular targets in breast invasive carcinoma (BC) are not completely clarified. Methodology TIMER, UALCAN and GEPIA were used to assess the expression and methylation levels of JAKs in BC. Kaplan–Meier Plotter, bc-GenExMiner, SurvExpress, TRGAted, MethSurv, and SurvivalMeth were used to assess the multilevel prognostic significance of JAKs in breast cancer patients. And cBioPortal, TIMER, STRING, GeneMANIA, NetworkAnalysis, LinkedOmics, DAVID 6.8, and Metascape were applied for multilayer networks and functional enrichment analyses. Correlations between immune cell infiltrates/their gene markers and JAKs were evaluated by TIMER. Results We first explored the expression and methylation level of JAKs in breast cancer and found significantly reduced JAK1 and JAK2 expression at mRNA and protein levels, significantly higher JAK3 protein expression, and significantly increased TYK2 expression at mRNA level but decreased at protein level. In addition, hypermethylation of JAK3 and TYK2 and hypomethylation of JAK1 were found in tumor samples. In terms of prognostic values of JAKs in BC patients, low transcriptional levels of JAK1, JAK2, JAK3, and TYK2 indicated worse OS/DMFS/PPS/RFS/DFS, inferior DFS, worse RFS, and shorter OS/DMFS/RFS, respectively. The mRNA signature analysis showed that high-risk group had unfavorable OS/RFS/MFS. Low JAK2 protein level indicated unfavorable DSS/PFS in BC patients. Five CpGs of JAK1, four CpGs of JAK2, 20 CpGs of JAK3, and 13 CpGs of TYK2 were significantly associated with prognosis in BC patients. The DNA methylation signature analysis also suggested worse prognosis in the high-risk group. For potential biological roles of JAKs, interaction analyses, functional enrichment analyses for biological process, cellular component, molecular function, and KEGG pathway analyses of JAKs and their neighbor genes in BC were conducted. Kinase targets, gene–miRNA interactions, and transcription factor–gene interactions of JAKs were also identified. Furthermore, JAKs were found to be significantly related to immune infiltrates as well as the expression levels of multiple immune markers in BC. Conclusion JAKs showed multilevel prognostic value and important biological roles in BC. They might serve as promising prognostic markers and possible targets in breast cancer.
Collapse
Affiliation(s)
- Fangteng Liu
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang 330009, Jiangxi, People's Republic of China.,Faculty of Medicine, University of Munich, Munich 80336, Germany
| | - Hengyu Wu
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang 330009, Jiangxi, People's Republic of China
| |
Collapse
|