1
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2025; 31:181-194. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
2
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2575-2592. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
3
|
Coarelli G, Dubec-Fleury C, Petit E, Sayah S, Fischer C, Nassisi M, Gatignol P, Dorgham K, Daghsen L, Daye P, Cunha P, Kacher R, Hilab R, Hurmic H, Lamazière A, Lamy JC, Welter ML, Chupin M, Mangin JF, Lane R, Gaymard B, Pouget P, Audo I, Brice A, Tezenas du Montcel S, Durr A. Longitudinal Changes of Clinical, Imaging, and Fluid Biomarkers in Preataxic and Early Ataxic Spinocerebellar Ataxia Type 2 and 7 Carriers. Neurology 2024; 103:e209749. [PMID: 39133883 PMCID: PMC11361831 DOI: 10.1212/wnl.0000000000209749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Brain MRI abnormalities and increases in neurofilament light chain (NfL) have mostly been observed in cross-sectional studies before ataxia onset in polyglutamine spinocerebellar ataxias. Our study aimed to identify longitudinal changes in biological, clinical, and/or imaging biomarkers in spinocerebellar ataxia (SCA) 2 and SCA7 carriers over 1 year. METHODS We studied SCA2 and SCA7 carriers and controls (expansion-negative relatives) at the Paris Brain Institute. Inclusion criteria included Scale for the Assessment and Rating of Ataxia (SARA) scores between 0 and 15. Assessments at baseline, 6 months, and 12 months comprised neurologic, quality of life, orofacial motor, neuropsychological, and ophthalmologic examinations, along with gait and oculomotor recordings, brain MRI, CSF, and blood sampling. The primary outcome was the longitudinal change in these assessments over 1 year. RESULTS We included 15 SCA2 carriers, 15 SCA7 carriers, and 10 controls between May 2020 and April 2021. At baseline, the ages were similar (41 [37, 46] for SCA2, 38 [28.5, 39.8] for SCA7, and 39.5 [31, 54.5] for controls, p = 0.78), as well the sex (p = 0.61); SARA scores were low but different (4 [1.25, 6.5] in SCA2, 2 [0, 11.5] in SCA7, and 0 in controls, p < 0.01). Pons and medulla volumes were smaller in SCAs (p < 0.05) and cerebellum volume only in SCA2 (p = 0.01). Plasma NfL levels were higher in SCA participants (SCA2: 14.2 pg/mL [11.52, 15.89], SCA7: 15.53 [13.27, 23.23]) than in controls (4.88 [3.56, 6.17], p < 0.001). After 1-year follow-up, in SCA2, there was significant pons (-144 ± 60 mm3) and cerebellum (-1,508 ± 580 mm3) volume loss and a worsening of gait assessment; in SCA7, SARA score significantly increased (+1.3 ± 0.4) and outer retinal nuclear layer thickness decreased (-15.4 ± 1.6 μm); for both SCA groups, the orofacial motor assessment significantly worsened. For preataxic and early ataxic carriers, the strongest longitudinal deterioration on outcome measures was orofacial motility in SCA2 and retinal thickness in SCA7. DISCUSSION Despite the limitation of the small sample size, we detected annual changes in preataxic and early ataxic SCA individuals across brain MRI imaging, clinical scores, gait parameters, and retinal thickness. These parameters could serve as potential end points for future therapeutic trials in the preataxic phase. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov NCT04288128.
Collapse
Affiliation(s)
- Giulia Coarelli
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Charlotte Dubec-Fleury
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Emilien Petit
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sabrina Sayah
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Clara Fischer
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marco Nassisi
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Peggy Gatignol
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Lina Daghsen
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Daye
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Paulina Cunha
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Radhia Kacher
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Rania Hilab
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Hortense Hurmic
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Antonin Lamazière
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Charles Lamy
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Welter
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie Chupin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-François Mangin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Roger Lane
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Bertrand Gaymard
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Pouget
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Isabelle Audo
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sophie Tezenas du Montcel
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Shorrock HK, Aliyeva A, Frias JA, DeMeo VA, Lennon CD, DeMeo CC, Mascorro AK, Shaughnessy S, Mazdiyasni H, Cleary JD, Reddy K, Vangaveti S, Shin DS, Berglund JA. CAG repeat-selective compounds reduce abundance of expanded CAG RNAs in patient cell and murine models of SCAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608349. [PMID: 39211226 PMCID: PMC11360937 DOI: 10.1101/2024.08.17.608349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.
Collapse
|
5
|
Bartelt LC, Fakhri M, Adamek G, Trybus M, Samelak-Czajka A, Jackowiak P, Fiszer A, Lowe CB, La Spada AR, Switonski PM. Antibody-assisted selective isolation of Purkinje cell nuclei from mouse cerebellar tissue. CELL REPORTS METHODS 2024; 4:100816. [PMID: 38981474 PMCID: PMC11294835 DOI: 10.1016/j.crmeth.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA; Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mouad Fakhri
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grazyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Trybus
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Samelak-Czajka
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
6
|
Cui ZT, Mao ZT, Yang R, Li JJ, Jia SS, Zhao JL, Zhong FT, Yu P, Dong M. Spinocerebellar ataxias: from pathogenesis to recent therapeutic advances. Front Neurosci 2024; 18:1422442. [PMID: 38894941 PMCID: PMC11185097 DOI: 10.3389/fnins.2024.1422442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.
Collapse
Affiliation(s)
- Zi-Ting Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zong-Tao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Jia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Jia
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jian-Li Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fang-Tian Zhong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
8
|
Nassisi M, Coarelli G, Blanchard B, Dubec-Fleury C, Drine K, Kitic N, Sancho S, Hilab R, Tezenas du Montcel S, Junge C, Lane R, Arnold HM, Durr A, Audo I. ATXN7-Related Cone-Rod Dystrophy: The Integrated Functional Evaluation of the Cerebellum (CERMOI) Study. JAMA Ophthalmol 2024; 142:301-308. [PMID: 38421662 PMCID: PMC10905377 DOI: 10.1001/jamaophthalmol.2024.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Importance Reliable biomarkers with diagnostic and prognostic values are needed for upcoming gene therapy trials for spinocerebellar ataxias. Objective To identify ophthalmological biomarkers in a sample of spinocerebellar ataxia type 7 (SCA7) carriers. Design, Setting, and Participants This article presents baseline data from a cross-sectional natural history study conducted in Paris, France, reference centers for rare diseases from May 2020 to April 2021. Data were analyzed from September to December 2022. Fifteen adult ATXN7 pathogenic expansion carriers (9 with preataxia and 6 with ataxia) were included, all with a Scale for the Assessment and Rating of Ataxia (SARA) score of 15 of 40 or lower. Patients were recruited at the Paris Brain Institute, and all contacted patients accepted to participate in the study. Main Outcomes and Measures Three visits (baseline, 6 months, and 12 months) were planned, including neurological examination (SARA and Composite Cerebellar Functional Severity Score), ophthalmological examination (best-corrected visual acuity, microperimetry, full-field electroretinogram, optical coherence tomography, and fundus autofluorescence imaging), and neurofilament light chain (NfL) measurements. Here we report the baseline ophthalmic data from the cohort and determine whether there is a correlation between disease scores and ophthalmic results. Results Among the 15 included SCA7 carriers (median [range] age, 38 [18-60] years; 8 women and 7 men), 12 displayed cone or cone-rod dystrophy, with the number of CAG repeats correlating with disease severity (ρ, 0.73, 95% CI, 0.34 to 0.90; P < .001). Two patients with cone-rod dystrophy exhibited higher repeat numbers and greater ataxia scores (median [range] SARA score, 9 [7-15]) compared to those with only cone dystrophy (median [range] SARA score, 2 [0-5]). A correlation emerged for outer nuclear layer thickness with SARA score (ρ, -0.88; 95% CI, -0.96 to -0.59; P < .001) and NfL levels (ρ, -0.87; 95% CI, -0.86 to 0.96; P < .001). Moreover, ataxia severity was correlated with visual acuity (ρ: 0.89; 95% CI, 0.68 to 0.96; P < .001) and retinal sensitivity (ρ, -0.88; 95% CI, -0.96 to 0.59; P < .001). Conclusions and Relevance In this cross-sectional study, retinal abnormalities were found at preataxic stages of the disease. Most of the carriers presented with cone dystrophy and preserved rod function. The outer nuclear layer thickness correlated with SARA score and plasma NfL levels suggesting nuclear layer thickness to be a biomarker of disease severity. These findings contribute to understanding the dynamics of SCA7-related retinal dystrophy and may help lay the groundwork for future therapeutic intervention monitoring and clinical trials. Trial Registration ClinicalTrials.gov Identifier: NCT04288128.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Benoit Blanchard
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| | - Charlotte Dubec-Fleury
- Sorbonne Université, Institut du Cerveau, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Karima Drine
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| | - Nicolas Kitic
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| | - Serge Sancho
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| | - Rania Hilab
- Sorbonne Université, Institut du Cerveau, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sophie Tezenas du Montcel
- Sorbonne Université, Institut du Cerveau, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Roger Lane
- Ionis Pharmaceuticals, Carlsbad, California
| | | | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Isabelle Audo
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and Institut national de la santé et de la recherche médicale Directorate General of Health Care Provision, Centres d’Investigations Cliniques 1423, Paris, France
| |
Collapse
|
9
|
Waldo JJ, Halmai JANM, Fink KD. Epigenetic editing for autosomal dominant neurological disorders. Front Genome Ed 2024; 6:1304110. [PMID: 38510848 PMCID: PMC10950933 DOI: 10.3389/fgeed.2024.1304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Epigenetics refers to the molecules and mechanisms that modify gene expression states without changing the nucleotide context. These modifications are what encode the cell state during differentiation or epigenetic memory in mitosis. Epigenetic modifications can alter gene expression by changing the chromatin architecture by altering the affinity for DNA to wrap around histone octamers, forming nucleosomes. The higher affinity the DNA has for the histones, the tighter it will wrap and therefore induce a heterochromatin state, silencing gene expression. Several groups have shown the ability to harness the cell's natural epigenetic modification pathways to engineer proteins that can induce changes in epigenetics and consequently regulate gene expression. Therefore, epigenetic modification can be used to target and treat disorders through the modification of endogenous gene expression. The use of epigenetic modifications may prove an effective path towards regulating gene expression to potentially correct or cure genetic disorders.
Collapse
Affiliation(s)
| | | | - Kyle D. Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, MIND Institute, UC Davis Health System, Sacramento, CA, United States
| |
Collapse
|
10
|
Ciancimino C, Di Pippo M, Manco GA, Romano S, Ristori G, Scuderi G, Abdolrahimzadeh S. Multimodal Ophthalmic Imaging in Spinocerebellar Ataxia Type 7. Life (Basel) 2023; 13:2169. [PMID: 38004309 PMCID: PMC10672172 DOI: 10.3390/life13112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this case series and narrative literature review is to highlight the importance of multimodal imaging in the ophthalmological examination of patients with spinocerebellar ataxia type 7 and provide a summary of the most relevant imaging techniques. Three patients with SCA7 were included in this case series. A literature review revealed twenty-one publications regarding ocular manifestations of SCA7, and the most relevant aspects are summarized. The role of different imaging techniques in the follow-up of SCA7 patients is analyzed, including color vision testing, corneal endothelial topography, color fundus photography (CFP) and autofluorescence, near infrared reflectance imaging, spectral domain optical coherence tomography (SDOCT), visual field examination, and electrophysiological tests. SDOCT provides a rapid and non-invasive imaging evaluation of disease progression over time. Additional examination including NIR imaging can provide further information on photoreceptor alteration and subtle disruption of the RPE, which are not evident with CFP at an early stage. Electrophysiological tests provide essential results on the state of cone and rod dystrophy, which could be paramount in guiding future genetic therapies. Multimodal imaging is a valuable addition to comprehensive ophthalmological examination in the diagnosis and management of patients with SCA7.
Collapse
Affiliation(s)
- Chiara Ciancimino
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Gregorio Antonio Manco
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Silvia Romano
- Center for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (S.R.); (G.R.)
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (S.R.); (G.R.)
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Gianluca Scuderi
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (C.C.); (M.D.P.); (G.A.M.); (S.A.)
| |
Collapse
|
11
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
12
|
Ling J, Jenny LA, Zhou A, Tsang SH. Therapeutic Gene Editing in Inherited Retinal Disorders. Cold Spring Harb Perspect Med 2023; 13:a041292. [PMID: 36096547 PMCID: PMC10071418 DOI: 10.1101/cshperspect.a041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since the development of CRISPR/Cas9 gene editing in 2012, therapeutic editing research has produced several phase 1-2a trials. Here we provide an overview of the mechanisms and applications of various gene-editing technologies including adeno-associated virus vectors, lentiviruses, CRISPR/Cas9 systems, base and prime editing, antisense oligonucleotides, short-hairpin RNAs, Cas13, and adenosine deaminase acting on RNA for the treatment of various inherited retinal diseases (IRDs). We outline the various stages of clinical trials using these technologies and the impacts they have made in advancing the practice of medicine.
Collapse
Affiliation(s)
- Jinjie Ling
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Laura A Jenny
- Jonas Children's Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Edward Harkness Eye Institute, Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York 10032, USA
| | - Ashley Zhou
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Edward Harkness Eye Institute, Department of Ophthalmology, New York-Presbyterian Hospital, New York, New York 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
- Columbia Stem Cell Initiative, and Institute of Human Nutrition, Columbia University, New York, New York 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
13
|
Santos C, Malheiro S, Correia M, Damásio J. Gene Suppression Therapies in Hereditary Cerebellar Ataxias: A Systematic Review of Animal Studies. Cells 2023; 12:cells12071037. [PMID: 37048110 PMCID: PMC10093402 DOI: 10.3390/cells12071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Hereditary cerebellar ataxias (HCAs) are a heterogenous group of neurodegenerative disorders associated with severe disability. Treatment options are limited and overall restricted to symptomatic approaches, leading to poor prognoses. In recent years, there has been extensive research on gene suppression therapies (GSTs) as a new hope for disease-modifying strategies. In this article, we aim to perform a review of in vivo studies investigating the efficacy and safety profile of GSTs in HCAs. Methods: A structured PubMed® search on GSTs in HCAs from January 1993 up to October 2020 was performed. Inclusion and exclusion criteria were defined, and the selection process was conducted accordingly. The screening process was independently carried out by two authors and was initially based on title and abstract, followed by full-text reading. The risk-of-bias assessment was performed with SYRCLE’s tool. A data extraction sheet was created to collect relevant information from each selected article. Results: The initial search yielded 262 papers, of which 239 were excluded. An additional article was obtained following reference scrutiny, resulting in a total of 24 articles for final analysis. Most studies were not clear on the tools used to assess bias. In SCA1, SCA2, MJD/SCA3 and SCA7, RNA interference (iRNA) and antisense oligonucleotide (ASO) therapies proved to be well tolerated and effective in suppressing mutant proteins, improving neuropathological features and the motor phenotype. In SCA6, the phenotype was improved, but no investigation of adverse effects was performed. In FRDA, only the suppression efficacy of the electroporation of the clustered regularly interspaced short palindromic repeats associated with Cas9 enzyme system (CRISPR-Cas9) system was tested and confirmed. Conclusion: The literature reviewed suggests that GSTs are well tolerated and effective in suppressing the targeted proteins, improving neuropathological features and the motor phenotype in vivo. Nonetheless, there is no guarantee that these results are free of bias. Moreover, further investigation is still needed to clarify the GST effect on HCAs such as FRDA, SCA6 and SCA2.
Collapse
|
14
|
Klockgether T. [Gene Therapy for Ataxias]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:147-152. [PMID: 36806180 DOI: 10.1055/a-2015-3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ataxias are progressive diseases that are usually the result of cerebellar degeneration. Ataxias are divided into genetic, sporadic degenerative and acquired (secondary) forms. While there are established therapies for acquired (secondary) ataxias, genetic and sporadic degenerative ataxias are currently not medically treatable. For these ataxias, the development of somatic gene therapies is a promising avenue. The goals of gene therapies for genetic ataxias are to inactivate deleterious genes by gene silencing or to replace or correct a non-functional gene. Another option, which may also be considered for sporadic degenerative ataxias, are therapies that involve transferring new or modified genes. Gene therapies are being actively developed for the more common ataxias, such as Friedreich's ataxia, certain spinocerebellar ataxias, and multiple system atrphy, and initial phase I trials are underway.
Collapse
Affiliation(s)
- Thomas Klockgether
- Klinik für Neurologie, Universitätsklinikum Bonn und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn
| |
Collapse
|
15
|
Jain M, Patil N, Abdi G, Abbasi Tarighat M, Mohammed A, Ahmad Mohd Zain MR, Goh KW. Mechanistic Insights and Potential Therapeutic Approaches in PolyQ Diseases via Autophagy. Biomedicines 2023; 11:biomedicines11010162. [PMID: 36672670 PMCID: PMC9856063 DOI: 10.3390/biomedicines11010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Polyglutamine diseases are a group of congenital neurodegenerative diseases categorized with genomic abnormalities in the expansion of CAG triplet repeats in coding regions of specific disease-related genes. Protein aggregates are the toxic hallmark for polyQ diseases and initiate neuronal death. Autophagy is a catabolic process that aids in the removal of damaged organelles or toxic protein aggregates, a process required to maintain cellular homeostasis that has the potential to fight against neurodegenerative diseases, but this pathway gets affected under diseased conditions, as there is a direct impact on autophagy-related gene expression. The increase in the accumulation of autophagy vesicles reported in neurodegenerative diseases was due to an increase in autophagy or may have been due to a decrease in autophagy flux. These reports suggested that there is a contribution of autophagy in the pathology of diseases and regulation in the process of autophagy. It was demonstrated in various disease models of polyQ diseases that autophagy upregulation by using modulators can enhance the dissolution of toxic aggregates and delay disease progression. In this review, interaction of the autophagy pathway with polyQ diseases was analyzed, and a therapeutic approach with autophagy inducing drugs was established for disease pathogenesis.
Collapse
Affiliation(s)
- Mukul Jain
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
- Lab 209 Cell and Developmental Biology Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Nil Patil
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
- Lab 209 Cell and Developmental Biology Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
- Correspondence: (G.A.); (M.R.A.M.Z.); (K.W.G.)
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Arifullah Mohammed
- Department of Agriculture, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | - Muhammad Rajaei Ahmad Mohd Zain
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Correspondence: (G.A.); (M.R.A.M.Z.); (K.W.G.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (G.A.); (M.R.A.M.Z.); (K.W.G.)
| |
Collapse
|
16
|
Abstract
This narrative review aims at providing an update on the management of inherited cerebellar ataxias (ICAs), describing main clinical entities, genetic analysis strategies and recent therapeutic developments. Initial approach facing a patient with cerebellar ataxia requires family medical history, physical examination, exclusions of acquired causes and genetic analysis, including Next-Generation Sequencing (NGS). To guide diagnosis, several algorithms and a new genetic nomenclature for recessive cerebellar ataxias have been proposed. The challenge of NGS analysis is the identification of causative variant, trio analysis being usually the most appropriate option. Public genomic databases as well as pathogenicity prediction software facilitate the interpretation of NGS results. We also report on key clinical points for the diagnosis of the main ICAs, including Friedreich ataxia, CANVAS, polyglutamine spinocerebellar ataxias, Fragile X-associated tremor/ataxia syndrome. Rarer forms should not be neglected because of diagnostic biomarkers availability, disease-modifying treatments, or associated susceptibility to malignancy. Diagnostic difficulties arise from allelic and phenotypic heterogeneity as well as from the possibility for one gene to be associated with both dominant and recessive inheritance. To complicate the phenotype, cerebellar cognitive affective syndrome can be associated with some subtypes of cerebellar ataxia. Lastly, we describe new therapeutic leads: antisense oligonucleotides approach in polyglutamine SCAs and viral gene therapy in Friedreich ataxia. This review provides support for diagnosis, genetic counseling and therapeutic management of ICAs in clinical practice.
Collapse
|
17
|
Hovd MH, Mariussen E, Uggerud H, Lashkarivand A, Christensen H, Ringstad G, Eide PK. Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer study of 161 patients under work-up for CSF disorders. Fluids Barriers CNS 2022; 19:55. [PMID: 35778719 PMCID: PMC9250213 DOI: 10.1186/s12987-022-00352-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases. Methods Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references. Results Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles. Conclusions The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.
Collapse
Affiliation(s)
- Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Espen Mariussen
- Norwegian Institute for Air Research, Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
19
|
Bunting EL, Hamilton J, Tabrizi SJ. Polyglutamine diseases. Curr Opin Neurobiol 2022; 72:39-47. [PMID: 34488036 DOI: 10.1016/j.conb.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Polyglutamine diseases are a collection of nine CAG trinucleotide expansion disorders, presenting with a spectrum of neurological and clinical phenotypes. Recent human, mouse and cell studies of Huntington's disease have highlighted the role of DNA repair genes in somatic expansion of the CAG repeat region, modifying disease pathogenesis. Incomplete splicing of the HTT gene has also been shown to occur in humans, with the resulting exon 1 fragment most probably contributing to the Huntington's disease phenotype. In the spinocerebellar ataxias, studies have converged on transcriptional dysregulation of ion channels as a key disease modifier. In addition, advances have been made in understanding how increased levels of toxic, polyglutamine-expanded proteins can arise in the spinocerebellar ataxias through post-transcriptional and -translational modifications and autophagic mechanisms. Recent studies in spinal and bulbar muscular atrophy implicate similar pathogenic pathways to the more common polyglutamine diseases, highlighting autophagy stimulation as a potential therapeutic target. Finally, the therapeutic use of antisense oligonucleotides in several polyglutamine diseases has shown preclinical benefits and serves as potential future therapies in humans.
Collapse
Affiliation(s)
- Emma L Bunting
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK; UK Dementia Research Institute, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
20
|
Ghanekar SD, Kuo SH, Staffetti JS, Zesiewicz TA. Current and Emerging Treatment Modalities for Spinocerebellar Ataxias. Expert Rev Neurother 2022; 22:101-114. [PMID: 35081319 DOI: 10.1080/14737175.2022.2029703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCA) are a group of rare neurodegenerative diseases that dramatically affect the lives of affected individuals and their families. Despite having a clear understanding of SCA's etiology, there are no current symptomatic or neuroprotective treatments approved by the FDA. AREAS COVERED Research efforts have greatly expanded the possibilities for potential treatments, including both pharmacological and non-pharmacological interventions. Great attention is also being given to novel therapeutics based in gene therapy, neurostimulation, and molecular targeting. This review article will address the current advances in the treatment of SCA and what potential interventions are on the horizon. EXPERT OPINION SCA is a highly complex and multifaceted disease family with the majority of research emphasizing symptomatic pharmacologic therapies. As pre-clinical trials for SCA and clinical trials for other neurodegenerative conditions illuminate the efficacy of disease modifying therapies such as AAV-mediated gene therapy and ASOs, the potential for addressing SCA at the pre-symptomatic stage is increasingly promising.
Collapse
Affiliation(s)
- Shaila D Ghanekar
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, New York, New York, USA
| | - Joseph S Staffetti
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| | - Theresa A Zesiewicz
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa, Florida, USA.,James A Haley Veteran's Hospital, Tampa, Florida, USA
| |
Collapse
|
21
|
Abstract
RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.
Collapse
Affiliation(s)
- Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, UK
| |
Collapse
|
22
|
Ren J, Zhang X, Cao J, Tian J, Luo J, Yu Y, Wang F, Zhao Q. Radiosynthesis of a novel antisense imaging probe targeting LncRNA HOTAIR in malignant glioma. BMC Cancer 2022; 22:79. [PMID: 35042456 PMCID: PMC8767688 DOI: 10.1186/s12885-022-09170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts.
Methods
The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software.
Results
The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group.
Conclusion
The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.
Collapse
|
23
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
24
|
Zhang Y, Quraishi IH, McClure H, Williams LA, Cheng Y, Kale S, Dempsey GT, Agrawal S, Gerber DJ, McManus OB, Kaczmarek LK. Suppression of Kv3.3 channels by antisense oligonucleotides reverses biochemical effects and motor impairment in spinocerebellar ataxia type 13 mice. FASEB J 2021; 35:e22053. [PMID: 34820911 DOI: 10.1096/fj.202101356r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather McClure
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
26
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
27
|
Chaudhry A, Anthanasiou-Fragkouli A, Houlden H. DRPLA: understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder. J Neurol 2021; 268:3031-3041. [PMID: 33106889 PMCID: PMC8289787 DOI: 10.1007/s00415-020-10218-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare neurodegenerative disorder caused by CAG repeat expansions in the atrophin-1 gene and is inherited in an autosomal dominant fashion. There are currently no disease-modifying treatments available. The broad development of therapies for DRPLA, as well as other similar rare diseases, has hit a roadblock due to the rarity of the condition and the wide global distribution of patients and families, consequently inhibiting biomarker development and therapeutic research. Considering the shifting focus towards diverse populations, widespread genetic testing, rapid advancements in the development of clinical and wet biomarkers for Huntington's disease (HD), and the ongoing clinical trials for antisense oligonucleotide (ASO) therapies, the prospect of developing effective treatments in rare disorders has completely changed. The awareness of the HD ASO program has prompted global collaboration for rare disorders in natural history studies and the development of biomarkers, with the eventual goal of undergoing treatment trials. Here, we discuss DRPLA, which shares similarities with HD, and how in this and other repeat expansion disorders, neurogenetics groups like ours at UCL are gearing up for forthcoming natural history studies to accelerate future ASO treatment trials to hopefully emulate the progress seen in HD.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
28
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
29
|
Zhang N, Bewick B, Schultz J, Tiwari A, Krencik R, Zhang A, Adachi K, Xia G, Yun K, Sarkar P, Ashizawa T. DNAzyme Cleavage of CAG Repeat RNA in Polyglutamine Diseases. Neurotherapeutics 2021; 18:1710-1728. [PMID: 34160773 PMCID: PMC8609077 DOI: 10.1007/s13311-021-01075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
CAG repeat expansion is the genetic cause of nine incurable polyglutamine (polyQ) diseases with neurodegenerative features. Silencing repeat RNA holds great therapeutic value. Here, we developed a repeat-based RNA-cleaving DNAzyme that catalyzes the destruction of expanded CAG repeat RNA of six polyQ diseases with high potency. DNAzyme preferentially cleaved the expanded allele in spinocerebellar ataxia type 1 (SCA1) cells. While cleavage was non-allele-specific for spinocerebellar ataxia type 3 (SCA3) cells, treatment of DNAzyme leads to improved cell viability without affecting mitochondrial metabolism or p62-dependent aggresome formation. DNAzyme appears to be stable in mouse brain for at least 1 month, and an intermediate dosage of DNAzyme in a SCA3 mouse model leads to a significant reduction of high molecular weight ATXN3 proteins. Our data suggest that DNAzyme is an effective RNA silencing molecule for potential treatment of multiple polyQ diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Brittani Bewick
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Jason Schultz
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Anjana Tiwari
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX USA
| | - Aijun Zhang
- Center for Bioenergetics, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX USA
| | - Kaho Adachi
- Department of Molecular and Cell Biology, UC-Berkeley, Berkeley, CA USA
| | - Guangbin Xia
- Indiana University School of Medicine-Fort Wayne, Fort Wayne, IN USA
| | - Kyuson Yun
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Partha Sarkar
- Department of Neurology and Department of Neuroscience, Cell Biology and Anatomy, UTMB Health, Galveston, TX USA
| | - Tetsuo Ashizawa
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
30
|
Fusco AF, Pucci LA, Switonski PM, Biswas DD, McCall AL, Kahn AF, Dhindsa JS, Strickland LM, La Spada AR, ElMallah MK. Respiratory dysfunction in a mouse model of spinocerebellar ataxia type 7. Dis Model Mech 2021; 14:dmm048893. [PMID: 34160002 PMCID: PMC8319550 DOI: 10.1242/dmm.048893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile-onset SCA7 patients display extremely large repeat expansions (>200 CAGs) and exhibit progressive ataxia, dysarthria, dysphagia and retinal degeneration. Severe hypotonia, aspiration pneumonia and respiratory failure often contribute to death in affected infants. To better understand the features of respiratory and upper airway dysfunction in SCA7, we examined breathing and putative phrenic and hypoglossal neuropathology in a knock-in mouse model of early-onset SCA7 carrying an expanded allele with 266 CAG repeats. Whole-body plethysmography was used to measure awake spontaneously breathing SCA7-266Q knock-in mice at baseline in normoxia and during a hypercapnic/hypoxic respiratory challenge at 4 and 8 weeks, before and after the onset of disease. Postmortem studies included quantification of putative phrenic and hypoglossal motor neurons and microglia, and analysis of ataxin-7 aggregation at end stage. SCA7-266Q mice had profound breathing deficits during a respiratory challenge, exhibiting reduced respiratory output and a greater percentage of time in apnea. Histologically, putative phrenic and hypoglossal motor neurons of SCA7 mice exhibited a reduction in number accompanied by increased microglial activation, indicating neurodegeneration and neuroinflammation. Furthermore, intranuclear ataxin-7 accumulation was observed in cells neighboring putative phrenic and hypoglossal motor neurons in SCA7 mice. These findings reveal the importance of phrenic and hypoglossal motor neuron pathology associated with respiratory failure and upper airway dysfunction, which are observed in infantile-onset SCA7 patients and likely contribute to their early death.
Collapse
Affiliation(s)
- Anna F. Fusco
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Logan A. Pucci
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Pawel M. Switonski
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Debolina D. Biswas
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Angela L. McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Amanda F. Kahn
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Justin S. Dhindsa
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Laura M. Strickland
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Albert R. La Spada
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- UCI Institute for Neurotherapeutics, Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Mai K. ElMallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Dohlman JC, Chwalisz BK, Stephen CD. Clinical Reasoning: A 28-Year-Old Woman With Vision Loss and an Unusual Gait. Neurology 2021; 97:e1860-e1865. [PMID: 34187863 DOI: 10.1212/wnl.0000000000012446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jenny C Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA
| | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
32
|
Hommersom MP, Buijsen RAM, van Roon-Mom WMC, van de Warrenburg BPC, van Bokhoven H. Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Rev Rep 2021; 18:441-456. [PMID: 34031815 PMCID: PMC8930896 DOI: 10.1007/s12015-021-10184-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Abstract Dominant spinocerebellar ataxias (SCAs) constitute a large group of phenotypically and genetically heterogeneous disorders that mainly present with dysfunction of the cerebellum as their main hallmark. Although animal and cell models have been highly instrumental for our current insight into the underlying disease mechanisms of these neurodegenerative disorders, they do not offer the full human genetic and physiological context. The advent of human induced pluripotent stem cells (hiPSCs) and protocols to differentiate these into essentially every cell type allows us to closely model SCAs in a human context. In this review, we systematically summarize recent findings from studies using hiPSC-based modelling of SCAs, and discuss what knowledge has been gained from these studies. We conclude that hiPSC-based models are a powerful tool for modelling SCAs as they contributed to new mechanistic insights and have the potential to serve the development of genetic therapies. However, the use of standardized methods and multiple clones of isogenic lines are essential to increase validity and reproducibility of the insights gained. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Marina P Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, Netherlands.
| |
Collapse
|
33
|
Eide PK, Mariussen E, Uggerud H, Pripp AH, Lashkarivand A, Hassel B, Christensen H, Hovd MH, Ringstad G. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 2021; 6:147063. [PMID: 33822769 PMCID: PMC8262318 DOI: 10.1172/jci.insight.147063] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUNDMethodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances.METHODSThe MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours.RESULTSIn a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4).CONCLUSIONAssessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity.FUNDINGThe work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.
Collapse
Affiliation(s)
- Per K Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Are H Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurohabilitation, and
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
34
|
Zou X, Yao F, Li F, Wu S, Li H, Sun Z, Zhu T, Wei X, Li D, Sui R. Clinical characterization and the improved molecular diagnosis of autosomal dominant cone-rod dystrophy in patients with SCA7. Mol Vis 2021; 27:221-232. [PMID: 34012225 PMCID: PMC8116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/05/2021] [Indexed: 10/31/2022] Open
Abstract
Purpose To evaluate the retinal phenotype and genetic features of Chinese patients with spinocerebellar ataxia type 7 (SCA7). Methods Detailed ophthalmic examinations, including electroretinograms, fundus photography, fundus autofluorescence and optical coherence tomography, were performed to analyse the retinal lesions of patients with SCA7. A molecular genetic analysis was completed to confirm the number of CAG repeats in ATXN7 gene on the patients and their family members. Results Eight patients from three families with SCA7 were included in this study. Trinucleotide repeat was expanded from 43 to 113 in the affected patients. The affected patients were characterized by different degrees of cone-rod dystrophy, which is positively related to the number of CAG repeats and age. All patients complained of progressive bilateral visual loss, and most cases reported visual disturbance earlier than gait movement or dysarthria. A coarse granular appearance of the macular region on scanning laser ophthalmoscopy, hypofluorescence in the macula on autofluorescence, retinal atrophy on optic coherence tomography, depression of multifocal electroretinograms and prominent abnormalities in cone-mediated responses on electrograms are the general features of SCA7-related retinopathy. Hyperreflective dots in the outer retinal layers and choroidal vessel layers are a common sign in optic coherence tomography in the advanced stage. Conclusions SCA7 shows a cone-rod dystrophy phenotype. The multimodal imaging of the retina is beneficial to detect the early lesions of cone-rod dystrophy related to SCA7.
Collapse
Affiliation(s)
- Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengxia Yao
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengrong Li
- Department of Ophthalmology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Donghui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Current Status of Gene Therapy Research in Polyglutamine Spinocerebellar Ataxias. Int J Mol Sci 2021; 22:ijms22084249. [PMID: 33921915 PMCID: PMC8074016 DOI: 10.3390/ijms22084249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.
Collapse
|
36
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
37
|
Coarelli G, Darios F, Petit E, Dorgham K, Adanyeguh I, Petit E, Brice A, Mochel F, Durr A. Plasma neurofilament light chain predicts cerebellar atrophy and clinical progression in spinocerebellar ataxia. Neurobiol Dis 2021; 153:105311. [PMID: 33636389 DOI: 10.1016/j.nbd.2021.105311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Neurofilament light chain (NfL) is a marker of brain atrophy and predictor of disease progression in rare diseases such as Huntington Disease, but also in more common neurological disorders such as Alzheimer's disease. The aim of this study was to measure NfL longitudinally in autosomal dominant spinocerebellar ataxias (SCAs) and establish correlation with clinical and imaging parameters. We enrolled 62 pathological expansions carriers (17 SCA1, 13 SCA2, 19 SCA3, and 13 SCA7) and 19 age-matched controls in a prospective biomarker study between 2011 and 2015 and followed for 24 months at the Paris Brain Institute. We performed neurological examination, brain 3 T MRI and plasma NfL measurements using an ultrasensitive single-molecule array at baseline and at the two-year follow-up visit. We evaluated NfL correlations with ages, CAG repeat sizes, clinical scores and volumetric brain MRIs. NfL levels were significantly higher in SCAs than controls at both time points (p < 0.001). Age-adjusted NfL levels were significantly correlated at baseline with clinical scores (p < 0.01). We identified optimal NfL cut-off concentrations to differentiate controls from carriers for each genotype (SCA1 16.87 pg/mL, SCA2, 19.1 pg/mL, SCA3 16.04 pg/mL, SCA7 16.67 pg/mL). For all SCAs, NfL concentration was stable over two years (p = 0.95) despite a clinical progression (p < 0.0001). Clinical progression between baseline and follow-up was associated with higher NfL concentrations at baseline (p = 0.04). Of note, all premanifest carriers with NfL levels close to cut off concentrations had signs of the disease at follow-up. For all SCAs, the higher the observed NfL, the lower the pons volume at baseline (p < 0.01) and follow-up (p = 0.02). Higher NfL levels at baseline in all SCAs predicted a decrease in cerebellar volume (p = 0.03). This result remained significant for SCA2 only among all genotypes (p = 0.02). Overall, plasma NfL levels at baseline in SCA expansion carriers predict cerebellar volume change and clinical score progression. NfL levels might help refine inclusion criteria for clinical trials in carriers with very subtle signs.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Frederic Darios
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Emilien Petit
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), F-75013 Paris, France
| | - Isaac Adanyeguh
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Elodie Petit
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexis Brice
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM (Paris Brain Institute), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France; APHP Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.
| |
Collapse
|
38
|
Minakawa EN, Nagai Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Front Neurosci 2021; 15:621996. [PMID: 33642983 PMCID: PMC7907447 DOI: 10.3389/fnins.2021.621996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases caused by the abnormal expansion of a CAG trinucleotide repeat that are translated into an expanded polyQ stretch in the disease-causative proteins. The expanded polyQ stretch itself plays a critical disease-causative role in the pathomechanisms underlying polyQ diseases. Notably, the expanded polyQ stretch undergoes a conformational transition from the native monomer into the β-sheet-rich monomer, followed by the formation of soluble oligomers and then insoluble aggregates with amyloid fibrillar structures. The intermediate soluble species including the β-sheet-rich monomer and oligomers exhibit substantial neurotoxicity. Therefore, protein conformation stabilization and aggregation inhibition that target the upstream of the insoluble aggregate formation would be a promising approach toward the development of disease-modifying therapies for polyQ diseases. PolyQ aggregation inhibitors of different chemical categories, such as intrabodies, peptides, and small chemical compounds, have been identified through intensive screening methods. Among them, recent advances in the brain delivery methods of several peptides and the screening of small chemical compounds have brought them closer to clinical utility. Notably, the recent discovery of arginine as a potent conformation stabilizer and aggregation inhibitor of polyQ proteins both in vitro and in vivo have paved way to the clinical trial for the patients with polyQ diseases. Meanwhile, expression reduction of expanded polyQ proteins per se would be another promising approach toward disease modification of polyQ diseases. Gene silencing, especially by antisense oligonucleotides (ASOs), have succeeded in reducing the expression of polyQ proteins in the animal models of various polyQ diseases by targeting the aberrant mRNA with expanded CAG repeats. Of note, some of these ASOs have recently been translated into clinical trials. Here we overview and discuss these recent advances toward the development of disease modifying therapies for polyQ diseases. We envision that combination therapies using aggregation inhibitors and gene silencing would meet the needs of the patients with polyQ diseases and their caregivers in the near future to delay or prevent the onset and progression of these currently intractable diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
39
|
Jafar-nejad P, Powers B, Soriano A, Zhao H, Norris DA, Matson J, DeBrosse-Serra B, Watson J, Narayanan P, Chun S, Mazur C, Kordasiewicz H, Swayze EE, Rigo F. The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Res 2021; 49:657-673. [PMID: 33367834 PMCID: PMC7826274 DOI: 10.1093/nar/gkaa1235] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.
Collapse
Affiliation(s)
| | - Berit Powers
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Hien Zhao
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - John Matson
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Jamie Watson
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | - Seung J Chun
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | - Curt Mazur
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc. Carlsbad, CA 92010, USA
| |
Collapse
|
40
|
Parker JA, Merchant SH, Attaripour-Isfahani S, Cho HJ, McGurrin P, Brooks BP, La Spada AR, Hallett M, Huryn LA, Horovitz SG. In vivo assessment of neurodegeneration in Spinocerebellar Ataxia type 7. Neuroimage Clin 2021; 29:102561. [PMID: 33516934 PMCID: PMC7848632 DOI: 10.1016/j.nicl.2021.102561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 01/10/2021] [Indexed: 11/19/2022]
Abstract
Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease characterized by progressive cerebellar ataxia and retinal degeneration. Increasing loss of visual function complicates the use of clinical scales to track the progression of motor symptoms, hampering our ability to develop accurate biomarkers of disease progression, and thus test the efficacy of potential treatments. We aimed to identify imaging measures of neurodegeneration, which may more accurately reflect SCA7 severity and progression. While common structural MRI techniques have been previously used for this purpose, they can be biased by neurodegeneration-driven increases in extracellular CSF-like water. In a cross-sectional study, we analyzed diffusion tensor imaging (DTI) data collected from a cohort of 13 SCA7 patients and 14 healthy volunteers using: 1) a diffusion tensor-based image registration technique, and 2) a dual-compartment DTI model to control for the potential increase in extracellular CSF-like water. These methodologies allowed us to assess both volumetric and microstructural abnormalities in both white and gray matter brain-wide in SCA7 patients for the first time. To measure tissue volume, we performed diffusion tensor-based morphometry (DTBM) using the tensor-based registration. To assess tissue microstructure, we computed the parenchymal mean diffusivity (pMD) and parenchymal fractional anisotropy (pFA) using the dual compartment model. This model also enabled us to estimate the parenchymal volume fraction (pVF), a measure of parenchymal tissue volume within a given voxel. While DTBM and pVF revealed tissue loss primarily in the brainstem, cerebellum, thalamus, and major motor white matter tracts in patients (p < 0.05, FWE corrected; Hedge's g > 1), pMD and pFA detected microstructural abnormalities in virtually all tissues brain-wide (p < 0.05, FWE corrected; Hedge's g > 1). The Scale for the Assessment and Rating of Ataxia trended towards correlation with cerebellar pVF (r = -0.66, p = 0.104, FDR corrected) and global white matter pFA (r = -0.64, p = 0.104, FDR corrected). These results advance our understanding of neurodegeneration in living SCA7 patients by providing the first voxel-wise characterization of white matter volume loss and gray matter microstructural abnormalities. Moving forward, this comprehensive approach could be applied to characterize the full spatiotemporal pattern of neurodegeneration in SCA7, and potentially develop an accurate imaging biomarker of disease progression.
Collapse
Affiliation(s)
- Jacob A Parker
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shabbir H Merchant
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Sanaz Attaripour-Isfahani
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Hyun Joo Cho
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick McGurrin
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Albert R La Spada
- Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA; UCI Institute for Neurotherapeutics, University of California, Irvine, CA 92697, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Abstract
The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.
Collapse
Affiliation(s)
- C Frank Bennett
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA;
| | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
42
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
43
|
Marianelli BF, Filho FMR, Salles MV, de Andrade JBC, Pedroso JL, Sallum JMF, Barsottini OGP. A Proposal for Classification of Retinal Degeneration in Spinocerebellar Ataxia Type 7. THE CEREBELLUM 2020; 20:384-391. [PMID: 33196954 DOI: 10.1007/s12311-020-01215-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study is to propose a classification system for the spinocerebellar ataxia type 7 retinal degeneration (SCA7-RD). Twenty patients with molecularly confirmed SCA7 underwent slit lamp examination, fundus photography, and optical coherence tomography (Spectralis®). Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale (ICARS) were applied, and age, sex, age at symptom onset, and number of CAG expansions were recorded. After analyzing the ophthalmological findings in each participant, a panel of retinal disease experts created a qualitative classification system for SCA7-RD comprising four stages. We assessed the correlations of retinal degeneration severity with SARA and ICARS scores, number of CAG repeats in ATXN7 allele, and age at symptom onset. We graded retinal degeneration as stage 1 in nine participants, as stage 2 in five, and as stage 3 in six. No differences in age and visual symptoms duration were found between groups. SARA and ICARS scores correlated with the severity of SCA7-RD on the classification system (p = 0.024 and p = 0.014, respectively). After adjusting for disease duration, retinal disease stage association with SARA and ICARS scores remained significant (ANCOVA, p < 0.05). The classification system for SCA7-RD was able to characterize different disease stages representing the landmarks in the cone-rod dystrophy natural history. Neurodegeneration appears to occur in parallel in the cerebellum and in the visual pathway. We conclude that retinal degeneration in SCA7 is a potential biomarker of the neurological phenotype severity.
Collapse
Affiliation(s)
- Bruna Ferraço Marianelli
- Division of Retina and Vitreous, Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,, Vitória, Brazil.
| | - Flávio Moura Rezende Filho
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mariana Vallim Salles
- Division of Retina and Vitreous, Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - João Brainer Clares de Andrade
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Luiz Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Juliana Maria Ferraz Sallum
- Division of Retina and Vitreous, Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando Graziani P Barsottini
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci 2020; 77:4015-4029. [PMID: 32306062 PMCID: PMC7541529 DOI: 10.1007/s00018-020-03520-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
45
|
Lin CC, Ashizawa T, Kuo SH. Collaborative Efforts for Spinocerebellar Ataxia Research in the United States: CRC-SCA and READISCA. Front Neurol 2020; 11:902. [PMID: 32982927 PMCID: PMC7479060 DOI: 10.3389/fneur.2020.00902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxias are progressive neurodegenerative disorders primarily affecting the cerebellum. Although the first disease-causing gene was identified nearly 30 years ago, there is no known cure to date, and only a few options exist for symptomatic treatment, with modest effects. The recently developed tools in molecular biology, such as CRISPR/Cas9 and antisense oligonucleotides, can directly act on the disease mechanisms at the genomic or RNA level in disease models. In a nutshell, we are finally just one step away from clinical trials with therapies targeting the underlying genetic cause. However, we still face the challenges for rare neurodegenerative diseases: difficulty in obtaining a large cohort size for sufficient statistical power and the need for biomarkers and clinical outcome assessments (COA) with adequate sensitivity to reflect progression or treatment responses. To overcome these obstacles, ataxia experts form research networks for clinical trial readiness. In this review, we retrace our steps of the collaborative efforts among ataxia researchers in the United States over the years to study and treat these relentless disorders and the future directions of such research networks.
Collapse
Affiliation(s)
- Chih-Chun Lin
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| |
Collapse
|
46
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Bah MG, Rodriguez D, Cazeneuve C, Mochel F, Devos D, Suppiej A, Roubertie A, Meunier I, Gitiaux C, Curie A, Klapczynski F, Allani‐Essid N, Carneiro M, Van Minkelen R, Kievit A, Fluss J, Leheup B, Ratbi L, Héron D, Gras D, Do Cao J, Pichard S, Strubi‐Villaume I, Audo I, Lesca G, Charles P, Dubois F, Comet‐Didierjean P, Capri Y, Barondiot C, Barathon M, Ewenczyk C, Durr A, Mignot C. Deciphering the natural history of SCA7 in children. Eur J Neurol 2020; 27:2267-2276. [DOI: 10.1111/ene.14405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
|
48
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
49
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|