1
|
Kuznetsov N, Daida K, Makarious MB, Al-Mubarak B, Atterling Brolin K, Malik L, Kouam C, Baker B, Ostrozovicova M, Andersh KM, Kung PJ, Mecheri Y, Tay YW, Malek BS, Al Tassan N, Teresa Periñan M, Hong S, Koretsky M, Sargeant L, Levine K, Blauwendraat C, Billingsley KJ, Bandres-Ciga S, Leonard HL, Morris HR, Singleton AB, Nalls MA, Vitale D. CNV-Finder: Streamlining Copy Number Variation Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624040. [PMID: 39605431 PMCID: PMC11601614 DOI: 10.1101/2024.11.22.624040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Copy Number Variations (CNVs) play pivotal roles in the etiology of complex diseases and are variable across diverse populations. Understanding the association between CNVs and disease susceptibility is of significant importance in disease genetics research and often requires analysis of large sample sizes. One of the most cost-effective and scalable methods for detecting CNVs is based on normalized signal intensity values, such as Log R Ratio (LRR) and B Allele Frequency (BAF), from Illumina genotyping arrays. In this study, we present CNV-Finder, a novel pipeline integrating deep learning techniques on array data, specifically a Long Short-Term Memory (LSTM) network, to expedite the large-scale identification of CNVs within predefined genomic regions. This facilitates the efficient prioritization of samples for subsequent, costly analyses such as short-read and long-read whole genome sequencing. We focus on five genes-Parkin ( PRKN ), Leucine Rich Repeat And Ig Domain Containing 2 ( LINGO2 ), Microtubule Associated Protein Tau ( MAPT ), alpha-Synuclein ( SNCA ), and Amyloid Beta Precursor Protein ( APP )-which may be relevant to neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), or related disorders such as essential tremor (ET). By training our models on expert-annotated samples and validating them across diverse cohorts, including those from the Global Parkinson's Genetics Program (GP2) and additional dementia-specific databases, we demonstrate the efficacy of CNV-Finder in accurately detecting deletions and duplications. Our pipeline outputs app-compatible files for visualization within CNV-Finder's interactive web application. This interface enables researchers to review predictions and filter displayed samples by model prediction values, LRR range, and variant count in order to explore or confirm results. Our pipeline integrates this human feedback to enhance model performance and reduce false positive rates. Through a series of comprehensive analyses and validations using both short-read and long-read sequencing data, we demonstrate the robustness and adaptability of CNV-Finder in identifying CNVs with regions of varied sparsity, noise, and size. Our findings highlight the significance of contextual understanding and human expertise in enhancing the precision of CNV identification, particularly in complex genomic regions like 17q21.31. The CNV-Finder pipeline is a scalable, publicly available resource for the scientific community, available on GitHub ( https://github.com/GP2code/CNV-Finder ; DOI 10.5281/zenodo.14182563 ). CNV-Finder not only expedites accurate candidate identification but also significantly reduces the manual workload for researchers, enabling future targeted validation and downstream analyses in regions or phenotypes of interest.
Collapse
|
2
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Gomes Moreira D, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024; 12:RP90690. [PMID: 39027984 PMCID: PMC11259434 DOI: 10.7554/elife.90690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - Maria Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Ann Becker
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied SciencesMannheimGermany
- Medical Faculty, Heidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityHeidelbergGermany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de ValenciaValenciaSpain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical SchoolCharlestownUnited States
| | - William Mobley
- Department of Neurosciences, University of California San DiegoLa JollaUnited States
| | | |
Collapse
|
3
|
Ghasemi S, Shamsabadi M, Olesund A, Najera F, Erbs Hillers-Bendtsen A, Edhborg F, Aslam AS, Larsson W, Wang Z, Amombo Noa FM, Salthouse RJ, Öhrström L, Hölzel H, Perez-Inestrosa E, Mikkelsen KV, Hanrieder J, Albinsson B, Dreos A, Moth-Poulsen K. Pyrene Functionalized Norbornadiene-Quadricyclane Fluorescent Photoswitches: Characterization of their Spectral Properties and Application in Imaging of Amyloid Beta Plaques. Chemistry 2024; 30:e202400322. [PMID: 38629212 DOI: 10.1002/chem.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024]
Abstract
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aβ) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aβ plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Francisco Najera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Wera Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, U.K
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rebecca Jane Salthouse
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - E Perez-Inestrosa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, Denmark
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ambra Dreos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Pg. Llu'ıs Companys 23, 08010, Barcelona, Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| |
Collapse
|
4
|
Iaccarino L, Llibre-Guerra JJ, McDade E, Edwards L, Gordon B, Benzinger T, Hassenstab J, Kramer JH, Li Y, Miller BL, Miller Z, Morris JC, Mundada N, Perrin RJ, Rosen HJ, Soleimani-Meigooni D, Strom A, Tsoy E, Wang G, Xiong C, Allegri R, Chrem P, Vazquez S, Berman SB, Chhatwal J, Masters CL, Farlow MR, Jucker M, Levin J, Salloway S, Fox NC, Day GS, Gorno-Tempini ML, Boxer AL, La Joie R, Bateman R, Rabinovici GD. Molecular neuroimaging in dominantly inherited versus sporadic early-onset Alzheimer's disease. Brain Commun 2024; 6:fcae159. [PMID: 38784820 PMCID: PMC11114609 DOI: 10.1093/braincomms/fcae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Approximately 5% of Alzheimer's disease patients develop symptoms before age 65 (early-onset Alzheimer's disease), with either sporadic (sporadic early-onset Alzheimer's disease) or dominantly inherited (dominantly inherited Alzheimer's disease) presentations. Both sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease are characterized by brain amyloid-β accumulation, tau tangles, hypometabolism and neurodegeneration, but differences in topography and magnitude of these pathological changes are not fully elucidated. In this study, we directly compared patterns of amyloid-β plaque deposition and glucose hypometabolism in sporadic early-onset Alzheimer's disease and dominantly inherited Alzheimer's disease individuals. Our analysis included 134 symptomatic sporadic early-onset Alzheimer's disease amyloid-Positron Emission Tomography (PET)-positive cases from the University of California, San Francisco, Alzheimer's Disease Research Center (mean ± SD age 59.7 ± 5.6 years), 89 symptomatic dominantly inherited Alzheimer's disease cases (age 45.8 ± 9.3 years) and 102 cognitively unimpaired non-mutation carriers from the Dominantly Inherited Alzheimer Network study (age 44.9 ± 9.2). Each group underwent clinical and cognitive examinations, 11C-labelled Pittsburgh Compound B-PET and structural MRI. 18F-Fluorodeoxyglucose-PET was also available for most participants. Positron Emission Tomography scans from both studies were uniformly processed to obtain a standardized uptake value ratio (PIB50-70 cerebellar grey reference and FDG30-60 pons reference) images. Statistical analyses included pairwise global and voxelwise group comparisons and group-independent component analyses. Analyses were performed also adjusting for covariates including age, sex, Mini-Mental State Examination, apolipoprotein ε4 status and average composite cortical of standardized uptake value ratio. Compared with dominantly inherited Alzheimer's disease, sporadic early-onset Alzheimer's disease participants were older at age of onset (mean ± SD, 54.8 ± 8.2 versus 41.9 ± 8.2, Cohen's d = 1.91), with more years of education (16.4 ± 2.8 versus 13.5 ± 3.2, d = 1) and more likely to be apolipoprotein ε4 carriers (54.6% ε4 versus 28.1%, Cramer's V = 0.26), but similar Mini-Mental State Examination (20.6 ± 6.1 versus 21.2 ± 7.4, d = 0.08). Sporadic early-onset Alzheimer's disease had higher global cortical Pittsburgh Compound B-PET binding (mean ± SD standardized uptake value ratio, 1.92 ± 0.29 versus 1.58 ± 0.44, d = 0.96) and greater global cortical 18F-fluorodeoxyglucose-PET hypometabolism (mean ± SD standardized uptake value ratio, 1.32 ± 0.1 versus 1.39 ± 0.19, d = 0.48) compared with dominantly inherited Alzheimer's disease. Fully adjusted comparisons demonstrated relatively higher Pittsburgh Compound B-PET standardized uptake value ratio in the medial occipital, thalami, basal ganglia and medial/dorsal frontal regions in dominantly inherited Alzheimer's disease versus sporadic early-onset Alzheimer's disease. Sporadic early-onset Alzheimer's disease showed relatively greater 18F-fluorodeoxyglucose-PET hypometabolism in Alzheimer's disease signature temporoparietal regions and caudate nuclei, whereas dominantly inherited Alzheimer's disease showed relatively greater hypometabolism in frontal white matter and pericentral regions. Independent component analyses largely replicated these findings by highlighting common and unique Pittsburgh Compound B-PET and 18F-fluorodeoxyglucose-PET binding patterns. In summary, our findings suggest both common and distinct patterns of amyloid and glucose hypometabolism in sporadic and dominantly inherited early-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge J Llibre-Guerra
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Eric McDade
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Brian Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason Hassenstab
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - John C Morris
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ricardo Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Patricio Chrem
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Silvia Vazquez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires 1428, Argentina
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin L Masters
- Department of Neuroscience, Florey Institute, The University of Melbourne, Melbourne 3052, Australia
| | - Martin R Farlow
- Neuroscience Center, Indiana University School of Medicine at Indianapolis, Indiana, IN 46202, USA
| | - Mathias Jucker
- DZNE-German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich 80539, Germany
- German Center for Neurodegenerative Diseases, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Stephen Salloway
- Memory & Aging Program, Butler Hospital, Brown University in Providence, RI 02906, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, UK
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 33224, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Randall Bateman
- The Dominantly Inherited Alzheimer Network (DIAN), St Louis, MO 63108, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO 63108, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Zoltowska KM, Das U, Lismont S, Enzlein T, Maesako M, Houser MCQ, Franco ML, Özcan B, Moreira DG, Karachentsev D, Becker A, Hopf C, Vilar M, Berezovska O, Mobley W, Chávez-Gutiérrez L. Alzheimer's disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551596. [PMID: 37577527 PMCID: PMC10418207 DOI: 10.1101/2023.08.02.551596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular -homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.
Collapse
Affiliation(s)
| | - Utpal Das
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Masato Maesako
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - Mei CQ Houser
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Burcu Özcan
- VIB-KU Leuven Center for Brain & Disease Research, VIB, Leuven, Belgium
| | | | - Dmitry Karachentsev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States of America
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
6
|
Castillo-Ordoñez WO, Cajas-Salazar N, Velasco-Reyes MA. Genetic and epigenetic targets of natural dietary compounds as anti-Alzheimer's agents. Neural Regen Res 2024; 19:846-854. [PMID: 37843220 PMCID: PMC10664119 DOI: 10.4103/1673-5374.382232] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults. Pathogenic factors, such as oxidative stress, an increase in acetylcholinesterase activity, mitochondrial dysfunction, genotoxicity, and neuroinflammation are present in this syndrome, which leads to neurodegeneration. Neurodegenerative pathologies such as Alzheimer's disease are considered late-onset diseases caused by the complex combination of genetic, epigenetic, and environmental factors. There are two main types of Alzheimer's disease, known as familial Alzheimer's disease (onset < 65 years) and late-onset or sporadic Alzheimer's disease (onset ≥ 65 years). Patients with familial Alzheimer's disease inherit the disease due to rare mutations on the amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) genes in an autosomal-dominantly fashion with closely 100% penetrance. In contrast, a different picture seems to emerge for sporadic Alzheimer's disease, which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology. Importantly, the fundamental pathophysiological mechanisms driving Alzheimer's disease are interfaced with epigenetic dysregulation. However, the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer's disease or following injury or stroke in humans. In recent years, there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer's disease. Through epigenetic mechanisms, such as DNA methylation, non-coding RNAs, histone modification, and chromatin conformation regulation, natural compounds appear to exert neuroprotective effects. While we do not purport to cover every in this work, we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer's disease-related genes.
Collapse
Affiliation(s)
- Willian Orlando Castillo-Ordoñez
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
- Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
| | - Nohelia Cajas-Salazar
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| | - Mayra Alejandra Velasco-Reyes
- Facultad de Ciencias Naturales-Exactas y de la Educación, Departamento de Biología. Universidad del Cauca, Popayán-Cauca, Colombia
| |
Collapse
|
7
|
Pagnon de la Vega M, Syvänen S, Giedraitis V, Hooley M, Konstantinidis E, Meier SR, Rokka J, Eriksson J, Aguilar X, Spires-Jones TL, Lannfelt L, Nilsson LNG, Erlandsson A, Hultqvist G, Ingelsson M, Sehlin D. Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion. Acta Neuropathol Commun 2024; 12:22. [PMID: 38317196 PMCID: PMC10845526 DOI: 10.1186/s40478-024-01734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Deposition of amyloid beta (Aβ) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aβ. We recently identified the Uppsala APP mutation (APPUpp), which causes Aβ pathology by a triple mechanism: increased β-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aβ conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aβ pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aβ pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased β-secretase cleavage and suppressed α-secretase cleavage, resulting in AβUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aβ pathology in all models, whereas the Aβ protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aβ pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AβUpp42 aggregates were found to affect their interaction with anti-Aβ antibodies and profoundly modify the Aβ-mediated glial response, which may be important aspects to consider for further development of AD therapies.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Monique Hooley
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Lars N G Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | | | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Koch M, Enzlein T, Chen S, Petit D, Lismont S, Zacharias M, Hopf C, Chávez‐Gutiérrez L. APP substrate ectodomain defines amyloid-β peptide length by restraining γ-secretase processivity and facilitating product release. EMBO J 2023; 42:e114372. [PMID: 37853914 PMCID: PMC10690472 DOI: 10.15252/embj.2023114372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Sequential proteolysis of the amyloid precursor protein (APP) by γ-secretases generates amyloid-β (Aβ) peptides and defines the proportion of short-to-long Aβ peptides, which is tightly connected to Alzheimer's disease (AD) pathogenesis. Here, we study the mechanism that controls substrate processing by γ-secretases and Aβ peptide length. We found that polar interactions established by the APPC99 ectodomain (ECD), involving but not limited to its juxtamembrane region, restrain both the extent and degree of γ-secretases processive cleavage by destabilizing enzyme-substrate interactions. We show that increasing hydrophobicity, via mutation or ligand binding, at APPC99 -ECD attenuates substrate-driven product release and rescues the effects of Alzheimer's disease-associated pathogenic γ-secretase and APP variants on Aβ length. In addition, our study reveals that APPC99 -ECD facilitates the paradoxical production of longer Aβs caused by some γ-secretase inhibitors, which act as high-affinity competitors of the substrate. These findings assign a pivotal role to the substrate ECD in the sequential proteolysis by γ-secretases and suggest it as a sweet spot for the potential design of APP-targeting compounds selectively promoting its processing by these enzymes.
Collapse
Affiliation(s)
- Matthias Koch
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Thomas Enzlein
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
| | - Shu‐Yu Chen
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Dieter Petit
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Sam Lismont
- VIB/KU Leuven, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
| | - Martin Zacharias
- Physics Department and Center of Functional Protein AssembliesTechnical University of MunichGarchingGermany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS)Mannheim University of Applied SciencesMannheimGermany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
9
|
Scheres SHW, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023; 621:701-710. [PMID: 37758888 DOI: 10.1038/s41586-023-06437-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/14/2023] [Indexed: 09/29/2023]
Abstract
Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Sidiropoulou GA, Metaxas A, Kourti M. Natural antioxidants that act against Alzheimer's disease through modulation of the NRF2 pathway: a focus on their molecular mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1217730. [PMID: 37465125 PMCID: PMC10351420 DOI: 10.3389/fendo.2023.1217730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
Characterized by a complex pathophysiology that includes the intraneuronal formation of neurofibrillary tangles and the extracellular deposition of β-amyloid plaques, Alzheimer's disease (AD) is a terminal neurodegenerative disease that causes dementia in older adults. Oxidative stress in the brain is considered as one of the contributing factors to the pathogenesis of AD, and thus, antioxidants have attracted much interest as potential therapeutic agents against the disorder. Natural antioxidants are typically characterized by low acute and chronic toxicity, which facilitates their potential therapeutic application. One important molecular target for the beneficial effects of natural antioxidants is the nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/NRF2). NRF2 is a key transcription factor that orchestrates the cellular antioxidant response through regulating the expression of oxidative stress-related genes harboring the antioxidant response element (ARE) in their promoters. Indeed, in the case of excessive oxidative damage, NRF2 migrates to the nucleus and binds to ARE, activating the transcription of antioxidant protector genes. There is increasing evidence that NRF2 is implicated in AD pathology through dysfunction and altered localization, which renders it as a potential therapeutic target for AD. Thus, this review summarizes the most recent (2018-2023) advances on the NRF2-modulating activity of natural antioxidants observed in vitro and in AD animal models. This information will help elucidate the molecular mechanisms governing the antioxidant activity of such phytochemicals to highlight their therapeutic potential against common neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Grammatiki Alexandra Sidiropoulou
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
| | - Athanasios Metaxas
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
11
|
Schuermans N, Verdin H, Ghijsels J, Hellemans M, Debackere E, Bogaert E, Symoens S, Naesens L, Lecomte E, Crosiers D, Bergmans B, Verhoeven K, Poppe B, Laureys G, Herdewyn S, Van Langenhove T, Santens P, De Bleecker JL, Hemelsoet D, Dermaut B. Exome Sequencing and Multigene Panel Testing in 1,411 Patients With Adult-Onset Neurologic Disorders. Neurol Genet 2023; 9:e200071. [PMID: 37152446 PMCID: PMC10160959 DOI: 10.1212/nxg.0000000000200071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023]
Abstract
Background and Objectives Owing to their extensive clinical and molecular heterogeneity, hereditary neurologic diseases in adults are difficult to diagnose. The current knowledge about the diagnostic yield and clinical utility of exome sequencing (ES) for neurologic diseases in adults is limited. This observational study assesses the diagnostic value of ES and multigene panel analysis in adult-onset neurologic disorders. Methods From January 2019 through April 2022, ES-based multigene panel testing was conducted in 1,411 patients with molecularly unexplained neurologic phenotypes at the Ghent University Hospital. Gene panels were developed for ataxia and spasticity, leukoencephalopathy, movement disorders, paroxysmal episodic disorders, neurodegeneration with brain iron accumulation, progressive myoclonic epilepsy, and amyotrophic lateral sclerosis. Single nucleotide variants, small indels, and copy number variants were analyzed. Across all panels, our analysis covered a total of 725 genes associated with Mendelian inheritance. Results A molecular diagnosis was established in 10% of the cases (144 of 1,411) representing 71 different monogenic disorders. The diagnostic yield depended significantly on the presenting phenotype with the highest yield seen in patients with ataxia or spastic paraparesis (19%). Most of the established diagnoses comprised disorders with an autosomal dominant inheritance (62%), and the most frequently mutated genes were NOTCH3 (13 patients), SPG7 (11 patients), and RFC1 (8 patients). 34% of the disease-causing variants were novel, including a unique likely pathogenic variant in APP (Ghent mutation, p.[Asn698Asp]) in a family presenting with stroke and severe cerebral white matter disease. 7% of the pathogenic variants comprised copy number variants detected in the ES data and confirmed by an independent technique. Discussion ES and multigene panel testing is a powerful and efficient tool to diagnose patients with unexplained, adult-onset neurologic disorders.
Collapse
Affiliation(s)
- Nika Schuermans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Hannah Verdin
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Jody Ghijsels
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Madeleine Hellemans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elke Debackere
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elke Bogaert
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Sofie Symoens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Leslie Naesens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elien Lecomte
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - David Crosiers
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bruno Bergmans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Kristof Verhoeven
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bruce Poppe
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Guy Laureys
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Sarah Herdewyn
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Tim Van Langenhove
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Patrick Santens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Jan L De Bleecker
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Dimitri Hemelsoet
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bart Dermaut
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| |
Collapse
|
12
|
Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol 2023; 61:102637. [PMID: 36821955 PMCID: PMC9975698 DOI: 10.1016/j.redox.2023.102637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a decline in cognitive function. The β-amyloid (Aβ) hypothesis suggests that Aβ peptides can spontaneously aggregate into β-fragment-containing oligomers and protofibrils, and this activation of the amyloid pathway alters Ca2+ signaling in neurons, leading to neurotoxicity and thus apoptosis of neuronal cells. In our study, a blood-brain barrier crossing flavonol glycoside hyperoside was identified with anti-Aβ aggregation, BACE inhibitory, and neuroprotective effect in cellular or APP/PSEN1 double transgenic Alzheimer's disease mice model. While our pharmacokinetic data confirmed that intranasal administration of hyperoside resulted in a higher bio-availability in mice brain, further in vivo studies revealed that it improved motor deficit, spatial memory and learning ability of APP/PSEN1 mice with reducing level of Aβ plaques and GFAP in the cortex and hippocampus. Bioinformatics, computational docking and in vitro assay results suggested that hyperoside bind to Aβ and interacted with ryanodine receptors, then regulated cellular apoptosis via endoplasmic reticulum-mitochondrial calcium (Ca2+) signaling pathway. Consistently, it was confirmed that hyperoside increased Bcl2, decreased Bax and cyto-c protein levels, and ameliorated neuronal cell death in both in vitro and in vivo model. By regulating Aβ-induced cell death via regulation on Ca2+ signaling cascade and mitochondrial membrane potential, our study suggested that hyperoside may work as a potential therapeutic agent or preventive remedy for Alzheimer's disease.
Collapse
|
13
|
Dreos A, Ge J, Najera F, Tebikachew BE, Perez-Inestrosa E, Moth-Poulsen K, Blennow K, Zetterberg H, Hanrieder J. Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism. ACS Sens 2023; 8:1500-1509. [PMID: 36946692 PMCID: PMC10152485 DOI: 10.1021/acssensors.2c02496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Amyloid beta (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aβ plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aβ plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aβ plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aβ plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.
Collapse
Affiliation(s)
- Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
| | - Francisco Najera
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Behabitu Ergette Tebikachew
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ezequiel Perez-Inestrosa
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya, EEBE, Eduard
Maristany 10-14, 08019 Barcelona, Spain
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK
Dementia Research Institute, University
College London, London WC1N 3BG, UK
- Hong
Kong Center for Neurodegenerative Diseases, Hong Kong 1512-1518, China
- UW
Department of Medicine, School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
14
|
Takasugi N, Komai M, Kaneshiro N, Ikeda A, Kamikubo Y, Uehara T. The Pursuit of the "Inside" of the Amyloid Hypothesis-Is C99 a Promising Therapeutic Target for Alzheimer's Disease? Cells 2023; 12:454. [PMID: 36766796 PMCID: PMC9914381 DOI: 10.3390/cells12030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer's disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-β (Aβ), which accumulates in the patient brain. The "amyloid hypothesis" based therapy that places the aggregation and toxicity of Aβ at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aβ is produced from a type-I transmembrane protein, Aβ precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the AD patient's brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the "outside" of the neuron, but C99 accumulation might explain the toxicity on the "inside" of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Nanaka Kaneshiro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Sahlgren Bendtsen KM, Hall VJ. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's Disease. Cells 2023; 12:cells12030420. [PMID: 36766763 PMCID: PMC9913971 DOI: 10.3390/cells12030420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Modeling Alzheimer's disease (AD) using human-induced pluripotent stem cells (iPSCs) is a field now spanning 15 years. Developments in the field have shown a shift in using simple 2D cortical neuron models to more advanced tri-cultures and 3D cerebral organoids that recapitulate more features of the disease. This is largely due to development and optimization of new cell protocols. In this review, we highlight recent major breakthroughs in the AD field and the implications this has in modeling AD using iPSCs (AD-iPSCs). To date, AD-iPSCs have been largely used to recapitulate and study impaired amyloid precursor protein (APP) processing and tau phosphorylation in both familial and sporadic AD. AD-iPSCs have also been studied for varying neuronal and glial dysfunctions. Moreover, they have been useful for discovering new molecular mechanisms, such as identifying proteins that bridge APP processing with tau phosphorylation and for identifying molecular pathways that bridge APP processing dysfunction with impaired cholesterol biosynthesis. Perhaps the greatest use of AD-iPSCs has been in discovering compounds via drug screening, that reduce amyloid beta (Aβ) in neurons, such as the anti-inflammatory compound, cromolyn, and antiparasitic drugs, avermectins. In addition, high content screening using AD-iPSCs has led to the identification of statins that can reduce levels of phosphorylated tau (p-Tau) in neurons. Some of these compounds have made it through to testing in human clinical trials. Improvements in omic technologies including single cell RNA sequencing and proteomics as well as advances in production of iPSC-cerebral organoids and tri-cultures is likely to result in the further discovery of new drugs and treatments for AD. Some caveats remain in the field, including, long experimental conditions to create mature neurons, high costs of media that limit research capabilities, and a lack of reproducibility using current iPSC-cerebral organoid protocols. Despite these current limitations, AD-iPSCs remain an excellent cellular model for studying AD mechanisms and for drug discovery.
Collapse
|
16
|
Seuma M, Lehner B, Bolognesi B. An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation. Nat Commun 2022; 13:7084. [PMID: 36400770 PMCID: PMC9674652 DOI: 10.1038/s41467-022-34742-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Multiplexed assays of variant effects (MAVEs) guide clinical variant interpretation and reveal disease mechanisms. To date, MAVEs have focussed on a single mutation type-amino acid (AA) substitutions-despite the diversity of coding variants that cause disease. Here we use Deep Indel Mutagenesis (DIM) to generate a comprehensive atlas of diverse variant effects for a disease protein, the amyloid beta (Aβ) peptide that aggregates in Alzheimer's disease (AD) and is mutated in familial AD (fAD). The atlas identifies known fAD mutations and reveals that many variants beyond substitutions accelerate Aβ aggregation and are likely to be pathogenic. Truncations, substitutions, insertions, single- and internal multi-AA deletions differ in their propensity to enhance or impair aggregation, but likely pathogenic variants from all classes are highly enriched in the polar N-terminal region of Aβ. This comparative atlas highlights the importance of including diverse mutation types in MAVEs and provides important mechanistic insights into amyloid nucleation.
Collapse
Affiliation(s)
- Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
17
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
18
|
Castora FJ, Kerns KA, Pflanzer HK, Hitefield NL, Gershon B, Shugoll J, Shelton M, Coleman RA. Expression Changes in Mitochondrial Genes Affecting Mitochondrial Morphology, Transmembrane Potential, Fragmentation, Amyloidosis, and Neuronal Cell Death Found in Brains of Alzheimer’s Disease Patients. J Alzheimers Dis 2022; 90:119-137. [DOI: 10.3233/jad-220161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurological disease that has both a genetic and non-genetic origin. Mitochondrial dysfunction is a critical component in the pathogenesis of AD as deficits in oxidative capacity and energy production have been reported. Objective: Nuclear-encoded mitochondrial genes were studied in order to understand the effects of mitochondrial expression changes on mitochondrial function in AD brains. These expression data were to be incorporated into a testable mathematical model for AD used to further assess the genes of interest as therapeutic targets for AD. Methods: RT2-PCR arrays were used to assess expression of 84 genes involved in mitochondrial biogenesis in AD brains. A subset of mitochondrial genes of interest was identified after extensive Ingenuity Pathway Analysis (IPA) (Qiagen). Further filtering of this subset of genes of interest was achieved by individual qPCR analyses. Expression values from this group of genes were included in a mathematical model being developed to identify potential therapeutic targets. Results: Nine genes involved in trafficking proteins to mitochondria, morphology of mitochondria, maintenance of mitochondrial transmembrane potential, fragmentation of mitochondria and mitochondrial dysfunction, amyloidosis, and neuronal cell death were identified as significant to the changes seen. These genes include TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, and GAPDH. Conclusion: Altered mitochondrial gene expression indicates that a subset of nuclear-encoded mitochondrial genes compromise multiple aspects of mitochondrial function in AD brains. A new mathematical modeling system may provide further insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Frank J. Castora
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kimberly A. Kerns
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Haley K. Pflanzer
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Naomi L. Hitefield
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Blake Gershon
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jason Shugoll
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Morgan Shelton
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
19
|
Leguizamon Herrera VL, Buell AK, Willbold D, Barz B. Interaction of Therapeutic d-Peptides with Aβ42 Monomers, Thermodynamics, and Binding Analysis. ACS Chem Neurosci 2022; 13:1638-1650. [PMID: 35580288 DOI: 10.1021/acschemneuro.2c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptide is a major hallmark of Alzheimer's disease. This peptide can aggregate into oligomers, proto-fibrils, and mature fibrils, which eventually assemble into amyloid plaques. The peptide monomers are the smallest assembly units and play an important role in most of the individual processes involved in amyloid fibril formation, such as primary and secondary nucleation and elongation. Several d-peptides have been confirmed as promising candidates to inhibit the aggregation of Aβ into toxic oligomers and fibrils by specifically interacting with monomeric species. In this work, we elucidate the structural interaction and thermodynamics of binding between three d-peptides (D3, ANK6, and RD2) and Aβ42 monomers by means of enhanced molecular dynamics simulations. Our study derives thermodynamic energies in good agreement with experimental values and suggests that there is an enhanced binding for D3 and ANK6, which leads to more stable complexes than for RD2. The binding of D3 to Aβ42 is shown to be weakly exothermic and mainly entropically driven, whereas the complex formation between the ANK6 and RD2 with the Aβ42 free monomer is weakly endothermic. In addition, the changes in the solvent-accessible surface area and the radius of gyration support that the binding between Aβ42 and d-peptides is mainly driven by electrostatic and hydrophobic interactions and leads to more compact conformations.
Collapse
Affiliation(s)
| | - Alexander K. Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dieter Willbold
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Bogdan Barz
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Pagnon de la Vega M, Näslund C, Brundin R, Lannfelt L, Löwenmark M, Kilander L, Ingelsson M, Giedraitis V. Mutation analysis of disease causing genes in patients with early onset or familial forms of Alzheimer's disease and frontotemporal dementia. BMC Genomics 2022; 23:99. [PMID: 35120450 PMCID: PMC8817590 DOI: 10.1186/s12864-022-08343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-β precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer’s disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. Results Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid β deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. Conclusions Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Carl Näslund
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.,Krembil Brain Institute, University Health Network, Toronto, Canada.,Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 2022; 375:167-172. [PMID: 35025654 DOI: 10.1126/science.abm7285] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Diana Arseni
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wenjuan Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Melissa Huang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Y Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Isabelle Lavenir
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Ellen Gelpi
- Institute of Neurology, Medical University, Vienna, Austria
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Gabor G Kovacs
- Institute of Neurology, Medical University, Vienna, Austria.,Tanz Centre and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
22
|
Lichtenthaler SF, Tschirner SK, Steiner H. Secretases in Alzheimer's disease: Novel insights into proteolysis of APP and TREM2. Curr Opin Neurobiol 2021; 72:101-110. [PMID: 34689040 DOI: 10.1016/j.conb.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Secretases are a group of proteases that are major drug targets considered for the prevention and treatment of Alzheimer's disease (AD). Secretases do not only process the AD-linked neuronal amyloid precursor protein (APP) but also the triggering receptor expressed on myeloid cells 2 (TREM2), thereby controlling microglial functions. This review highlights selected recent discoveries for the α-secretases a disintegrin and metalloprotease 10 (ADAM10) and a disintegrin and metalloprotease 17 (ADAM17), the β-secretase β-site APP cleaving enzyme 1 (BACE1) and γ-secretase and their link to AD. New genetic evidence strengthens the role of α-secretases in AD through cleavage of APP and TREM2. Novel proteins were linked to AD, which control α- and β-secretase activity through transcriptional and post-translational mechanisms. Finally, new opportunities but also challenges are discussed for pharmacologically targeting β- and γ-secretase cleavage of APP and α-secretase cleavage of TREM2 with the aim to prevent or treat AD.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
23
|
Hanrieder J. Preface: Mass spectrometry in Alzheimer disease: This is the Preface for the special issue "Mass Spectrometry in Alzheimer Disease". J Neurochem 2021; 159:207-210. [PMID: 34665876 DOI: 10.1111/jnc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
This preface introduces the content of the special issue on 'Mass Spectrometry in Alzheimer Disease'. Here, an overview is provided on how mass spectrometry is contributing to a broader understanding of AD pathobiology. Mass spectrometry has become a major technology in biomedical analysis and research. This includes biochemical and clinical studies that aim to detail our understanding of Alzheimer disease pathogenesis and pathobiology (AD). In this special issue, key experts in the field present exciting developments and applications of MS in the context of studying AD pathology. These studies span from basic biochemical and neuropathological studies, over advanced metabolomics- and proteomics, towards comprehensive biomarker studies, as well as more recently, in situ mass spectrometry-based imaging (MSI). Together, these studies highlight the key relevance of current and emerging MS technologies to detect, delineate and understand principle pathogenic mechanisms underlying AD.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|