1
|
Liao Y, Octaviani S, Tian Z, Wang SR, Huang C, Huang J. Mitochondrial quality control in hematopoietic stem cells: mechanisms, implications, and therapeutic opportunities. Stem Cell Res Ther 2025; 16:180. [PMID: 40234908 PMCID: PMC12001479 DOI: 10.1186/s13287-025-04304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Mitochondrial quality control (MQC) is a critical mechanism for maintaining mitochondrial function and cellular metabolic homeostasis, playing an essential role in the self-renewal, differentiation, and long-term stability of hematopoietic stem cells (HSCs). Recent research highlights the central importance of MQC in HSC biology, particularly the roles of mitophagy, mitochondrial biogenesis, fission, fusion and mitochondrial transfer in regulating HSC function. Mitophagy ensures the removal of damaged mitochondria, maintaining low levels of reactive oxygen species (ROS) in HSCs, thereby preventing premature aging and functional decline. Concurrently, mitochondrial biogenesis adjusts key metabolic regulators such as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) to meet environmental demands, ensuring the metabolic needs of HSCs are met. Additionally, mitochondrial transfer, as an essential form of intercellular material exchange, facilitates the transfer of functional mitochondria from bone marrow stromal cells to HSCs, contributing to damage repair and metabolic support. Although existing studies have revealed the significance of MQC in maintaining HSC function, the precise molecular mechanisms and interactions among different regulatory pathways remain to be fully elucidated. Furthermore, the potential role of MQC dysfunction in hematopoietic disorders, including its involvement in disease progression and therapeutic resistance, is not yet fully understood. This review discusses the molecular mechanisms of MQC in HSCs, its functions under physiological and pathological conditions, and its potential therapeutic applications. By summarizing the current progress in this field, we aim to provide insights for further research and the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Yun Liao
- Coriell Institute for Medical Research, Camden, NJ, USA
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | | | - Zhen Tian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | | | - Chunlan Huang
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Kausar MA, Anwar S, Khan YS, Saleh AA, Ahmed MAA, Kaur S, Iqbal N, Siddiqui WA, Najm MZ. Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia. Biomolecules 2025; 15:215. [PMID: 40001518 PMCID: PMC11853340 DOI: 10.3390/biom15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Autophagy/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Animals
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | | | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| | - Naveed Iqbal
- Department of Obstetrics and Gynecology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India;
| | - Mohammad Zeeshan Najm
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| |
Collapse
|
3
|
Duan H, Lai Q, Jiang Y, Yang L, Deng M, Lin Z, Shan W, Zhong M, Yao J, Zhang L, Xu B, Zha J. Chiglitazar diminishes the warburg effect through PPARγ/mTOR/PKM2 and increases the sensitivity of imatinib in chronic myeloid leukemia. Exp Hematol Oncol 2024; 13:121. [PMID: 39696470 DOI: 10.1186/s40164-024-00589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND A tyrosine kinase inhibitor (TKI) such as Imatinib (IM) is the preferred treatment for Chronic Myeloid Leukemia (CML). However, the emergence of IM resistance presents a significant challenge to disease management. A characteristic of cancer cells, including IM-resistant CMLs, are characterized by heightened uptake of glucose and aberrant glycolysis in the cytosol, which is known as the Warburg effect. In addition to its potential to modulate the Warburg effect, Chiglitazar (Chi), a compound that regulates glucose metabolism, has also been investigated for its implication in cancer treatment. This suggests that combining Chi with IM may be a therapeutic strategy for overcoming IM resistance in CML. METHODS Sensitive and IM-resistance CML cells were treated with Chi in vitro, followed by detecting of extracellular acidification rate (ECAR) using a Seahorse XF Analyzer. CML cell proliferation, cell cycle distribution, and apoptosis were tested by CCK-8 assay and flow cytometry. RNA sequencing was utilized to investigate potential transcriptional changes induced by Chi usage. In vivo studies were conducted on immunodeficient mice implanted with CML cells and given Chi and/or IM later. Tumor growth was monitored, as well as tumor burden and survival rates between groups. RESULTS Our metabonomic, transcriptomic, and molecular biology studies demonstrated that Chi, in part, diminished the Warburg effect by reducing glucose and lactate production in imatinib-resistant CML cells through the PPARγ/mTOR/PKM2 pathway. This modulation of glucose metabolism resulted in reduced cell proliferation and enhanced sensitivity to IM in imatinib-resistant CML cells in vitro. Rescue assay by introducing shPPARγ or mTOR activator verified the underlying regulatory pathway. Also, the combination of Chi and IM synergistically increased the sensitivity of IM in vivo and prolonged the survival of imatinib-resistance CML transplanted mice. CONCLUSIONS Our results demonstrated the potential of Chi to overcome IM resistance in vitro and in vivo. By inhibiting the Warburg effect through the PPARγ/mTOR/PKM2 pathway, Chi resensitizes CML cells towards imatinib treatment. Combining IM with Chi is an alternative therapeutic option for CML management, especially for IM-resistant CML patients.
Collapse
Affiliation(s)
- Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Liuzhen Yang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Weihang Shan
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Li Zhang
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China.
| |
Collapse
|
4
|
Wang L, Guo D, Huang Y, Long P, Zhang X, Bai L, Liu J, Hu X, Pang R, Gou X. Scientific landscape of oxidative stress in sarcopenia: from bibliometric analysis to hotspots review. Front Med (Lausanne) 2024; 11:1472413. [PMID: 39588187 PMCID: PMC11586176 DOI: 10.3389/fmed.2024.1472413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE Sarcopenia is a significant healthcare challenge in the aging population. Oxidative stress (OS) is acknowledged to play a pivotal role in the pathological progression of sarcopenia. Numerous studies have demonstrated that mitigating or eliminating OS can ameliorate the pathological manifestations associated with sarcopenia. However, current clinical antioxidant therapies often fall short of anticipated outcomes. This bibliometric analysis aims to delineate prevailing research trends, thematic emphases, focal points, and developmental trajectories within the domain of OS in sarcopenia, while also endeavoring to explore prospective anti-oxidative stress strategies for future clinical interventions. METHODS Relevant publications were retrieved from the Web of Science (WOS) Core Collection database for the period 2000-2024. Citespace was employed for retrieving and analyzing trends and emerging topics. RESULTS In the field of OS in sarcopenia, the number of publications has significantly increased from 2000 to 2024. The United States and China are the primary contributors to global publication output. The most productive research institution is INRAE. The most prolific author is Holly Van Remmen from the United States, while the most frequently cited author is Cruz-Jentoft AJ from Spain. Experimental Gerontology is the journal with the highest volume of published articles, whereas the Journal of Gerontology Series A: Biological Sciences and Medical Sciences holds the record for the highest number of citations. The research keywords in this field can be categorized into eight domains: "Physiology and anatomy", "Physiological mechanisms", "Pathology associations", "Experimental studies", "Nutrition and metabolism", "Sports and physical activities", "Age" and "Oxidation and antioxidation". Moreover, recent years have seen the emergence of "TNF-α," "insulin resistance", "mitochondrial autophagy", "signal pathways", and "mechanisms" as focal points in the realm of OS in sarcopenia, encompassing related fundamental research and clinical translation. CONCLUSION This bibliometric and visualization provides a comprehensive analysis of the global research landscape in the field of OS in sarcopenia, identifies priorities, summarizes the current research status and suggests possible future research priorities. In addition, in order to benefit more sarcopenia patients, strengthening cooperation and communication between institutions and research teams is the key to the future development of this field. Given the expectation that research on OS in sarcopenia will remain a prominent area of interest in the future, this article could serve as a valuable resource for scholars seeking to shape future studies through an understanding of influential scholarly contributions and key research findings. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk, identifier CRD42024528628.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Dongliang Guo
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Yi Huang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Pan Long
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
| | - Xin Zhang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Ling Bai
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Sichuan, Chengdu, China
- Sichuan Clinical Medical Research Center for Traditional Chinese Medicine Orthopedics and Sports Medicine Rehabilitation, Sichuan, Chengdu, China
| |
Collapse
|
5
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Liu Y, Ma Z. Leukemia and mitophagy: a novel perspective for understanding oncogenesis and resistance. Ann Hematol 2024; 103:2185-2196. [PMID: 38282059 DOI: 10.1007/s00277-024-05635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Mitophagy, the selective autophagic process that specifically degrades mitochondria, serves as a vital regulatory mechanism for eliminating damaged mitochondria and maintaining cellular balance. Emerging research underscores the central role of mitophagy in the initiation, advancement, and treatment of cancer. Mitophagy is widely acknowledged to govern mitochondrial homeostasis in hematopoietic stem cells (HSCs), influencing their metabolic dynamics. In this article, we integrate recent data to elucidate the regulatory mechanisms governing mitophagy and its intricate significance in the context of leukemia. An in-depth molecular elucidation of the processes governing mitophagy may serve as a basis for the development of pioneering approaches in targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yueyao Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Zhigui Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
8
|
Khalaf A, de Beauchamp L, Kalkman E, Rattigan K, Himonas E, Jones J, James D, Shokry ESA, Scott MT, Dunn K, Tardito S, Copland M, Sumpton D, Shanks E, Helgason GV. Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia. Sci Transl Med 2024; 16:eadi5336. [PMID: 38865484 DOI: 10.1126/scitranslmed.adi5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.
Collapse
MESH Headings
- Drug Repositioning
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Animals
- Cell Line, Tumor
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Calcium/metabolism
- Oxidative Phosphorylation/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
Collapse
Affiliation(s)
- Ahmed Khalaf
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Joe Jones
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniel James
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Emma Shanks
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
9
|
Li M, Li J, Zhang S, Zhou L, Zhu Y, Li S, Li Q, Wang J, Song R. Progress in the study of autophagy-related proteins affecting resistance to chemotherapeutic drugs in leukemia. Front Cell Dev Biol 2024; 12:1394140. [PMID: 38887520 PMCID: PMC11180896 DOI: 10.3389/fcell.2024.1394140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Leukemia is a life-threatening malignant tumor of the hematopoietic system. Currently, the main treatment modalities are chemotherapy and hematopoietic stem cell transplantation. However, increased drug resistance due to decreased sensitivity of leukemia cells to chemotherapeutic drugs presents a major challenge in current treatments. Autophagy-associated proteins involved in autophagy initiation have now been shown to be involved in the development of various types of leukemia cells and are associated with drug resistance. Therefore, this review will explore the roles of autophagy-related proteins involved in four key autophagic processes: induction of autophagy and phagophore formation, phagophore extension, and autophagosome formation, on the development of various types of leukemias as well as drug resistance. Autophagy may become a promising therapeutic target for treating leukemia.
Collapse
Affiliation(s)
- Meng Li
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Zhang
- Clinical College, Xiamen Medical University, Xiamen, Fujian, China
| | - Linghan Zhou
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Yuanyuan Zhu
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Shen Li
- Rehabilitation Department, Henan Institute of Massage, Luoyang, Henan, China
| | - Qiong Li
- Nursing Department, Xinxiang Medical University, Xinxiang, China
| | - Junjie Wang
- Plastic Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Ruipeng Song
- Endocrinology Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
10
|
Zarou MM, Rattigan KM, Sarnello D, Shokry E, Dawson A, Ianniciello A, Dunn K, Copland M, Sumpton D, Vazquez A, Helgason GV. Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing. Nat Commun 2024; 15:1931. [PMID: 38431691 PMCID: PMC10908830 DOI: 10.1038/s41467-024-46114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
11
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
12
|
Mandhair HK, Radpour R, Westerhuis M, Banz Y, Humbert M, Arambasic M, Dengjel J, Davies A, Tschan MP, Novak U. Analysis of autophagy in DLBCL reveals subtype-specific differences and the preferential targeting of ULK1 inhibition in GCB-DLBCL provides a rationale as a new therapeutic approach. Leukemia 2024; 38:424-429. [PMID: 38263431 PMCID: PMC10844068 DOI: 10.1038/s41375-024-02147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Harpreet K Mandhair
- University of Bern, Department of BioMedical Research, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Ramin Radpour
- University of Bern, Department of BioMedical Research, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mira Westerhuis
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Magali Humbert
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Miroslav Arambasic
- University of Bern, Department of BioMedical Research, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andrew Davies
- Southampton NHIR/Cancer Research UK, Experimental Cancer Medicines Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mario P Tschan
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Urban Novak
- University of Bern, Department of BioMedical Research, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Scott MT, Liu W, Mitchell R, Clarke CJ, Kinstrie R, Warren F, Almasoudi H, Stevens T, Dunn K, Pritchard J, Drotar ME, Michie AM, Jørgensen HG, Higgins B, Copland M, Vetrie D. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun 2024; 15:651. [PMID: 38246924 PMCID: PMC10800356 DOI: 10.1038/s41467-024-44771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.
Collapse
Affiliation(s)
- Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ross Kinstrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Felix Warren
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Thomas Stevens
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark E Drotar
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Buono R, Tucci J, Cutri R, Guidi N, Mangul S, Raucci F, Pellegrini M, Mittelman SD, Longo VD. Fasting-Mimicking Diet Inhibits Autophagy and Synergizes with Chemotherapy to Promote T-Cell-Dependent Leukemia-Free Survival. Cancers (Basel) 2023; 15:5870. [PMID: 38136414 PMCID: PMC10741737 DOI: 10.3390/cancers15245870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jonathan Tucci
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Raffaello Cutri
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Novella Guidi
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Serghei Mangul
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Franca Raucci
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 801 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Steven D. Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Division of Pediatric Endocrinology, UCLA Mattel Children’s Hospital, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095, USA
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Guil-Luna S, Sanchez-Montero MT, Rodríguez-Ariza A. S-Nitrosylation at the intersection of metabolism and autophagy: Implications for cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189012. [PMID: 37918453 DOI: 10.1016/j.bbcan.2023.189012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Department of Comparative Anatomy and Pathology, Faculty of Veterinary Medicine of Córdoba, University of Córdoba, Córdoba, Spain
| | | | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
16
|
Rattigan KM, Zarou MM, Brabcova Z, Prasad B, Zerbst D, Sarnello D, Kalkman ER, Ianniciello A, Scott MT, Dunn K, Shokry E, Sumpton D, Copland M, Tardito S, Vande Voorde J, Mussai F, Cheng P, Helgason GV. Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells. EMBO Rep 2023; 24:e56279. [PMID: 37489735 PMCID: PMC10561355 DOI: 10.15252/embr.202256279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.
Collapse
Affiliation(s)
- Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Bodhayan Prasad
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Désirée Zerbst
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Eric R Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Engy Shokry
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Francis Mussai
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Cheng
- Bio‐cancer Treatment International Ltd, Hong Kong Science ParkShatinNew TerritoriesHong Kong
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
17
|
Praharaj PP, Singh A, Patra S, Bhutia SK. Co-targeting autophagy and NRF2 signaling triggers mitochondrial superoxide to sensitize oral cancer stem cells for cisplatin-induced apoptosis. Free Radic Biol Med 2023; 207:72-88. [PMID: 37423560 DOI: 10.1016/j.freeradbiomed.2023.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Cancer stem cell (CSC) populations are regulated by autophagy, which in turn modulates tumorigenicity and malignancy. In this study, we demonstrated that cisplatin treatment enriches the CSCs population by increasing autophagosome formation and speeding up autophagosome-lysosome fusion by recruiting RAB7 to autolysosomes. Further, cisplatin treatment stimulates lysosomal activity and increases autophagic flux in oral CD44+ cells. Interestingly, both ATG5- and BECN1-dependent autophagy are essential for maintaining cancer stemness, self-renewal, and resistance to cisplatin-induced cytotoxicity in oral CD44+ cells. Moreover, we discovered that autophagy-deficient (shATG5 and/or shBECN1) CD44+ cells activates nuclear factor, erythroid 2 like 2 (NRF2) signaling, which in turn reduces the elevated reactive oxygen species (ROS) level enhancing cancer stemness. Genetic inhibition of NRF2 (siNRF2) in autophagy-deficient CD44+ cells increases mitochondrial ROS (mtROS) level, reducing cisplatin-resistance CSCs, and pre-treatment with mitoTEMPO [a mitochondria-targeted superoxide dismutase (SOD) mimetic] lessened the cytotoxic effect enhancing cancer stemness. We also found that inhibiting autophagy (with CQ) and NRF2 signaling (with ML-385) combinedly increases cisplatin cytotoxicity, thereby suppressing the expansion of oral CD44+ cells; this finding has the potential to be clinically applicable in resolving CSC-associated chemoresistance and tumor relapse in oral cancer.
Collapse
Affiliation(s)
- Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
18
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
19
|
Rattigan KM, Brabcova Z, Sarnello D, Zarou MM, Roy K, Kwan R, de Beauchamp L, Dawson A, Ianniciello A, Khalaf A, Kalkman ER, Scott MT, Dunn K, Sumpton D, Michie AM, Copland M, Tardito S, Gottlieb E, Vignir Helgason G. Pyruvate anaplerosis is a targetable vulnerability in persistent leukaemic stem cells. Nat Commun 2023; 14:4634. [PMID: 37591854 PMCID: PMC10435520 DOI: 10.1038/s41467-023-40222-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Deregulated oxidative metabolism is a hallmark of leukaemia. While tyrosine kinase inhibitors (TKIs) such as imatinib have increased survival of chronic myeloid leukaemia (CML) patients, they fail to eradicate disease-initiating leukemic stem cells (LSCs). Whether TKI-treated CML LSCs remain metabolically deregulated is unknown. Using clinically and physiologically relevant assays, we generate multi-omics datasets that offer unique insight into metabolic adaptation and nutrient fate in patient-derived CML LSCs. We demonstrate that LSCs have increased pyruvate anaplerosis, mediated by increased mitochondrial pyruvate carrier 1/2 (MPC1/2) levels and pyruvate carboxylase (PC) activity, in comparison to normal counterparts. While imatinib reverses BCR::ABL1-mediated LSC metabolic reprogramming, stable isotope-assisted metabolomics reveals that deregulated pyruvate anaplerosis is not affected by imatinib. Encouragingly, genetic ablation of pyruvate anaplerosis sensitises CML cells to imatinib. Finally, we demonstrate that MSDC-0160, a clinical orally-available MPC1/2 inhibitor, inhibits pyruvate anaplerosis and targets imatinib-resistant CML LSCs in robust pre-clinical CML models. Collectively these results highlight pyruvate anaplerosis as a persistent and therapeutically targetable vulnerability in imatinib-treated CML patient-derived samples.
Collapse
Affiliation(s)
- Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kiron Roy
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ryan Kwan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ahmed Khalaf
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric R Kalkman
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
20
|
Abstract
Maintenance of protein homeostasis and organelle integrity and function is critical for cellular homeostasis and cell viability. Autophagy is the principal mechanism that mediates the delivery of various cellular cargoes to lysosomes for degradation and recycling. A myriad of studies demonstrate important protective roles for autophagy against disease. However, in cancer, seemingly opposing roles of autophagy are observed in the prevention of early tumour development versus the maintenance and metabolic adaptation of established and metastasizing tumours. Recent studies have addressed not only the tumour cell intrinsic functions of autophagy, but also the roles of autophagy in the tumour microenvironment and associated immune cells. In addition, various autophagy-related pathways have been described, which are distinct from classical autophagy, that utilize parts of the autophagic machinery and can potentially contribute to malignant disease. Growing evidence on how autophagy and related processes affect cancer development and progression has helped guide efforts to design anticancer treatments based on inhibition or promotion of autophagy. In this Review, we discuss and dissect these different functions of autophagy and autophagy-related processes during tumour development, maintenance and progression. We outline recent findings regarding the role of these processes in both the tumour cells and the tumour microenvironment and describe advances in therapy aimed at autophagy processes in cancer.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Noor Gammoh
- MRC Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh, UK.
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Courdy C, Platteeuw L, Ducau C, De Araujo I, Boet E, Sahal A, Saland E, Edmond V, Tavitian S, Bertoli S, Cougoul P, Granat F, Poillet L, Marty C, Plo I, Sarry JE, Manenti S, Mansat-De Mas V, Joffre C. Targeting PP2A-dependent autophagy enhances sensitivity to ruxolitinib in JAK2 V617F myeloproliferative neoplasms. Blood Cancer J 2023; 13:106. [PMID: 37423955 DOI: 10.1038/s41408-023-00875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are chronic malignancies associated with high-risk complications and suboptimal responses to JAK inhibitors such as ruxolitinib. A better understanding of cellular changes induced by ruxolitinib is required to develop new combinatory therapies to improve treatment efficacy. Here, we demonstrate that ruxolitinib induced autophagy in JAK2V617F cell lines and primary MPN patient cells through the activation of protein phosphatase 2A (PP2A). Inhibition of autophagy or PP2A activity along with ruxolitinib treatment reduced proliferation and increased the death of JAK2V617F cells. Accordingly, proliferation and clonogenic potential of JAK2V617F-driven primary MPN patient cells, but not of normal hematopoietic cells, were markedly impaired by ruxolitinib treatment with autophagy or PP2A inhibitor. Finally, preventing ruxolitinib-induced autophagy with a novel potent autophagy inhibitor Lys05 improved leukemia burden reduction and significantly prolonged the mice's overall survival compared with ruxolitinib alone. This study demonstrates that PP2A-dependent autophagy mediated by JAK2 activity inhibition contributes to resistance to ruxolitinib. Altogether, our data support that targeting autophagy or its identified regulator PP2A could enhance sensitivity to ruxolitinib of JAK2V617F MPN cells and improve MPN patient care.
Collapse
Affiliation(s)
- Charly Courdy
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Loïc Platteeuw
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Charlotte Ducau
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Isabelle De Araujo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Valérie Edmond
- INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzanne Tavitian
- Service d'hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
- Service d'hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Pierre Cougoul
- Service de médecine interne, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Fanny Granat
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Laura Poillet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Caroline Marty
- INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Isabelle Plo
- INSERM UMR1287, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France
| | - Stéphane Manenti
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France.
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France.
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Université de Toulouse III Paul Sabatier, Toulouse, France.
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR 5071, Université de Toulouse, Toulouse, France.
- Equipe labellisée La Ligue contre le Cancer 2018, Toulouse, France.
| |
Collapse
|
22
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
23
|
Alula KM, Theiss AL. Autophagy in Crohn's Disease: Converging on Dysfunctional Innate Immunity. Cells 2023; 12:1779. [PMID: 37443813 PMCID: PMC10341259 DOI: 10.3390/cells12131779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease marked by relapsing, transmural intestinal inflammation driven by innate and adaptive immune responses. Autophagy is a multi-step process that plays a critical role in maintaining cellular homeostasis by degrading intracellular components, such as damaged organelles and invading bacteria. Dysregulation of autophagy in CD is revealed by the identification of several susceptibility genes, including ATG16L1, IRGM, NOD2, LRRK2, ULK1, ATG4, and TCF4, that are involved in autophagy. In this review, the role of altered autophagy in the mucosal innate immune response in the context of CD is discussed, with a specific focus on dendritic cells, macrophages, Paneth cells, and goblet cells. Selective autophagy, such as xenophagy, ERphagy, and mitophagy, that play crucial roles in maintaining intestinal homeostasis in these innate immune cells, are discussed. As our understanding of autophagy in CD pathogenesis evolves, the development of autophagy-targeted therapeutics may benefit subsets of patients harboring impaired autophagy.
Collapse
Affiliation(s)
| | - Arianne L. Theiss
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Zhang Z, Tan Y, Huang C, Wei X. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 2023; 89:104483. [PMID: 36827719 PMCID: PMC9982619 DOI: 10.1016/j.ebiom.2023.104483] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Drug-tolerant persister (DTP) cells have attracted significant interest, given their predominant role in treatment failure. In this respect, DTP cells reportedly survive after anticancer drug exposure, and their DNA repair mechanisms are altered to enhance adaptive mutation, accounting for the emergence of drug-resistant mutations. DTP cells resume proliferation upon treatment withdrawal and are responsible for cancer relapse. Current evidence suggests that DTP cells mediate redox signaling-mediated cellular homeostasis by developing various adaptive mechanisms, especially metabolic reprogramming that promotes mitochondrial oxidative respiration and a robust antioxidant process. There is an increasing consensus that disrupting redox homeostasis by intervening with redox signaling is theoretically a promising therapeutic strategy for targeting these sinister cells. In this review, we provide a comprehensive overview of the characteristics of DTP cells and the underlying mechanisms involved in redox signaling, aiming to provide a unique perspective on potential therapeutic applications based on their vulnerabilities to redox regulation.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
25
|
Freeman-Mills L, Copland M. EXABS-156-CML Beyond TKI Therapy in CML. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S61-S63. [PMID: 36164233 DOI: 10.1016/s2152-2650(22)00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| |
Collapse
|
26
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
27
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
28
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
29
|
Ianniciello A, Helgason GV. Targeting ULK1 in cancer stem cells: insight from chronic myeloid leukemia. Autophagy 2022; 18:1734-1736. [PMID: 35227175 PMCID: PMC9298457 DOI: 10.1080/15548627.2022.2041152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/02/2022] Open
Abstract
Minimal residual disease (MRD) refers to a low number of cells that persist anti-cancer treatment and is the major cause of relapse in solid cancers and leukemias. In chronic myeloid leukemia (CML), a paradigm for stem cell-driven cancer, MRD is maintained by tyrosine kinase inhibitor (TKI)-insensitive leukemic stem cells (LSCs), which may rely on fundamental metabolic processes to resist drug treatment. Macroautophagy/autophagy is a cytoprotective process that has been highlighted as critical for sustaining LSC survival during TKI treatment in robust experimental models of CML. Our recent study shows that the autophagy-initiating kinase ULK1 is required for maintaining energy and redox balance in CML LSCs. Pharmacological inhibition of ULK1 results in stress-induced differentiation of LSCs, rendering them sensitive to TKI treatment, uncovering a promising strategy for selective eradication of LSCs in CML patients.Abbreviations CML: chronic myeloid leukemia; LSC: leukemic stem cell; MAPK: mitogen-activated protein kinase; MRD: minimal residual disease; TKI: tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
31
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
32
|
Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J 2022; 41:e110031. [PMID: 35535466 PMCID: PMC9251852 DOI: 10.15252/embj.2021110031] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.
Collapse
Affiliation(s)
- Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|