1
|
Bi S, Shen J, Zhu Y, Fan L, Ju H, Liu Y. DNA scaffold-framed natural killer cell with programmed drug release for chemo-adoptive cell therapy. J Control Release 2025; 382:113679. [PMID: 40180252 DOI: 10.1016/j.jconrel.2025.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Choosing appropriate delivery system for chemotherapeutic drugs as well as arranging the time spots for adoptive cells administrations is the key to achieve efficient combined chemo-adoptive cell therapy. Tumor-homing character makes adoptive immune cells appropriate targeting delivery carriers, but they are rarely used for chemtoxic payloads considering payloads internalization during administration which impairs adoptive cells. Herein, we frame adoptive NK cells using DNA scaffold with chemotherapeutic payloads fastened exterior, and achieves time-programmed drugs release and NK cell decapsulation to minimize side effects and enhance therapeutic effect. IL-21 nanoparticles are prepared by conjugating cytokine IL-21 with a GSH cleavable linker and act as anchor points for DNA scaffold assembly. Chemotherapeutic payloads are prepared by loading DOX/verapamil drugs to PLGA nanoparticles (PLGAdrugs NPs), and connected to the exterior of DNA scaffold with a ROS cleavable linker. Porous DNA scaffold protects NK cells functions from impairing by chemotherapeutic payloads, while guarantees efficient communication of NK cells with exterior environment to keep tumor homing capability. Reactive oxygen species (ROS) in tumor microenvironment releases PLGAdrugs NPs to perform chemotherapy, which subsequently generates a reductive environment to detach DNA scaffold for NK cell and IL-21 release to achieve combined chemo-adoptive cell therapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jieyu Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Slavkovic-Lukic D, Fioravanti J, Martín-Santos A, Han E, Zhou J, Gattinoni L. Rapid Screening of CAR T Cell Functional Improvement Strategies by Highly Multiplexed Single-Cell Secretomics. Methods Mol Biol 2024; 2748:135-149. [PMID: 38070113 DOI: 10.1007/978-1-0716-3593-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The functional fitness of CAR T cells plays a crucial role in determining their clinical efficacy. Several strategies are being explored to increase cellular fitness, but screening these approaches in vivo is expensive and time-consuming, limiting the number of strategies that can be tested at one time. The presence of polyfunctional CAR T cells has emerged as a critical parameter correlating with clinical responses. However, even sophisticated multiplexed secretomic assays often fail to detect differences in cytokine release due to the functional heterogeneity of CAR T cell products. Here, we describe a highly multiplexed single-cell secretomic assay based on the IsoLight platform to rapidly evaluate the impact of new pharmacologic or gene-engineering approaches aiming at improving CAR T cell function. As a key study, we focus on CD19-specific CAR CD8+ T cells modulated by miR-155 overexpression, but the protocol can be applied to characterize other functional immune cell modulation strategies.
Collapse
Affiliation(s)
- Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Edward Han
- IsoPlexis Corporation, Branford, CT, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany.
- University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol 2023; 20:318-340. [PMID: 36823234 PMCID: PMC10066239 DOI: 10.1038/s41423-023-00980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a powerful option for cancer treatment. Despite demonstrable progress, most patients fail to respond or achieve durable responses due to primary or acquired ICB resistance. Recently, tumor epithelial-to-mesenchymal plasticity (EMP) was identified as a critical determinant in regulating immune escape and immunotherapy resistance in cancer. In this review, we summarize the emerging role of tumor EMP in ICB resistance and the tumor-intrinsic or extrinsic mechanisms by which tumors exploit EMP to achieve immunosuppression and immune escape. We discuss strategies to modulate tumor EMP to alleviate immune resistance and to enhance the efficiency of ICB therapy. Our discussion provides new prospects to enhance the ICB response for therapeutic gain in cancer patients.
Collapse
|
4
|
St-Cyr G, Penarroya D, Daniel L, Giguère H, Alkayyal AA, Tai LH. Remodeling the tumor immune microenvironment with oncolytic viruses expressing miRNAs. Front Immunol 2023; 13:1071223. [PMID: 36685574 PMCID: PMC9846254 DOI: 10.3389/fimmu.2022.1071223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
MiRNAs (miRNA, miR) play important functions in the tumor microenvironment (TME) by silencing gene expression through RNA interference. They are involved in regulating both tumor progression and tumor suppression. The pathways involved in miRNA processing and the miRNAs themselves are dysregulated in cancer. Consequently, they have become attractive therapeutic targets as underscored by the plethora of miRNA-based therapies currently in pre-clinical and clinical studies. It has been shown that miRNAs can be used to improve oncolytic viruses (OVs) and enable superior viral oncolysis, tumor suppression and immune modulation. In these cases, miRNAs are empirically selected to improve viral oncolysis, which translates into decreased tumor growth in multiple murine models. While this infectious process is critical to OV therapy, optimal immunomodulation is crucial for the establishment of a targeted and durable effect, resulting in cancer eradication. Through numerous mechanisms, OVs elicit a strong antitumor immune response that can also be further improved by miRNAs. They are known to regulate components of the immune TME and promote effector functions, antigen presentation, phenotypical polarization, and varying levels of immunosuppression. Reciprocally, OVs have the power to overcome the limitations encountered in canonical miRNA-based therapies. They deliver therapeutic payloads directly into the TME and facilitate their amplification through selective tumoral tropism and abundant viral replication. This way, off-target effects can be minimized. This review will explore the ways in which miRNAs can synergistically enhance OV immunotherapy to provide the basis for future therapeutics based on this versatile combination platform.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphné Penarroya
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre of the Centre Hospitalier de l'Universite de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Kousar K, Ahmad T, Abduh MS, Kanwal B, Shah SS, Naseer F, Anjum S. miRNAs in Regulation of Tumor Microenvironment, Chemotherapy Resistance, Immunotherapy Modulation and miRNA Therapeutics in Cancer. Int J Mol Sci 2022; 23:ijms232213822. [PMID: 36430305 PMCID: PMC9699074 DOI: 10.3390/ijms232213822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
miRNAs are 20-22 long nucleotide non-coding ribonucleic acid molecules critical to the modulation of molecular pathways. Immune evasion and the establishment of a suitable tumor microenvironment are two major contributors that support tumor invasion and metastasis. Tumorigenic miRNAs support these two hallmarks by desensitizing important tumor-sensitive regulatory cells such as dendritic cells, M1 macrophages, and T helper cells towards tumors while supporting infiltration and proliferation of immune cells like Treg cells, tumor-associated M2 macrophages that promote self-tolerance and chronic inflammation. miRNAs have a significant role in enhancing the efficacies of immunotherapy treatments like checkpoint blockade therapy, adoptive T cell therapy, and oncolytic virotherapy in cancer. A clear understanding of the role of miRNA can help scientists to formulate better-targeted treatment modalities. miRNA therapeutics have emerged as diverse class of nucleic acid-based molecules that can suppress oncogenic miRNAs and promote the expression of tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Correspondence: (K.K.); (T.A.)
| | - Tahir Ahmad
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Correspondence: (K.K.); (T.A.)
| | - Maisa S. Abduh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balquees Kanwal
- Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Syeda Saba Shah
- Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
7
|
Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat Immunol 2022; 23:1564-1576. [DOI: 10.1038/s41590-022-01345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
|
8
|
Raue R, Frank AC, Fuhrmann DC, de la Cruz-Ojeda P, Rösser S, Bauer R, Cardamone G, Weigert A, Syed SN, Schmid T, Brüne B. MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages. BIOLOGY 2022; 11:biology11030349. [PMID: 35336722 PMCID: PMC8945044 DOI: 10.3390/biology11030349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary The tumor microenvironment determines the prognosis and outcome for cancer patients. Herein, tumor-associated macrophages are not only highly abundant, but also play a crucial role in shaping a tumor-supporting microenvironment. Both their recruitment to the tumor as well as their functional polarization toward a pro-tumorigenic phenotype are mediated by tumor-derived factors including microRNAs. However, the impact of most microRNAs on the tumor cell-macrophage crosstalk remains to be elucidated. Thus, we reached out to investigate the role of hsa-miR-200c-3p (miR-200c) in tumor cell–macrophage interactions, as it was shown to be differentially expressed during cancer progression and metastasis. miR-200c was highly expressed in MCF7 breast tumor cells compared to macrophages. Furthermore, we identified a CD36-dependent uptake of miR-200c, derived from apoptotic tumor cells, into macrophages. In macrophages, elevated miR-200c levels reduced the expression of numerous migration-associated mRNAs, consequently reducing the capacity of macrophages to infiltrate into tumor spheroids. Finally, a distinct signature of miR-200c-repressed, predicted targets was identified, which strongly correlated with tumor infiltration. Targeting the miR-200c transfer from dying tumor cells to macrophages might therefore provide the opportunity to specifically modulate tumor-associated macrophage recruitment. Abstract Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, 41013 Seville, Spain;
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- Correspondence:
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.); (D.C.F.); (S.R.); (R.B.); (G.C.); (A.W.); (S.N.S.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|