1
|
Shi X, Wu X, Yang F, Hu X, Kang Q. Resveratrol Enhances CAR NK Cell Function in Cellular Immunotherapy of Non-Hodgkin Lymphoma. Mol Nutr Food Res 2025:e70112. [PMID: 40350977 DOI: 10.1002/mnfr.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Resveratrol (RSV) is a dietary polyphenolic compound with anticancer property. However, its clinical translation as an anticancer chemotherapeutic agent is hindered by multiple challenges. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy has emerged as a promising immunotherapeutic strategy against refractory malignancies. The role of RSV in CAR NK cell therapy remains unexplored. This study pioneers the investigation of RSV's role in CAR NK immunotherapy. Specially, RSV preconditioning improved CAR NK cells' resistance to oxidative stress, and augmented energetic metabolism in CAR NK cells. More importantly, the enhanced cytotoxicity against cancer cells of non-Hodgkin lymphoma (NHL) and stronger cytokine secretions were observed in RSV-treated anti-CD19 CAR NK cells. In vivo tracking revealed RSV extended CAR NK tissue residency and enhanced therapeutic efficacy in NHL xenografts. RSV-adjuvanted anti-CD19 CAR NK therapy achieved an obvious reduction in intraperitoneal tumor burden and improvement in the mice survival. Our mechanistic investigation revealed that nuclear factor erythroid 2-related factor 2 (NRF2) serves as a critical mediator in RSV-induced functional augmentation of CAR NK cells. These findings established RSV as a potential polyphenol adjuvant capable of improving CAR NK therapy, providing a translatable strategy for polyphenols to overcome current limitations in cancer therapy.
Collapse
Affiliation(s)
- Xuanren Shi
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen, China
| | - Xiaoqing Wu
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | | | - Xiaofang Hu
- Department of Orthopaedics and Traumatology, Shenzhen University General Hospital, Shenzhen, China
| | - Qingzheng Kang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Boichuk S, Galembikova A, Vollmer D. Enhancement of NK Cell Cytotoxic Activity and Immunoregulatory Effects of a Natural Product Supplement Across a Wide Age Span: A 30-Day In Vivo Human Study. Int J Mol Sci 2025; 26:2897. [PMID: 40243481 PMCID: PMC11988361 DOI: 10.3390/ijms26072897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The purpose of this study was to examine whether supplementation of ultra- and nanofiltered colostrum-based products, combined with egg yolk extract, nicotinamide mononucleotide (NMN), quercetin, alpha-ketoglutarate, white button mushroom, and celery seed extracts (the formula was patented by 4Life Research Company, USA and named as AgePro), modulate the functional activity of natural killer (NK) cells in vivo. We found that this supplement, taken orally in two capsules twice a day for 30 days, significantly enhanced the cytotoxic activity of NK cells. This was evidenced by the increased NK cell-mediated killing of carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled K562 human myeloid leukemia cells. As expected, this effect was dependent on the ratio between the effector (E) (e.g., peripheral blood mononuclear cells (PBMCs)) and target (T) (e.g., K562) cells, illustrating maximal killing of K562 cells at a 50:1 E/T ratio. Of note, increased NK-mediated killing of K562 cells after taking AgePro correlated with increased perforin release, evidenced by the CD107a degranulation assay. In concordance with these findings, taking of AgePro for 1 month increased production of several cytokines and chemokines, including IL-1β, IL-1Rα, IL-6, IL-8, IL-10, IFN-γ, TNF-α, G-CSF, PDGF-AA, PDGF-AB/BB, GRO, MCP-1, MCP-3, and MIP-1α, in PBMCs co-cultured with K562 cells. Of note, increased production of the cytokines correlated with the activation state of PBMCs, as evidenced by increased expression of the surface activation markers (e.g., the interleukin-2 receptor alpha chain-CD25). A strong correlation was found between NK-based cytotoxic activity and the production of IL-1β, IL-6, TNF-α, and MIP-1α. Importantly, no increase in the aforementioned soluble factors and activation markers was detected in PBMCs cultured alone, thereby illustrating the potent immunoregulatory activity of AgePro only in the presence of the harmful target cells. Hematological parameters also remained unchanged over the entire study period. Collectively, we show herein the significant enhancement of the cytotoxic activity of NK cells against target tumor cells after taking AgePro for 1 month. Notably, this effect was observed for all age groups, including young, adult, and elderly participants. Moreover, a significant improvement in NK cytotoxic activity was also detected for participants with low basal (e.g., before taking AgePro) numbers of NK-mediated killing. The enhancement of NK-based cytotoxicity was associated with an increased release of several cytokines and chemokines involved in regulating a broad spectrum of mechanisms outside the cell-mediated cytotoxicity and killing of target cells. Of note, spontaneous activation of PBMCs, particularly NK cells, was not detected after taking AgePro. Given that spontaneous activation of autoreactive lymphocytes is a feature associated with autoimmunity and taking into account our data illustrating the AgePro-induced activation of NK cells detected only in the presence of the potentially harmful cells, we conclude that our innovative product exhibits potent immunoregulatory activity and high safety profile.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia;
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia;
| | - David Vollmer
- Scientific Research Division, 4Life Research, Sandy, UT 84070, USA;
| |
Collapse
|
4
|
Xie Y, Yan F, Liu X, Yu L, Yan H, Shang Z, Kong Y, Yang Z. FoxO1 as a Hub in Immunosenescence Induced by Hepatocellular Carcinoma and the Effect of Yangyin Fuzheng Jiedu Prescription. Drug Des Devel Ther 2025; 19:1543-1560. [PMID: 40061815 PMCID: PMC11890352 DOI: 10.2147/dddt.s492576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
Purpose Yangyin Fuzheng Jiedu Prescription (YFJP) is a traditional Chinese medicine (TCM) used for the treatment of hepatocellular carcinoma (HCC). However, the potential mechanisms remain unclear. The objective of this study is to clarify the mechanism of action of YFJP in treating HCC. Methods By constructing networks, the active components and molecular targets of YFJP in the treatment of HCC were explored. The TCGA database was utilized to analyze the correlation between the core target and the overall survival (OS) of patients with HCC. The regulatory effect of YFJP on T cell was evaluated by detecting samples from patients with HCC. The molecular mechanism of YFJP in treating HCC was validated through in vivo and in vitro experiments. Results Constructing networks and analyse indicated that the key targets of YFJP in the treatment of HCC is FoxO1. Analysis of the HCC patient cohort in the TCGA database demonstrated that FoxO1 is an independent protective factor for overall survival in patients with HCC. Pathway enrichment analysis enriched FoxO signaling pathway and Cellular senescence pathway. Prospectively collecting samples from patients with HCC suggested that YFJP treatment increased the proportion of CD8+ T cells. In vivo experiments showed that YFJP treatment ameliorated CD8+ T cell senescence in tumor-bearing mice. Western blot, flow cytometry and multi-color immunofluorescence co-staining showed that YFJP treatment increased the expression of FoxO1 in CD8+ T cells. The primary CD8+ T cells were sorted and co-cultured with an HCC cell line in vitro. Inhibiting the expression of FoxO1 in CD8+T cells confirmed that FoxO1 is a key target for YFJP to improve the senescence of CD8+ T cell. Conclusion FoxO1 is the key molecular target of YFJP in improving CD8+ T cell senescence in HCC. This study preliminarily clarified the mechanism of YFJP in regulating immunosenescence of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Humans
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Animals
- Mice
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Male
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/metabolism
- Drug Screening Assays, Antitumor
- Female
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Capital Medical University Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Lozada JR, Elliott A, Evans MG, Wacker J, Storey KM, Egusa EA, Zorko NA, Kumar A, Crymes A, Heath EI, Carneiro BA, Soares HP, Cichocki F, Miller JS, Lou E, Beltran H, Antonarakis ES, Ryan CJ, Hwang JH. Expression Patterns of DLL3 across Neuroendocrine and Non-neuroendocrine Neoplasms Reveal Broad Opportunities for Therapeutic Targeting. CANCER RESEARCH COMMUNICATIONS 2025; 5:318-326. [PMID: 39874041 PMCID: PMC11827001 DOI: 10.1158/2767-9764.crc-24-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
SIGNIFICANCE DLL3-targeted therapies have recently shown robust clinical efficacy in aggressive neuroendocrine cancers, positioning them to fulfill a great unmet need in these settings. Here, we examine the clinical and biological correlates of DLL3 expression in both neuroendocrine and non-neuroendocrine cancers. Our findings may stimulate the development and application of DLL3-targeted therapies, as well as other precision therapies, in neuroendocrine cancers and beyond.
Collapse
Affiliation(s)
- John R. Lozada
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Kathleen M. Storey
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emily A. Egusa
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota
| | - Nicholas A. Zorko
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Anthony Crymes
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University Karmanos Cancer Institute, Detroit, Michigan
| | | | | | - Frank Cichocki
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emil Lou
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | | | - Emmanuel S. Antonarakis
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Charles J. Ryan
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Justin H. Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
6
|
Camillo L, Zavattaro E, Savoia P. Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:254. [PMID: 40005371 PMCID: PMC11857428 DOI: 10.3390/medicina61020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is a precursor to essential cofactors nicotinamide adenine dinucleotide (NAD⁺) and NADPH. NAD⁺ is integral to numerous cellular processes, including metabolism regulation, ATP production, mitochondrial respiration, reactive oxygen species (ROS) management, DNA repair, cellular senescence, and aging. NAM supplementation has demonstrated efficacy in restoring cellular energy, repairing DNA damage, and inhibiting inflammation by suppressing pro-inflammatory cytokines release. Due to its natural presence in a variety of foods and its excellent safety profile-even at high doses of up to 3 g/day-NAM is extensively used in the chemoprevention of non-melanoma skin cancers and the treatment of dermatological conditions such as blistering diseases, atopic dermatitis, rosacea, and acne vulgaris. Recently, its anti-aging properties have elevated NAM's prominence in skincare formulations. Beyond DNA repair and energy replenishment, NAM significantly impacts oxidative stress reduction, cell cycle regulation, and apoptosis modulation. Despite these multifaceted benefits, the comprehensive molecular mechanisms underlying NAM's actions remain not fully elucidated. This review consolidates recent research to shed light on these mechanisms, emphasizing the critical role of NAM in cellular health and its therapeutic potential. By enhancing our understanding, this work underscores the importance of continued exploration into NAM's applications, aiming to inform future clinical practices and skincare innovations.
Collapse
Affiliation(s)
| | | | - Paola Savoia
- Department of Health Science, Università del Piemonte Orientale, 28100 Novara, Italy; (L.C.); (E.Z.)
| |
Collapse
|
7
|
Ghobadi A, Bachanova V, Patel K, Park JH, Flinn I, Riedell PA, Bachier C, Diefenbach CS, Wong C, Bickers C, Wong L, Patel D, Goodridge J, Denholt M, Valamehr B, Elstrom RL, Strati P. Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: a phase 1, first-in-human trial. Lancet 2025; 405:127-136. [PMID: 39798981 PMCID: PMC11827677 DOI: 10.1016/s0140-6736(24)02462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND FT596 is an induced pluripotent stem-cell (iPSC)-derived chimeric antigen receptor (CAR) natural killer (NK) cell therapy with three antitumour modalities: a CD19 CAR; a high-affinity, non-cleavable CD16 Fc receptor; and interleukin-15-interleukin-15 receptor fusion. In this study, we aimed to determine the recommended phase 2 dose (RP2D) and evaluate the safety and tolerability of FT596 as monotherapy and in combination with rituximab. We also aimed to evaluate the antitumour activity and characterise the pharmacokinetics of FT596 as monotherapy and in combination with rituximab. METHODS In this phase 1, first-in-human trial, we evaluated FT596 in patients with relapsed or refractory B-cell lymphoma at nine sites in the USA. Patients who had received at least one previous systemic therapy and had no curative treatment options were eligible for inclusion. FT596 was administered after conditioning chemotherapy without rituximab (regimen A) or combined with rituximab (regimen B). The study consisted of a dose-escalation phase using a 3 + 3 design, with dose escalation commencing at 3 × 107 viable cells as a single dose on day 1 and done independently for individual regimens. A treatment cycle consisted of conditioning chemotherapy with cyclophosphamide (500 mg/m2) and fludarabine (30 mg/m2) intravenously on days -5 to -3, followed by FT596 administered at various doses and schedules, without (regimen A) or with (regimen B) a single dose of rituximab (375 mg/m2) intravenously on day -4. Supportive care was determined by the treating investigator. Patients were observed for dose-limiting adverse events for 28 days. Patients who tolerated therapy and derived clinical benefit could receive subsequent cycles of study treatment, with modification of conditioning chemotherapy dose if clinically indicated. The dose-expansion phase evaluated additional patients at selected doses and dosing schedules that had been found to be tolerable. The primary endpoints of the study were the incidence and nature of dose-limiting toxicities within each dose-escalation cohort to determine the maximum tolerated dose or maximum assessed dose to establish the RP2D and the incidence, nature, and severity of adverse events, with severity determined according to National Cancer Institute Common Toxicity Criteria and Adverse Events version 5·0. The trial was registered with ClinicalTrials.gov, NCT04245722. FINDINGS Between March 19, 2020, and Jan 12, 2023, 86 patients with B-cell lymphoma received FT596 on regimen A (n=18) or regimen B (n=68). 22 (26%) of 86 patients were female and 72 (84%) of 86 patients were White. Patients had received a median of four previous lines of therapy (range 1-11) and 33 (38%) of 86 patients had received previous CAR T-cell therapy. The maximum tolerated dose was not reached. Cytokine release syndrome was reported in one (6%) of 18 patients (maximum grade 1) on regimen A and nine (13%) of 68 patients on regimen B (six with maximum grade 1 and three with grade 2). Neurotoxicity was not observed. INTERPRETATION FT596 was well tolerated as monotherapy or with rituximab and induced deep and durable responses in patients with indolent and aggressive lymphomas and the RP2D was preliminarily identified to be 1·8 × 109 cells for three doses per cycle. This study supports that cell therapy using iPSC-derived, gene-modified NK cells is a potent platform for cancer treatment and suggests that such a platform might address limitations of currently available immune cell therapies, including manufacturing time, heterogeneity, access, and cost. FUNDING Fate Therapeutics.
Collapse
Affiliation(s)
- Armin Ghobadi
- Washington University School of Medicine, Saint Louis, MO, USA.
| | | | | | - Jae H Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Flinn
- Tennessee Oncology/OneOncology, Nashville, TN, USA
| | - Peter A Riedell
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, USA
| | - Carlos Bachier
- Sarah Cannon Center for Blood Cancer, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | - Paolo Strati
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Hwang I, Nikoli H, Paik J. Functional Motif Discovery in FOXO1 Through CRISPR/Cas9 Exon Tiling Scan. Methods Mol Biol 2025; 2871:57-68. [PMID: 39565578 DOI: 10.1007/978-1-0716-4217-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The study of FOXO1, a pivotal transcription factor, has garnered significant attention due to its critical role in diverse cellular processes, including lineage differentiation, apoptosis, cell cycle regulation, and metabolism. To comprehensively understand the functional intricacies of FOXO1, an innovative approach is essential. This chapter highlights employing CRISPR exon scanning as a strategic tool to dissect the functional domains of FOXO1 and unravel its diverse regulatory functions. CRISPR exon scan allows for the identification of functionally important domains based on the levels of sgRNA depletion or enrichment within the FOXO1 gene, providing a unique opportunity to investigate the domain function under relevant biological contexts. This approach enables the systematic exploration of FOXO1's structural domains, shedding light on how distinct regions contribute to its overall function. The comprehensive exon scan analysis using CRISPR technology allows gaining a nuanced understanding of FOXO1's functional diversity and regulatory mechanisms.
Collapse
Affiliation(s)
- Inah Hwang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| | - Helgi Nikoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- The Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Yang R, Zhu M, Fan S, Zhang J. Niacin intake and mortality (total and cardiovascular disease) in patients with cardiovascular disease: Insights from NHANES 2003-2018. Nutr J 2024; 23:123. [PMID: 39415265 PMCID: PMC11481813 DOI: 10.1186/s12937-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) poses a significant challenge to global public health. Dietary intervention therapy offers high cost-effectiveness for treating CVD. Currently, there is limited research on the dietary niacin intake and survival of CVD patients. This study aims to examine the association of dietary niacin intake with long-term survival in people with CVD. METHODS A nationally representative sample of 4,377 diabetes subjects was drawn from the NHANES (National Health and Nutrition Examination Survey) data collected between 2003 and 2018. Dietary niacin intake in this study represents either the average of the two recalls or the value from one recall (if only one recall was available for a participant). Weighted Cox proportional hazards regression models were used to calculate hazard ratios (HRs) and 95% CIs to examine the associations between dietary niacin intake and the risk of all-cause and CVD mortality. RESULTS After adjustment for multiple covariates, HRs and 95% CIs in model 3 indicated that participants in the highest quartile (Quartile 4) of dietary niacin intake were at lower risk for all-cause mortality (HR = 0.74, 95% CI: 0.60-0.90, P for trend = 0.010) and CVD mortality (HR = 0.67, 95% CI:0.51-0.89, P for trend = 0.020). CONCLUSION Higher dietary niacin intake may be associated with a reduced risk of all-cause and cardiovascular disease mortality among CVD patients. Additionally, significant interactions were found between dietary niacin intake and BMI as well as vitamin B12 subgroups.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, Harbin, China
| | - Menghan Zhu
- The Baoding Center for Disease Control and Prevention, Baoding City, Hebei Province, China
| | - Shuzhen Fan
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, Harbin, China
| | - Jing Zhang
- The Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 201100, China.
| |
Collapse
|
11
|
Cao AP, Wang YY, Shen YY, Liu YH, Liu JY, Wang Y, Guo Y, Wang RB, Xie BY, Pan X, Li AL, Xia Q, Zhang WN, Zhou T. Nicotinamide Suppresses Hyperactivation of Dendritic Cells to Control Autoimmune Disease through PARP Dependent Signaling. Nutrients 2024; 16:2665. [PMID: 39203802 PMCID: PMC11356829 DOI: 10.3390/nu16162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Dendritic cells (DCs) are crucial in initiating and shaping both innate and adaptive immune responses. Clinical studies and experimental models have highlighted their significant involvement in various autoimmune diseases, positioning them as promising therapeutic targets. Nicotinamide (NAM), a form of vitamin B3, with its anti-inflammatory properties, has been suggested, while the involvement of NAM in DCs regulation remains elusive. Here, through analyzing publicly available databases, we observe substantial alterations in NAM levels and NAM metabolic pathways during DCs activation. Furthermore, we discover that NAM, but not Nicotinamide Mononucleotide (NMN), significantly inhibits DCs over-activation in vitro and in vivo. The suppression of DCs hyperactivation effectively alleviates symptoms of psoriasis. Mechanistically, NAM impairs DCs activation through a Poly (ADP-ribose) polymerases (PARPs)-NF-κB dependent manner. Notably, phosphoribosyl transferase (NAMPT) and PARPs are significantly upregulated in lipopolysaccharide (LPS)-stimulated DCs and psoriasis patients; elevated NAMPT and PARPs expression in psoriasis patients correlates with higher psoriasis area and severity index (PASI) scores. In summary, our findings underscore the pivotal role of NAM in modulating DCs functions and autoimmune disorders. Targeting the NAMPT-PARP axis emerges as a promising therapeutic approach for DC-related diseases.
Collapse
Affiliation(s)
- Ai-Ping Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yun-Ying Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yan-Yan Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yan-Hong Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Jia-Yu Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yue Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Rui-Bo Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Bo-Yang Xie
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Xin Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Ai-Ling Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Tao Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| |
Collapse
|
12
|
Babighian S, Gattazzo I, Zanella MS, Galan A, D’Esposito F, Musa M, Gagliano C, Lapenna L, Zeppieri M. Nicotinamide: Bright Potential in Glaucoma Management. Biomedicines 2024; 12:1655. [PMID: 39200120 PMCID: PMC11352092 DOI: 10.3390/biomedicines12081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Glaucoma is a major cause of incurable ocular morbidity and poses significant challenges in its management due to the limited treatment options and potential adverse effects. Nicotinamide, a naturally occurring diet-rich nutrient, has emerged as a promising therapeutic agent for glaucoma, offering neuroprotective effects and the potential modulation of intraocular pressure (IOP) regulation pathways. This comprehensive review sought to analyze the current literature on nicotinamide in glaucoma management, exploring its mechanisms of action, efficacy, and safety profile. METHODS A systematic search of the PubMed database was conducted to identify relevant records on the therapeutic actions of nicotinamide in ocular hypertension and glaucoma. Publications evaluating nicotinamide's effects on retinal ganglion cells (RGCs), optic nerve function, IOP regulation, and neuroinflammatory pathways were included. RESULTS The literature review revealed the preclinical evidence supporting nicotinamide's neuroprotective effects on RGCs, the preservation of optic nerve integrity, and the modulation of glaucoma-associated neuroinflammation. Additionally, nicotinamide may exert IOP-lowering effects through its influence on ocular blood flow and aqueous humor dynamics. CONCLUSIONS Nicotinamide holds promise as a novel therapeutic approach in glaucoma management, offering potential neuroprotective and IOP-lowering effects. The authors recommend more research to determine the nicotinamide efficacy, safe dosing parameters, and any long-term safety concerns in glaucoma patients.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant’Antonio, Azienda Ospedaliera, 35127 Padova, Italy; (S.B.)
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant’Antonio, Azienda Ospedaliera, 35127 Padova, Italy; (S.B.)
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant’Antonio, Azienda Ospedaliera, 35127 Padova, Italy; (S.B.)
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant’Antonio, Azienda Ospedaliera, 35127 Padova, Italy; (S.B.)
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
- Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Lucia Lapenna
- U.O.C Oculistica, Ospedale “DI Venere”, 70012 Bari, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
13
|
Graham LV, Khakoo SI, Blunt MD. NK Cells in the Lymph Nodes and Their Role in Anti-Tumour Immunity. Biomedicines 2024; 12:1667. [PMID: 39200132 PMCID: PMC11351147 DOI: 10.3390/biomedicines12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The lymph nodes are vital to enable adaptive immune responses to infection. Natural killer (NK) cells are cytotoxic lymphocytes that directly kill cancer cells and modulate the activation of other immune cells during anti-tumour immune response. NK cells in the lymph nodes are involved in the regulation of T-cell and B-cell populations and the clearance of viral infections. In solid tumours, lymph nodes are a frequent site of metastasis and immune cell priming, whilst in haematological malignancies, tumour cells can proliferate in the lymph nodes. Thus, lymph nodes are an important site in anti-tumour immunity and therapy resistance. It is therefore crucial to identify strategies to increase recruitment and overcome suppression of NK cells in the lymph node microenvironment to improve tumour clearance. In this review, we summarise the literature interrogating NK cell phenotype and function in the lymph nodes in the context of infection and cancer and evaluate both current and potential strategies to mobilise and activate NK cells within the lymph nodes of cancer patients.
Collapse
Affiliation(s)
| | | | - Matthew D. Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
14
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Keener AB. Natural killer cells show their cancer-fighting worth. Nature 2024; 629:S4-S6. [PMID: 38811700 DOI: 10.1038/d41586-024-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
16
|
Oh HJ, Bae SC, Oh IJ, Park CK, Jung KM, Kim DM, Lee JW, Kang CK, Park IY, Kim YC. Nicotinamide in Combination with EGFR-TKIs for the Treatment of Stage IV Lung Adenocarcinoma with EGFR Mutations: A Randomized Double-Blind (Phase IIb) Trial. Clin Cancer Res 2024; 30:1478-1487. [PMID: 38593249 DOI: 10.1158/1078-0432.ccr-23-3059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE RUNX3 is a tumor suppressor gene, which is inactivated in approximately 70% of lung adenocarcinomas. Nicotinamide, a sirtuin inhibitor, has demonstrated potential in re-activating epigenetically silenced RUNX3 in cancer cells. This study assessed the therapeutic benefits of combining nicotinamide with first-generation EGFR-tyrosine kinase inhibitors (TKI) for patients with stage IV lung cancer carrying EGFR mutations. PATIENTS AND METHODS We assessed the impact of nicotinamide on carcinogen-induced lung adenocarcinomas in mice and observed that nicotinamide increased RUNX3 levels and inhibited lung cancer growth. Subsequently, 110 consecutive patients with stage IV lung cancer who had EGFR mutations were recruited: 70 females (63.6%) and 84 never-smokers (76.4%). The patients were randomly assigned to receive either nicotinamide (1 g/day, n = 55) or placebo (n = 55). The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. RESULTS After a median follow-up of 54.3 months, the nicotinamide group exhibited a median PFS of 12.7 months [95% confidence interval (CI), 10.4-18.3], while the placebo group had a PFS of 10.9 months (9.0-13.2; P = 0.2). The median OS was similar in the two groups (31.0 months with nicotinamide vs. 29.4 months with placebo; P = 0.2). Notably, subgroup analyses revealed a significant reduction in mortality risk for females (P = 0.01) and never-smokers (P = 0.03) treated with nicotinamide. CONCLUSIONS The addition of nicotinamide with EGFR-TKIs demonstrated potential improvements in PFS and OS, with notable survival benefits for female patients and those who had never smoked (ClinicalTrials.gov Identifier: NCT02416739).
Collapse
Affiliation(s)
- Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| | - Kyoung-Mi Jung
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Da-Mi Kim
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Chang Kyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun, Jeonnam, South Korea
| |
Collapse
|
17
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Shang J, Hu S, Wang X. Targeting natural killer cells: from basic biology to clinical application in hematologic malignancies. Exp Hematol Oncol 2024; 13:21. [PMID: 38396050 PMCID: PMC10885621 DOI: 10.1186/s40164-024-00481-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Natural killer (NK) cell belongs to innate lymphoid cell family that contributes to host immunosurveillance and defense without pre-immunization. Emerging studies have sought to understand the underlying mechanism behind NK cell dysfunction in tumor environments, and provide numerous novel therapeutic targets for tumor treatment. Strategies to enhance functional activities of NK cell have exhibited promising efficacy and favorable tolerance in clinical treatment of tumor patients, such as immune checkpoint blockade (ICB), chimeric antigen receptor NK (CAR-NK) cell, and bi/trispecific killer cell engager (BiKE/TriKE). Immunotherapy targeting NK cell provides remarkable advantages compared to T cell therapy, including a decreased rate of graft versus-host disease (GvHD) and neurotoxicity. Nevertheless, advanced details on how to support the maintenance and function of NK cell to obtain better response rate and longer duration still remain to be elucidated. This review systematically summarizes the profound role of NK cells in tumor development, highlights up-to-date advances and current challenges of therapy targeting NK cell in the clinical treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
19
|
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. Nature 2024; 626:727-736. [PMID: 38383621 DOI: 10.1038/s41586-023-06945-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| | - Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Stéphanie Cornen
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | |
Collapse
|
20
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
21
|
Chiarugi A. Glaucoma: neuroprotection with NAD-based therapeutic interventions. Trends Pharmacol Sci 2023; 44:869-879. [PMID: 37880000 DOI: 10.1016/j.tips.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Clinical evidence shows that intraocular hypertension is not the primary pathogenetic event of glaucoma, whereas early neurodegeneration of retinal ganglion cells (RGCs) represents a key therapeutic target. Unfortunately, failure of clinical trials with neuroprotective agents, in particular those testing the anti-excitotoxic drug memantine, generated widespread skepticism regarding the possibility of counteracting neurodegeneration during glaucoma. New avenues for neuroprotective approaches to counteract glaucoma evolution have been opened by the identification of a programmed axonal degeneration (PAD) program triggered by increased nicotinamide mononucleotide (NMN)/NAD concentration ratio. Positive results of proof-of-concept clinical studies based on sustaining axonal NAD homeostasis facilitated the design of Phase 2/3 trials. Here, I share my opinion on how neurodegeneration in glaucoma should be put into context, together with an appraisal of the pharmacological rationale of NAD-supporting therapies for use during glaucoma progression.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy; Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
22
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|