1
|
Savelieva EM, Arkhipov DV, Kozinova AV, Romanov GA, Lomin SN. Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2025; 14:1485. [PMID: 40431050 PMCID: PMC12115143 DOI: 10.3390/plants14101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are numerous signaling pathways that use, in whole or in part, this set of proteins to transduce diverse signals. Among them, the cytokinin signal transduction system is the best-studied pathway, which utilizes the entire MSP cascade. Focusing on this system, we review here protein-protein interaction of MSP components that are not directly related to cytokinin signaling. These interactions are likely to play an essential role in hormonal crosstalk and may be promising targets for fine-tuning plant development. In addition, in light of recent advances in the study of cytokinin signaling, we discuss new insights into the putative molecular mechanisms that mediate the pleiotropic action of cytokinins and provide specificity for distinct MSP signals. A detailed network of known non-canonical protein-protein interactions related to cytokinin signaling was demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Sergey N. Lomin
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow 127276, Russia; (E.M.S.); (A.V.K.)
| |
Collapse
|
2
|
Arkhipov DV, Lomin SN, Romanov GA. A Model of the Full-Length Cytokinin Receptor: New Insights and Prospects. Int J Mol Sci 2023; 25:73. [PMID: 38203244 PMCID: PMC10779265 DOI: 10.3390/ijms25010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined.
Collapse
Affiliation(s)
| | | | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia; (D.V.A.); (S.N.L.)
| |
Collapse
|
3
|
Rasool A, Azeem F, Ur-Rahman M, Rizwan M, Hussnain Siddique M, Bay DH, Binothman N, Al Kashgry NAT, Qari SH. Omics-assisted characterization of two-component system genes from Gossypium Raimondii in response to salinity and molecular interaction with abscisic acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1138048. [PMID: 37063177 PMCID: PMC10102465 DOI: 10.3389/fpls.2023.1138048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The two-component system (TCS) genes are involved in a wide range of physiological processes in prokaryotes and eukaryotes. In plants, the TCS elements help in a variety of functions, including cell proliferation, response to abiotic and biotic stresses, leaf senescence, nutritional signaling, and division of chloroplasts. Three different kinds of proteins make up the TCS system in plants. These are known as HKs (histidine kinases), HPs (histidine phosphotransfer), and RRs (response regulators). We investigated the genome of Gossypium raimondii and discovered a total of 59 GrTCS candidates, which include 23 members of the HK family, 8 members of the HP family, and 28 members of the RR family. RR candidates are further classified as type-A (6 members), type-B (11 members), type-C (2 members), and pseudo-RRs (9 members). The GrTCS genes were analyzed in comparison with the TCS components of other plant species such as Arabidopsis thaliana, Cicer arietinum, Sorghum bicolor, Glycine max, and Oryza sativa. This analysis revealed both conservation and changes in their structures. We identified 5 pairs of GrTCS syntenic homologs in the G. raimondii genome. All 59 TCS genes in G. raimondii are located on all thirteen chromosomes. The GrTCS promoter regions have several cis-regulatory elements, which function as switches and respond to a wide variety of abiotic stresses. RNA-seq and real-time qPCR analysis showed that the majority of GrTCS genes are differentially regulated in response to salt and cold stress. 3D structures of GrTCS proteins were predicted to reveal the specific function. GrTCSs were docked with abscisic acid to assess their binding interactions. This research establishes the groundwork for future functional studies of TCS elements in G. raimondii, which will further focus on stress resistance and overall development.
Collapse
Affiliation(s)
- Asima Rasool
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahmood Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Daniyah Habiballah Bay
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | | | - Sameer H. Qari
- Department of Biology, A1-Jumum University College, Umm A1-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
5
|
Li T, Xiu Q, Wang Q, Wang J, Duan Y, Zhou M. Functional dissection of individual domains in group III histidine kinase Sshk1p from the phytopathogenic fungus Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104914. [PMID: 34446190 DOI: 10.1016/j.pestbp.2021.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A conserved kinase domain and phosphoryl group receiver domain at the C-terminus and poly-HAMP domains at the N-terminus comprise the structural components of the group III HK which was considered as a potential antifungal target. However, the roles of individual domains in the function of group III HKs have rarely been dissected in fungi. In this study, we dissected the roles of individual domains to better understand the function of Sshk1p, a group III HK from Sclerotinia sclerotiorum. The results suggest that individual domains play different roles in the functionality of Sshk1p and are implicated in the regulation of mycelial growth, sclerotia formation, pathogenicity. And the mutants of each domain in Sshk1 showed significantly increased sensitivity to hyperosmotic stress. However, the mutants of each domain in Sshk1 showed high resistance to fludioxonil and dimethachlon which suggested that all nine domains of Sshk1p were indispensable for susceptibility to fludioxonil and dimethachlon. Moreover, deletion of each individual domain in Sshk1 cancelled intracellular glycerol accumulation and increased SsHog1p phosphorylation level triggered by NaCl and fludioxonil, suggesting that all the domains of Sshk1 were essential for Sshk1-mediated SsHog1p phosphorylation and subsequent polyol accumulation in response to fludioxonil and hyperosmotic stress.
Collapse
Affiliation(s)
- Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xiu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Research Center of Pesticide Resistance & Management Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Méndez-Gómez M, Castro-Mercado E, López-Bucio J, García-Pineda E. Azospirillum brasilense Sp245 triggers cytokinin signaling in root tips and improves biomass accumulation in Arabidopsis through canonical cytokinin receptors. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1639-1649. [PMID: 34539107 PMCID: PMC8405788 DOI: 10.1007/s12298-021-01036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/12/2023]
Abstract
The plant growth promoting rhizobacterium Azospirillum brasilense Sp245 enhances biomass production in cereals and horticultural species and is an interesting model to study the physiology of the phytostimulation program. Although auxin production by Azospirillum appears to be critical for root architectural readjustments, the role of cytokinins in the growth promoting effects of Azospirillum remains unclear. Here, Arabidopsis thaliana seedlings were co-cultivated in vitro with A. brasilense Sp245 to assess whether direct contact of roots with bacterial colonies or exposure to the bacterial volatiles using divided Petri plates would affect biomass production and root organogenesis. Both interaction types increased root and shoot fresh weight but had contrasting effects on primary root length, lateral root formation and root hair development. Cell proliferation in root meristems analyzed with the CYCB1;1::GUS reporter decreased over time with direct contact, but was augmented by plant exposure to volatiles. Noteworthy, the expression of the cytokinin-inducible reporters TCS::GFP and ARR5::GUS increased in root tips in response to bacterial contact, without being affected by the volatiles. In A. thaliana having single (cre1-12, ahk2-2, ahk3-3), double (cre1-12/ahk2-2, cre1-12/ahk3-3, ahk2-2/ahk3-3) or triple (cre1-12/ahk2-2/ahk3-3) mutations in canonical cytokinin receptors, only the triple mutant had a marked effect on plant growth in response to A. brasilense. These results show that different mechanisms are elicited by A. brasilense, which influence the cytokinin-signaling pathway.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1´, Morelia,
Michoacán 58040 México
| |
Collapse
|
7
|
Nghia DHT, Chuong NN, Hoang XLT, Nguyen NC, Tu NHC, Huy NVG, Ha BTT, Nam TNH, Thu NBA, Tran LSP, Thao NP. Heterologous Expression of a Soybean Gene RR34 Conferred Improved Drought Resistance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E494. [PMID: 32290594 PMCID: PMC7238260 DOI: 10.3390/plants9040494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Two-component systems (TCSs) have been identified as participants in mediating plant response to water deficit. Nevertheless, insights of their contribution to plant drought responses and associated regulatory mechanisms remain limited. Herein, a soybean response regulator (RR) gene RR34, which is the potential drought-responsive downstream member of a TCS, was ectopically expressed in the model plant Arabidopsis for the analysis of its biological roles in drought stress response. Results from the survival test revealed outstanding recovery ratios of 52%-53% in the examined transgenic lines compared with 28% of the wild-type plants. Additionally, remarkedly lower water loss rates in detached leaves as well as enhanced antioxidant enzyme activities of catalase and superoxide dismutase were observed in the transgenic group. Further transcriptional analysis of a subset of drought-responsive genes demonstrated higher expression in GmRR34-transgenic plants upon exposure to drought, including abscisic acid (ABA)-related genes NCED3, OST1, ABI5, and RAB18. These ectopic expression lines also displayed hypersensitivity to ABA treatment at germination and post-germination stages. Collectively, these findings indicated the ABA-associated mode of action of GmRR34 in conferring better plant performance under the adverse drought conditions.
Collapse
Affiliation(s)
- Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Huu Cam Tu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Van Gia Huy
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Bui Thi Thanh Ha
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thai Nguyen Hoang Nam
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Hofmann A, Müller S, Drechsler T, Berleth M, Caesar K, Rohr L, Harter K, Groth G. High-Level Expression, Purification and Initial Characterization of Recombinant Arabidopsis Histidine Kinase AHK1. PLANTS 2020; 9:plants9030304. [PMID: 32121559 PMCID: PMC7154865 DOI: 10.3390/plants9030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/16/2023]
Abstract
Plants employ a number of phosphorylation cascades in response to a wide range of environmental stimuli. Previous studies in Arabidopsis and yeast indicate that histidine kinase AHK1 is a positive regulator of drought and osmotic stress responses. Based on these studies AHK1 was proposed a plant osmosensor, although the molecular basis of plant osmosensing still remains unknown. To understand the molecular role and signaling mechanism of AHK1 in osmotic stress, we have expressed and purified full-length AHK1 from Arabidopsis in a bacterial host to allow for studies on the isolated transmembrane receptor. Purification of the recombinant protein solubilized from the host membranes was achieved in a single step by metal-affinity chromatography. Analysis of the purified AHK1 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting show a single band indicating that the preparation is highly pure and devoid of contaminants or degradation products. In addition, gel filtration experiments indicate that the preparation is homogenous and monodisperse. Finally, CD-spectroscopy, phosphorylation activity, dimerization studies, and protein–protein interaction with plant phosphorylation targeting AHP2 demonstrate that the purified protein is functionally folded and acts as phospho-His or phospho-Asp phosphatase. Hence, the expression and purification of recombinant AHK1 reported here provide a basis for further detailed functional and structural studies of the receptor, which might help to understand plant osmosensing and osmosignaling on the molecular level.
Collapse
Affiliation(s)
- Alexander Hofmann
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Sophia Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Thomas Drechsler
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Mareike Berleth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Katharina Caesar
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Leander Rohr
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
- Correspondence: ; Tel.: +49-211-811-2822
| |
Collapse
|
9
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
10
|
Jacob S, Foster AJ, Yemelin A, Thines E. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen 2014; 3:668-87. [PMID: 25103193 PMCID: PMC4234259 DOI: 10.1002/mbo3.197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2 -treatment. Additionally, it was monitored that NaNO2 -treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p.
Collapse
Affiliation(s)
- Stefan Jacob
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Andrew J Foster
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Alexander Yemelin
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
- Johannes Gutenberg-University Mainz, Institute of Biotechnology and Drug ResearchDuesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
11
|
Thu NBA, Hoang XLT, Doan H, Nguyen TH, Bui D, Thao NP, Tran LSP. Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 2014. [PMID: 24985975 DOI: 10.1007/s11105-014-0825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NAC transcription factors are known to be involved in regulation of plant responses to drought stress. In this study, the expression of 23 drought-responsive GmNAC genes was assessed in the shoot tissues of DT51 and MTD720, the two soybean varieties with contrasting drought-responsive phenotypes, by real-time quantitative PCR (RT-qPCR) under normal and drought conditions. Results indicated that expression profile of GmNAC genes was genotype-dependent, and six GmNACs (GmNAC019, 043, 062, 085, 095 and 101) had higher transcript levels in the shoots of the drought-tolerant DT51 in comparison with the drought-sensitive MTD720 under drought. Our study suggests a positive correlation between the higher drought tolerance degree of DT51 versus MTD720 and the up-regulation of at least these six drought-responsive GmNACs in the shoot tissues. Furthermore, on the basis of our analysis, three genes, GmNAC043, 085 and 101, were identified as promising candidates for development of drought-tolerant soybean cultivars by genetic engineering.
Collapse
Affiliation(s)
- Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | |
Collapse
|
12
|
The α2δ subunits of voltage-gated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013. [DOI: 10.1016/j.bbamem.2012.11.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 2012; 13:542-55. [PMID: 22805911 DOI: 10.1038/nrn3311] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The voltage-gated calcium channel α(2)δ and β subunits are traditionally considered to be auxiliary subunits that enhance channel trafficking, increase the expression of functional calcium channels at the plasma membrane and influence the channels' biophysical properties. Accumulating evidence indicates that these subunits may also have roles in the nervous system that are not directly linked to calcium channel function. For example, β subunits may act as transcriptional regulators, and certain α(2)δ subunits may function in synaptogenesis. The aim of this Review is to examine both the classic and novel roles for these auxiliary subunits in voltage-gated calcium channel function and beyond.
Collapse
|
14
|
Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R. Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. THE NEW PHYTOLOGIST 2012; 194:168-180. [PMID: 22256998 DOI: 10.1111/j.1469-8137.2011.04033.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• The ability of plants to adapt to multiple stresses imposed by the natural environment requires cross-talk and fine-tuning of stress signalling pathways. The hybrid histidine kinase Arabidopsis histidine kinase 5 (AHK5) is known to mediate stomatal responses to exogenous and endogenous signals in Arabidopsis thaliana. The purpose of this study was to determine whether the function of AHK5 in stress signalling extends beyond stomatal responses. • Plant growth responses to abiotic stresses, tissue susceptibility to bacterial and fungal pathogens, and hormone production and metabolism of reactive oxygen species were monitored in a T-DNA insertion mutant of AHK5. • The findings of this study indicate that AHK5 positively regulates salt sensitivity and contributes to resistance to the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. • This is the first report of a role for AHK5 in the regulation of survival following challenge by a hemi-biotrophic bacterium and a necrotrophic fungus, as well as in the growth response to salt stress. The function of AHK5 in regulating the production of hormones and redox homeostasis is discussed.
Collapse
Affiliation(s)
- Jasmine Pham
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jasmine Liu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - John W Mansfield
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Radhika Desikan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Pancaldi V, Saraç ÖS, Rallis C, McLean JR, Převorovský M, Gould K, Beyer A, Bähler J. Predicting the fission yeast protein interaction network. G3 (BETHESDA, MD.) 2012; 2:453-67. [PMID: 22540037 PMCID: PMC3337474 DOI: 10.1534/g3.111.001560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/31/2012] [Indexed: 12/03/2022]
Abstract
A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).
Collapse
Affiliation(s)
- Vera Pancaldi
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Ömer S. Saraç
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology (TU Dresden), Dresden 01307, Germany, and
| | - Charalampos Rallis
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Janel R. McLean
- Howard Hughes Medical Institute
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Martin Převorovský
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Kathleen Gould
- Howard Hughes Medical Institute
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Andreas Beyer
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology (TU Dresden), Dresden 01307, Germany, and
| | - Jürg Bähler
- Department of Genetics, Evolution, and Environment and
- UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Schliebner I, Pribil M, Zühlke J, Dietzmann A, Leister D. A Survey of Chloroplast Protein Kinases and Phosphatases in Arabidopsis thaliana. Curr Genomics 2011; 9:184-90. [PMID: 19440515 PMCID: PMC2679645 DOI: 10.2174/138920208784340740] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 01/09/2023] Open
Abstract
Protein phosphorylation is a major mode of regulation of metabolism, gene expression and cell architecture. In chloroplasts, reversible phosphorylation of proteins is known to regulate a number of prominent processes, for instance photosynthesis, gene expression and starch metabolism. The complements of the involved chloroplast protein kinases (cpPKs) and phosphatases (cpPPs) are largely unknown, except 6 proteins (4 cpPKs and 2 cpPPs) which have been experimentally identified so far. We employed combinations of programs predicting N-terminal chloroplast transit peptides (cTPs) to identify 45 tentative cpPKs and 21 tentative cpPPs. However, test sets of 9 tentative cpPKs and 13 tentative cpPPs contain only 2 and 7 genuine cpPKs and cpPPs, respectively, based on experimental subcellular localization of their N-termini fused to the reporter protein RFP. Taken together, the set of enzymes known to be involved in the reversible phosphorylation of chloroplast proteins in A. thaliana comprises altogether now 6 cpPKs and 9 cpPPs, the function of which needs to be determined in future by functional genomics approaches. This includes the calcium-regulated PK CIPK13 which we found to be located in the chloroplast, indicating that calcium-dependent signal transduction pathways also operate in this organelle.
Collapse
Affiliation(s)
- I Schliebner
- Lehrstuhl für Botanik, Department Biologie, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | |
Collapse
|
17
|
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 2010; 17:303-24. [PMID: 20817745 PMCID: PMC2955714 DOI: 10.1093/dnares/dsq021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/01/2010] [Indexed: 01/22/2023] Open
Abstract
In plants, the two-component systems (TCSs) play important roles in regulating diverse biological processes, including responses to environmental stress stimuli. Within the soybean genome, the TCSs consist of at least 21 histidine kinases, 13 authentic and pseudo-phosphotransfers and 18 type-A, 15 type-B, 3 type-C and 11 pseudo-response regulator proteins. Structural and phylogenetic analyses of soybean TCS members with their Arabidopsis and rice counterparts revealed similar architecture of their TCSs. We identified a large number of closely homologous soybean TCS genes, which likely resulted from genome duplication. Additionally, we analysed tissue-specific expression profiles of those TCS genes, whose data are available from public resources. To predict the putative regulatory functions of soybean TCS members, with special emphasis on stress-responsive functions, we performed comparative analyses from all the TCS members of soybean, Arabidopsis and rice and coupled these data with annotations of known abiotic stress-responsive cis-elements in the promoter region of each soybean TCS gene. Our study provides insights into the architecture and a solid foundation for further functional characterization of soybean TCS elements. In addition, we provide a new resource for studying the conservation and divergence among the TCSs within plant species and/or between plants and other organisms.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | | | - Kazuo Shinozaki
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Lam-Son Phan Tran
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| |
Collapse
|
18
|
Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 2007; 104:20623-8. [PMID: 18077346 DOI: 10.1073/pnas.0706547105] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, multistep component systems play important roles in signal transduction in response to environmental stimuli and plant growth regulators. Arabidopsis contains six nonethylene receptor histidine kinases, and, among them, AHK1/ATHK1, AHK2, AHK3, and CRE1 were shown to be stress-responsive, suggesting their roles in the regulation of plant response to abiotic stress. Gain- and loss-of-function studies in Arabidopsis indicated that AHK1 is a positive regulator of drought and salt stress responses and abscisic acid (ABA) signaling. Microarray analysis of the ahk1 mutant revealed a down-regulation of many stress- and/or ABA-inducible genes, including AREB1, ANAC, and DREB2A transcription factors and their downstream genes. These data suggest that AHK1 functions upstream of AREB1, ANAC, and DREB2A and positively controls stress responses through both ABA-dependent and ABA-independent signaling pathways. In addition, AHK1 plays important roles in plant growth because the ahk1 ahk2 ahk3 triple mutant showed further reduced growth. Unlike AHK1, loss-of-function analysis of ahk2, ahk3, and cre1 implied that the stress-responsive AHK2, AHK3, and CRE1 act as negative regulators in ABA signaling. AHK2 and AHK3 also negatively control osmotic stress responses in Arabidopsis because ahk2, ahk3, and ahk2 ahk3 mutants were strongly tolerant to drought and salt stress due to up-regulation of many stress- and/or ABA-inducible genes. Last, cytokinin clearly mediates stress responses because it was required for CRE1 to function as a negative regulator of osmotic stress.
Collapse
|
19
|
Bahn YS, Kojima K, Cox GM, Heitman J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 2006; 17:3122-35. [PMID: 16672377 PMCID: PMC1483045 DOI: 10.1091/mbc.e06-02-0113] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal "two-component" system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component-like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - Joseph Heitman
- Departments of *Molecular Genetics and Microbiology
- Medicine, and
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
20
|
Abstract
Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The "DNA damage checkpoint" that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.
Collapse
Affiliation(s)
- Aminah Ikner
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
21
|
Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:530-43. [PMID: 12805585 PMCID: PMC166995 DOI: 10.1104/pp.103.021964] [Citation(s) in RCA: 594] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.
Collapse
Affiliation(s)
- Shin Han Shiu
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
22
|
Abstract
Cytokinins are plant hormones implicated in diverse and essential processes in plant growth and development, and key genes for the metabolism and actions of cytokinins have recently been identified. Cytokinins are perceived by three histidine kinases--CRE1/WOL/AHK4, AHK2, and AHK3--which initiate intracellular phosphotransfer. The final destination of the transferred phosphoryl groups is response regulators. The type-B Arabidopsis response regulators (ARRs) are DNA-binding transcriptional activators that are required for cytokinin responses. On the other hand, the type-A ARRs act as repressors of cytokinin-activated transcription. How phosphorelay regulate response regulators and how response regulators control downstream events are open questions and discussed in this review.
Collapse
Affiliation(s)
- Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
23
|
Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T. Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 2002; 68:5304-10. [PMID: 12406718 PMCID: PMC129884 DOI: 10.1128/aem.68.11.5304-5310.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned and characterized a novel Aspergillus nidulans histidine kinase gene, tcsB, encoding a membrane-type two-component signaling protein homologous to the yeast osmosensor synthetic lethal N-end rule protein 1 (SLN1), which transmits signals through the high-osmolarity glycerol response 1 (HOG1) mitogen-activated protein kinase (MAPK) cascade in yeast cells in response to environmental osmotic stimuli. From an A. nidulans cDNA library, we isolated a positive clone containing a 3,210-bp open reading frame that encoded a putative protein consisting of 1,070 amino acids. The predicted tcsB protein (TcsB) has two probable transmembrane regions in its N-terminal half and has a high degree of structural similarity to yeast Sln1p, a transmembrane hybrid-type histidine kinase. Overexpression of the tcsB cDNA suppressed the lethality of a temperature-sensitive osmosensing-defective sln1-ts yeast mutant. However, tcsB cDNAs in which the conserved phosphorylation site His(552) residue or the phosphorelay site Asp(989) residue had been replaced failed to complement the sln1-ts mutant. In addition, introduction of the tcsB cDNA into an sln1delta sho1delta yeast double mutant, which lacked two osmosensors, suppressed lethality in high-salinity media and activated the HOG1 MAPK. These results imply that TcsB functions as an osmosensor histidine kinase. We constructed an A. nidulans strain lacking the tcsB gene (tcsBdelta) and examined its phenotype. However, unexpectedly, the tcsBdelta strain did not exhibit a detectable phenotype for either hyphal development or morphology on standard or stress media. Our results suggest that A. nidulans has more complex and robust osmoregulatory systems than the yeast SLN1-HOG1 MAPK cascade.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya, Tsutsumi-dori, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|