1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
3
|
Neary JP, Singh J, Alcorn J, Laprairie RB, Dehghani P, Mang CS, Bjornson BH, Hadjistavropoulos T, Bardutz HA, Bhagaloo L, Walsh Z, Szafron M, Dorsch KD, Thompson ES. Pharmacological and physiological effects of cannabidiol: a dose escalation, placebo washout study protocol. BMC Neurol 2024; 24:340. [PMID: 39266961 PMCID: PMC11391713 DOI: 10.1186/s12883-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Cannabinoids such as cannabidiol (CBD) exhibit anti-inflammatory properties and have the potential to act as a therapeutic following mild traumatic brain injury. There is limited evidence available on the pharmacological, physiological and psychological effects of escalating CBD dosages in a healthy, male, university athlete population. Furthermore, no dosing regimen for CBD is available with implications of improving physiological function. This study will develop an optimal CBD dose based on the pharmacokinetic data in contact-sport athletes. The physiological and psychological data will be correlated to the pharmacokinetic data to understand the mechanism(s) associated with an escalating CBD dose. METHODS/DESIGN Forty participants will receive escalating doses of CBD ranging from 5 mg CBD/kg/day to 30 mg CBD/kg/day. The CBD dose is escalated every two weeks in increments of 5 mg CBD/kg/day. Participants will provide blood for pharmacological assessments at each of the 10 visits. Participants will complete a physiological assessment at each of the visits, including assessments of cerebral hemodynamics, blood pressure, electrocardiogram, seismocardiogram, transcranial magnetic stimulation, and salivary analysis for genomic sequencing. Finally, participants will complete a psychological assessment consisting of sleep, anxiety, and pain-related questionnaires. DISCUSSION This study will develop of an optimal CBD dose based on pharmacological, physiological, and psychological properties for future use during contact sport seasons to understand if CBD can help to reduce the frequency of mild traumatic injuries and enhance recovery. TRIAL REGISTRATION Clinicaltrials.gov: NCT06204003.
Collapse
Affiliation(s)
- J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada.
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Robert B Laprairie
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Payam Dehghani
- Department of Cardiology, Prairie Vascular Research Inc, Regina, Canada
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cameron S Mang
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | | | - Holly A Bardutz
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | | | - Zachary Walsh
- Department of Psychology, University of British Columbia, Kelowna, Canada
| | - Michael Szafron
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- School of Public Health - Biostatistics, University of Saskatchewan, Saskatoon, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Elizabeth S Thompson
- Cannabinoid Research Initiative of Saskatchewan (CRIS), Saskatoon, SK, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Shahen-Zoabi S, Smoum R, Bingor A, Grad E, Nemirovski A, Shekh-Ahmad T, Mechoulam R, Yaka R. N-oleoyl glycine and N-oleoyl alanine attenuate alcohol self-administration and preference in mice. Transl Psychiatry 2023; 13:273. [PMID: 37524707 PMCID: PMC10390512 DOI: 10.1038/s41398-023-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.
Collapse
Affiliation(s)
- Samah Shahen-Zoabi
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Reem Smoum
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alexey Bingor
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alina Nemirovski
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Raphael Mechoulam
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
5
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
6
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
7
|
Shi P, Hu L, Ren H, Dai Q. Reward enhances resilience to chronic social defeat stress in mice: Neural ECs and mGluR5 mechanism via neuroprotection in VTA and DRN. Front Psychiatry 2023; 14:1084367. [PMID: 36873216 PMCID: PMC9978385 DOI: 10.3389/fpsyt.2023.1084367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Stress often leads to emotional disorders such as depression. The reward might render this effect through the enhancement of stress resilience. However, the effect of reward on stress resilience under different intensities of stress needs more evidence, and its potential neural mechanism has been poorly revealed. It has been reported that the endogenous cannabinoid system (ECs) and downstream metabolic glutamate receptor 5 (mGluR5) are closely related to stress and reward, which might be the potential cerebral mechanism between reward and stress resilience, but there is a lack of direct evidence. This study aims to observe the effect of reward on stress resilience under different intensities of stress and further explore potential cerebral mechanisms underlying this effect. METHODS Using the chronic social defeat stress model, we applied reward (accompanied by a female mouse) under different intensities of stress in mice during the modeling process. The impact of reward on stress resilience and the potential cerebral mechanism were observed after modeling through behavioral tests and biomolecules. RESULTS The results showed that stronger stress led to higher degrees of depression-like behavior. Reward reduced depression-like behavior and enhanced stress resilience (all p-value <0.05) (more social interaction in the social test, less immobility time in the forced swimming test, etc.), with a stronger effect under the large stress. Furthermore, the mRNA expression levels of CB1 and mGluR5, the protein expression level of mGluR5, and the expression level of 2-AG (2-arachidonoylglycerol) in both ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) were significantly upregulated by reward after modeling (all p-value <0.05). However, the protein expression of CB1 in VTA and DRN and the expression of AEA (anandamide) in VTA did not differ significantly between groups. Intraperitoneal injection of a CB1 agonist (URB-597) during social defeat stress significantly reduced depression-like behavior compared with a CB1 inhibitor (AM251) (all p-value <0.05). Interestingly, in DRN, the expression of AEA in the stress group was lower than that of the control group, with or without reward (all p-value <0.05). DISCUSSION These findings demonstrate that combined social and sexual reward has a positive effect on stress resilience during chronic social defeat stress, potentially by influencing the ECs and mGluR5 in VTA and DRN.
Collapse
Affiliation(s)
- Peixia Shi
- Department of Medical Psychology, Army Medical University, Chongqing, China.,Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Linlin Hu
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Ren
- Department of Nursing Psychology, Army Medical University, Chongqing, China
| | - Qin Dai
- Department of Medical Psychology, Army Medical University, Chongqing, China.,Department of Nursing Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Oubraim S, Wang R, Hausknecht K, Kaczocha M, Shen RY, Haj-Dahmane S. Prenatal ethanol exposure causes anxiety-like phenotype and alters synaptic nitric oxide and endocannabinoid signaling in dorsal raphe nucleus of adult male rats. Transl Psychiatry 2022; 12:440. [PMID: 36216807 PMCID: PMC9550821 DOI: 10.1038/s41398-022-02210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Mood disorders, including anxiety and depression caused by prenatal ethanol exposure (PE) are prevalent conditions in fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is associated with persistent dysfunctions of several neurotransmitter systems, including the serotonin (5-HT) system, which plays a major role in mood regulation and stress homeostasis. While PE is known to disrupt the development of the 5-HT system, the cellular mechanisms by which it alters the function of dorsal raphe nucleus (DRn) 5-HT neurons and their synaptic inputs remain unknown. Here, we used a second-trimester binge-drinking pattern PE (two daily gavages of 15% w/v ethanol at 3 g/kg, 5-6 h apart) during gestational days 8 - 20 and measured anxiety-like behaviors of adult male rats using the elevated plus (EPM) and zero (ZM) mazes. We also employed ex-vivo electrophysiological and pharmacological approaches to unravel the mechanisms by which PE alters the excitability and synaptic transmission onto DRn 5-HT neurons. We found that PE enhanced anxiety-like behaviors in adult male rats and induced a persistent activation of DRn 5-HT neurons. The PE-induced activation of DRn 5-HT neurons was largely mediated by potentiation of DRn glutamate synapses, which was caused by activation of the nitrergic system and impaired endocannabinoid signaling. As such, the present study reveals "push-pull" effects of PE on nitrergic and eCB signaling, respectively, which mediate the enhanced activity of DRn 5-HT neurons and could contribute to anxiety-like behaviors observed in animal model of FASD.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn Hausknecht
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Behl T, Makkar R, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Exploration of Multiverse Activities of Endocannabinoids in Biological Systems. Int J Mol Sci 2022; 23:ijms23105734. [PMID: 35628545 PMCID: PMC9147046 DOI: 10.3390/ijms23105734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.)
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Department of Pharmaceutcal Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| |
Collapse
|
10
|
Kohansal F, Mobed A, Ansari R, Hasanzadeh M, Ahmadalipour A, Shadjou N. An innovative electrochemical immuno-platform towards ultra-sensitive monitoring of 2-arachidonoyl glycerol in samples from rats with sleep deprivation: bioanalysis of endogenous cannabinoids using biosensor technology. RSC Adv 2022; 12:14154-14166. [PMID: 35558840 PMCID: PMC9092357 DOI: 10.1039/d2ra00380e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex of neurotransmitters in the central nervous system and plays a key role in regulating cognitive and physiological processes. 2-Arachidonoylglycerol (2-AG) is one of the imperative endocannabinoids that play key roles in the central nervous system. It acts as a signaling lipid and activates the cannabinoid CB1 receptor. In addition, 2-AG is involved in a variety of physiological functions such as energy balance, emotion, pain sensation, cognition, and neuroinflammation. So, rapid and specific diagnosis of 2-AG is of great importance in medical neuroscience. The development of new methods in this area has been one of the most important research areas in recent years. Herein, an innovative immunosensor is developed for quantification of 2-AG. For this means, gold nanostars (GNS) were synthesized and conjugated with a specific biotinylated antibody against 2-AG. The resultant bioconjugate, a bioreceptor with GNS, was immobilized on the surface of a gold electrode and used for the detection of the antigen based on the immunocomplex formation followed by analysis using different electrochemical techniques. For the first time, 2-AG protein was measured with an excellent linear range of 0.48-1 ng mL-1 and lower limit of quantification of 0.48 ng L-1 by the electroanalysis method. The engineered immunosensor showed high sensitivity and specificity in the presence of interfering antigens, proving its utility in neurological disorder detection. This immunosensor is the first sandwich type immunoassay for the detection of 2-AG in real samples and the first innovation of designing a novel sandwich type immunosensor for this analyte. Also, excellent analytical results are other advantages of this biosensor for the detection of 2-AG in human plasma samples and serum samples of rats under sleep deprivation. So, this is the first report of an immunosensor of 2-AG using a sandwich type immunosensor.
Collapse
Affiliation(s)
- Fereshteh Kohansal
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
| | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Rana Ansari
- Drug Applied Research Center, Tabriz University of Medical Sciences Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nanotechnology Research Center, Faculty of Science and Chemistry, Urmia University Urmia Iran
| |
Collapse
|
11
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
12
|
Khalid S, Almalki FA, Hadda TB, Bader A, Abu-Izneid T, Berredjem M, Elsharkawy ER, Alqahtani AM. Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A New Route in the Fight Against COVID-19? Curr Pharm Des 2021; 27:1564-1578. [PMID: 33267756 DOI: 10.2174/1381612826666201202125807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
Cannabis sativa is a well-known plant that has been recognized for its benefits since ancient times by several medicinal systems, including those of China, India, Greece, and Egypt. Although C. sativa is one of the most investigated medicinal plants in the world, it faces some of the greatest controversies surrounding its legalization and use as a medication. C. sativa contains several hundred phytoconstituents, including the infamous "cannabinoids". It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where cannabis is still facing legal obstacles. The current review focuses on the most recent literature pertaining to various applications of cannabinoids, with a special focus on the medicinal aspect of these phytochemicals. Peer-reviewed articles focusing on the importance of cannabis and cannabinoids are the target of this review. Articles were selected based on the relevance to the general scope of the work, i.e., application of cannabinoids. Cannabinoids can truly be regarded as wonder drugs, considering their immense diversity of usage. Unfortunately, however, many of the mares have never been researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizon for the use of these natural drugs in medicines such as Epidiolex® (cannabidiol, used for the treatment of severe forms of epilepsy) and Sativex®(Δ9-tetrahydrocannabinol and cannabidiol, used for the treatment of spasticity caused by multiple sclerosis). Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive component. This review addresses the most important applications or current utilization of cannabinoids in a variety of treatments such as chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicable diseases, glaucoma, and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, cannabis has a myriad of bioactive compounds that have the potential to increase the list of approved cannabinoids suitable for therapy.
Collapse
Affiliation(s)
- Shah Khalid
- Department of Botany, Islamia College, Peshawar, Pakistan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, Collage of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria
| | - Eman R Elsharkawy
- Chemistry Department, Faculty of Science, Northern Borders University, Arar, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
13
|
Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13080174. [PMID: 32751761 PMCID: PMC7463541 DOI: 10.3390/ph13080174] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Epilepsy contributes to approximately 1% of the global disease burden. By affecting especially young children as well as older persons of all social and racial variety, epilepsy is a present disorder worldwide. Currently, only 65% of epileptic patients can be successfully treated with antiepileptic drugs. For this reason, alternative medicine receives more attention. Cannabis has been cultivated for over 6000 years to treat pain and insomnia and used since the 19th century to suppress epileptic seizures. The two best described phytocannabinoids, (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are claimed to have positive effects on different neurological as well as neurodegenerative diseases, including epilepsy. There are different cannabinoids which act through different types of receptors and channels, including the cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55) and 18 (GPR18), opioid receptor µ and δ, transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), type A γ-aminobutyric acid receptor (GABAAR) and voltage-gated sodium channels (VGSC). The mechanisms and importance of the interaction between phytocannabinoids and their different sites of action regarding epileptic seizures and their clinical value are described in this review.
Collapse
|
14
|
Gibula-Tarlowska E, Wydra K, Kotlinska JH. Deleterious Effects of Ethanol, Δ(9)-Tetrahydrocannabinol (THC), and Their Combination on the Spatial Memory and Cognitive Flexibility in Adolescent and Adult Male Rats in the Barnes Maze Task. Pharmaceutics 2020; 12:pharmaceutics12070654. [PMID: 32660138 PMCID: PMC7407502 DOI: 10.3390/pharmaceutics12070654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Research demonstrates that adolescents differ from adults in their response to drugs of abuse. The aim of the present study was to examine the influence of ethanol, Δ9-tetrahydrocannabinol hydrochloride (THC), and a combination of these drugs given during adolescence on spatial memory in adolescent and adult rats. Thus, adolescent rats (postnatal day (PND) 30) were subjected to the following groups: 0.9% NaCl; 1.5 g/kg ethanol; 1.0 mg/kg THC; 1.5 g/kg ethanol + 1.0 mg/kg THC. Rats received drug injection four times at three-day intervals. One day after the last injection, half of the treated animals were tested in the Barnes maze task, whereas the remaining animals were tested on PND 70. Results show that there was a significant age effect on spatial memory in the Barnes maze task after these drug administrations. Adolescent animals demonstrated more potent deficits in the spatial learning and memory (probe trial) and in cognitive flexibility (reversal learning) than did adults. However, in adult rats that received these drugs in adolescence, memory decline was observed only after ethanol and ethanol + THC administration. Thus, our results are important in understanding the deleterious impact of THC and/or ethanol abuse during adolescence on memory function across the lifespan (adolescent versus adult).
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
- Correspondence:
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland;
| |
Collapse
|
15
|
Carloni S, Crinelli R, Palma L, Álvarez FJ, Piomelli D, Duranti A, Balduini W, Alonso-Alconada D. The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chem Neurosci 2020; 11:1291-1299. [PMID: 32271539 PMCID: PMC7997380 DOI: 10.1021/acschemneuro.0c00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
![]()
The number of functions controlled
by the endocannabinoid system
in health and disease continues growing over the years. In the brain,
these include the modulation of harmful events such as glutamate excitotoxicity,
oxidative stress, and inflammation, mainly regulated by activation/blockade
of CB1/CB2 cannabinoid receptors. In the present
work, we evaluated the capacity of the CB1 antagonist/CB2 agonist synthetic cannabinoid URB447 on reducing neurodegeneration
after brain injury. By using a model of hypoxia-ischemia (HI) in neonatal
rats, we found that URB447 strongly reduced brain injury when administered
before HI. A comparable effect was observed with the CB1 antagonist SR141716A, whereas the CB1 agonist WIN-55,212-2
reduced the effect of URB447. When administered 3 h after HI, which
is considered a clinically feasible therapeutic window to treat perinatal
brain injury in humans, URB447 reduced neurodegeneration and white
matter damage. Markers of astrogliosis and microglial activation also
appeared reduced. These results confirm the important role played
by the endocannabinoid system in the neurodegenerative process and
strongly encourage further research into the mechanisms of URB447-induced
neuroprotection.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Linda Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francisco J. Álvarez
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, and Biological Chemistry, University of California, Irvine, Irvine, California, United States
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
16
|
Piscitelli F, Guida F, Luongo L, Iannotti FA, Boccella S, Verde R, Lauritano A, Imperatore R, Smoum R, Cristino L, Lichtman AH, Parker LA, Mechoulam R, Maione S, Di Marzo V. Protective Effects of N-Oleoylglycine in a Mouse Model of Mild Traumatic Brain Injury. ACS Chem Neurosci 2020; 11:1117-1128. [PMID: 32017529 DOI: 10.1021/acschemneuro.9b00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Fabio Arturo Iannotti
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberta Verde
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Anna Lauritano
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Reem Smoum
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem 91120, Israel
| | - Luigia Cristino
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Linda A. Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem 91120, Israel
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Di Marzo
- National Research Council, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
17
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
18
|
Farrell D, Bendo AA. Perioperative Management of Severe Traumatic Brain Injury: What Is New? CURRENT ANESTHESIOLOGY REPORTS 2018; 8:279-289. [PMID: 30147453 PMCID: PMC6096919 DOI: 10.1007/s40140-018-0286-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF THE REVIEW Severe traumatic brain injury (TBI) continues to represent a global public health issue, and mortality and morbidity in TBI patients remain substantial. There are ongoing international collaborations to provide guidelines for perioperative care and management of severe TBI patients. In addition, new pharmacologic agents are being tested along with cognitive rehabilitation to improve functional independence and outcome in TBI patients. This review will discuss the current updates in the guidelines for the perioperative management of TBI patients and describe potential new therapies to improve functional outcomes. RECENT FINDINGS In the most recent guidelines published by The Brain Trauma Foundation, therapeutic options were reviewed based on new and revised evidence or lack of evidence. For example, changes and/or updates were made to the recommendations for the use of sedation and hypothermia in TBI patients, and new evidence was provided for the use of cerebrospinal fluid drainage as a first-line treatment for increased intracranial pressure (ICP). In addition to the guidelines, new 'multi-potential' agents that can target several mechanisms are being tested along with cognitive rehabilitation. SUMMARY The major goal of perioperative management of TBI patients is to prevent secondary damage. Therapeutic measures based on established guidelines and recommendations must be instituted promptly throughout the perioperative course to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Deacon Farrell
- Downstate Medical Center, State University of New York (SUNY), 450 Clarkson Avenue, Box 6, Brooklyn, New York 11203 USA
| | - Audrée A. Bendo
- Downstate Medical Center, State University of New York (SUNY), 450 Clarkson Avenue, Box 6, Brooklyn, New York 11203 USA
| |
Collapse
|
19
|
Calabrese EJ, Rubio-Casillas A. Biphasic effects of THC in memory and cognition. Eur J Clin Invest 2018; 48:e12920. [PMID: 29574698 DOI: 10.1111/eci.12920] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/11/2018] [Indexed: 12/20/2022]
Abstract
A generally undesired effect of cannabis smoking is a reversible disruption of short-term memory induced by delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. However, this paradigm has been recently challenged by a group of scientists who have shown that THC is also able to improve neurological function in old animals when chronically administered at low concentrations. Moreover, recent studies demonstrated that THC paradoxically promotes hippocampal neurogenesis, prevents neurodegenerative processes occurring in animal models of Alzheimer's disease, protects from inflammation-induced cognitive damage and restores memory and cognitive function in old mice. With the aim to reconcile these seemingly contradictory facts, this work will show that such paradox can be explained within the framework of hormesis, defined as a biphasic dose-response.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Alberto Rubio-Casillas
- Laboratorio de Biologia, Escuela Preparatoria Regional de Autlán, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
20
|
Viveros-Paredes JM, González-Castañeda RE, Gertsch J, Chaparro-Huerta V, López-Roa RI, Vázquez-Valls E, Beas-Zarate C, Camins-Espuny A, Flores-Soto ME. Neuroprotective Effects of β-Caryophyllene against Dopaminergic Neuron Injury in a Murine Model of Parkinson's Disease Induced by MPTP. Pharmaceuticals (Basel) 2017; 10:E60. [PMID: 28684694 PMCID: PMC5620604 DOI: 10.3390/ph10030060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.
Collapse
Affiliation(s)
- Juan M Viveros-Paredes
- Departamento de Farmacobiología CUCEI, Universidad de Guadalajara, 44430 Guadalajara, Mexico.
| | - Rocio E González-Castañeda
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico.
| | - Juerg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR Trans Cure, University of Bern, CH-3012 Bern, Switzerland.
| | - Veronica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, 44421 Guadalajara, Mexico.
| | - Rocio I López-Roa
- Departamento de Farmacobiología CUCEI, Universidad de Guadalajara, 44430 Guadalajara, Mexico.
| | - Eduardo Vázquez-Valls
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, 44421 Guadalajara, Mexico.
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, 44340 Guadalajara, Mexico.
| | - Antoni Camins-Espuny
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciencias de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| | - Mario E Flores-Soto
- Departamento de Farmacobiología CUCEI, Universidad de Guadalajara, 44430 Guadalajara, Mexico.
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico.
| |
Collapse
|
21
|
Fernández-Ruiz J, Gómez-Ruiz M, García C, Hernández M, Ramos JA. Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies. Methods Enzymol 2017; 593:175-198. [PMID: 28750802 DOI: 10.1016/bs.mie.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research. This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers. This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mariluz Hernández
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
22
|
Effects of chronic Δ 9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain. Saudi Pharm J 2017; 25:1078-1081. [PMID: 29158718 PMCID: PMC5681306 DOI: 10.1016/j.jsps.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022] Open
Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC) shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoid system and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.
Collapse
|
23
|
The endocannabinoid system, a novel and key participant in acupuncture's multiple beneficial effects. Neurosci Biobehav Rev 2017; 77:340-357. [PMID: 28412017 DOI: 10.1016/j.neubiorev.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Acupuncture and its modified forms have been used to treat multiple medical conditions, but whether the diverse effects of acupuncture are intrinsically linked at the cellular and molecular level and how they might be connected have yet to be determined. Recently, an emerging role for the endocannabinoid system (ECS) in the regulation of a variety of physiological/pathological conditions has been identified. Overlap between the biological and therapeutic effects induced by ECS activation and acupuncture has facilitated investigations into the participation of ECS in the acupuncture-induced beneficial effects, which have shed light on the idea that the ECS may be a primary mediator and regulatory factor of acupuncture's beneficial effects. This review seeks to provide a comprehensive summary of the existing literature concerning the role of endocannabinoid signaling in the various effects of acupuncture, and suggests a novel notion that acupuncture may restore homeostasis under different pathological conditions by regulating similar networks of signaling pathways, resulting in the activation of different reaction cascades in specific tissues in response to pathological insults.
Collapse
|
24
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
25
|
Hutch CR, Hegg CC. Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium. NEUROGENESIS 2016; 3:e1118177. [PMID: 27606334 PMCID: PMC4973592 DOI: 10.1080/23262133.2015.1118177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 11/21/2022]
Abstract
The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212–2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium.
Collapse
Affiliation(s)
- Chelsea R Hutch
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Colleen C Hegg
- Neuroscience Program, Michigan State University, East Lansing, MI, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Fernández-Ruiz J, Romero J, Ramos JA. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handb Exp Pharmacol 2015; 231:233-59. [PMID: 26408163 DOI: 10.1007/978-3-319-20825-1_8] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
- Departamento de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - José A Ramos
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
27
|
Rivera P, Bindila L, Pastor A, Pérez-Martín M, Pavón FJ, Serrano A, de la Torre R, Lutz B, Rodríguez de Fonseca F, Suárez J. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci 2015; 9:98. [PMID: 25870539 PMCID: PMC4375993 DOI: 10.3389/fncel.2015.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.
Collapse
Affiliation(s)
- Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Antoni Pastor
- Institut Hospital del Mar d'Investigacions Mediques Barcelona, Spain ; Facultat de Medicina, Universitat Autonoma de Barcelona Barcelona, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Rafael de la Torre
- CIBER OBN, Instituto de Salud Carlos III Madrid, Spain ; Institut Hospital del Mar d'Investigacions Mediques Barcelona, Spain ; Facultat de Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra (CEXS-UPF) Barcelona, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
28
|
Abstract
The abuse of synthetic psychoactive substances known as "designer drugs," or "new psychoactive substances" (NPS), is increasing at an alarming rate. NPS are purchased as alternatives to traditional illicit drugs of abuse and are manufactured to circumvent laws regulating the sale and use of controlled substances. Synthetic cathinones (i.e., "bath salts") and synthetic cannabinoids (i.e., "spice") are two types of NPS that have received substantial media attention. Although low recreational doses of bath salts or spice compounds can produce desirable effects, high doses or chronic exposure often leads to dangerous medical consequences, including psychosis, violent behaviors, tachycardia, hyperthermia, and even death. Despite the popularity of NPS, there is a paucity of scientific data about these drugs. Here we provide a brief up-to-date review describing the mechanisms of action and neurobiological effects of synthetic cathinones and cannabinoids.
Collapse
|
29
|
Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int J Mol Sci 2014; 16:758-87. [PMID: 25561230 PMCID: PMC4307274 DOI: 10.3390/ijms16010758] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/22/2014] [Indexed: 11/17/2022] Open
Abstract
We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.
Collapse
|
30
|
The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy. Neuropharmacology 2013; 72:116-25. [DOI: 10.1016/j.neuropharm.2013.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
|
31
|
N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:1242-50. [PMID: 23695434 PMCID: PMC3734775 DOI: 10.1038/jcbfm.2013.75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/16/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022]
Abstract
N-arachidonoyl-L-serine (AraS) is a novel neuroprotective endocannabinoid. We aimed to test the effects of exogenous AraS on neurogenesis after traumatic brain injury (TBI). The effects of AraS on neural progenitor cells (NPC) proliferation, survival, and differentiation were examined in vitro. Next, mice underwent TBI and were treated with AraS or vehicle. Lesion volumes and clinical outcome were evaluated and the effects on neurogenesis were tested using immunohistochemistry. Treatment with AraS led to a dose-dependent increase in neurosphere size without affecting cell survival. These effects were partially reversed by CB1, CB2, or TRPV1 antagonists. AraS significantly reduced the differentiation of NPC in vitro to astrocytes or neurons and led to a 2.5-fold increase in expression of the NPC marker nestin. Similar effects were observed in vivo in mice treated with AraS 7 days after TBI. These effects were accompanied by a reduction in lesion volume and an improvement in neurobehavioral function compared with controls. AraS increases proliferation of NPCs in vitro in cannabinoid-receptor-mediated mechanisms and maintains NPC in an undifferentiated state in vitro and in vivo. Moreover, although given at 7 days post injury, these effects are associated with significant neuroprotective effects leading to an improvement in neurobehavioral functions.
Collapse
|
32
|
Almukadi H, Wu H, Böhlke M, Kelley CJ, Maher TJ, Pino-Figueroa A. The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor. Mol Neurobiol 2013; 48:333-9. [PMID: 23853040 DOI: 10.1007/s12035-013-8499-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
The Peruvian plant Lepidium meyenii (Maca) has been shown to possess neuroprotective activity both in vitro and in vivo. Previous studies have also demonstrated the activity of the pentane extract and its macamides, the most representative lipophilic constituents of Maca, in the endocannabinoid system as fatty acid amide hydrolase (FAAH) inhibitors. One of the most active macamides, N-3-methoxybenzyl-linoleamide, was studied to determine its mechanism of interaction with FAAH and whether it has inhibitory activity on mono-acyl glycerol lipase (MAGL), the second enzyme responsible for endocannabinoid degradation. Macamide concentrations from 1 to 100 μM were tested using FAAH and MAGL inhibitor assay methods and showed no effect on MAGL. Tests with other conditions were performed in order to characterize the inhibitory mechanism of FAAH inhibition. N-3-methoxybenzyl-linoleamide displayed significant time-dependent and dose-dependent FAAH inhibitory activity. The mechanism of inhibition was most likely irreversible or slowly reversible. These results suggest the potential application of macamides isolated from Maca as FAAH inhibitors, as they might act on the central nervous system to provide analgesic, anti-inflammatory, or neuroprotective effects, by modulating the release of neurotransmitters.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmaceutical Sciences, MCPHS University, 179 Longwood Ave., Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R. Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev 2013; 23:117-37. [PMID: 23129391 PMCID: PMC3593817 DOI: 10.1007/s11065-012-9222-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/22/2012] [Indexed: 12/19/2022]
Abstract
Decades of research have examined the effects of cannabis on neurocognition. Recent advances in this field provide us with a better understanding of how cannabis use influences neurocognition both acutely (during intoxication) and non-acutely (after acute effects subside). Evidence of problems with episodic memory is one of the most consistent findings reported; however, several other neurocognitive domains appear to be adversely affected by cannabis use under various conditions. There is significant variability in findings across studies, thus a discussion of potential moderators is increasingly relevant. The purpose of this review was to 1) provide an update on research of cannabis' acute and non-acute effects on neurocognition, with a focus on findings since 2007 and 2) suggest and discuss how neurodevelopmental issues and sex differences may influence cannabis effects on neurocognition. Finally we discuss how future investigations may lead to better understanding of the complex interplay among cannabis, stages of neurodevelopment, and sex on neurocognitive functioning.
Collapse
Affiliation(s)
| | | | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London
| | - Raul Gonzalez
- Department of Psychology, Florida International University
| |
Collapse
|
34
|
Pastuhov SI, Fujiki K, Nix P, Kanao S, Bastiani M, Matsumoto K, Hisamoto N. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. Nat Commun 2013; 3:1136. [PMID: 23072806 PMCID: PMC3493645 DOI: 10.1038/ncomms2136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/14/2012] [Indexed: 01/15/2023] Open
Abstract
The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.
Collapse
Affiliation(s)
- Strahil Iv Pastuhov
- Department of Molecular Biology, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Compagnucci C, Di Siena S, Bustamante MB, Di Giacomo D, Di Tommaso M, Maccarrone M, Grimaldi P, Sette C. Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS One 2013; 8:e54271. [PMID: 23372698 PMCID: PMC3553153 DOI: 10.1371/journal.pone.0054271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. We have investigated the role of endocannabinoids (eCBs), endogenous cues that modulate neuronal functions including neurogenesis, and their receptors CB(1) and CB(2) in mouse NSCs. Real-time PCR and Western blot analyses indicated that CB(1) is present at higher levels than CB(2) in NSCs. The eCB anandamide (AEA) or the CB(1)-specific agonist ACEA enhanced NSC differentiation into neurons, but not astrocytes and oligodendrocytes, whereas the CB(2)-specific agonist JWH133 was ineffective. Conversely, the effect of AEA was inhibited by CB(1), but not CB(2), antagonist, corroborating the specificity of the response. CB(1) activation also enhanced maturation of neurons, as indicated by morphometric analysis of neurites. CB(1) stimulation caused long-term inhibition of the ERK1/2 pathway. Consistently, pharmacological inhibition of the ERK1/2 pathway recapitulated the effects exerted by CB(1) activation on neuronal differentiation and maturation. Lastly, gene array profiling showed that CB(1) activation augmented the expression of genes involved in neuronal differentiation while decreasing that of stemness genes. These results highlight the role of CB(1) in the regulation of NSC fate and suggest that its activation may represent a pro-neuronal differentiation signal.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoids/pharmacology
- Cell Differentiation/drug effects
- Embryo, Mammalian
- Endocannabinoids/pharmacology
- Gene Expression/drug effects
- Gene Expression Profiling
- Mice
- Mice, Inbred C57BL
- Microarray Analysis
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neural Stem Cells/cytology
- Neural Stem Cells/drug effects
- Neural Stem Cells/metabolism
- Neurons/cytology
- Neurons/metabolism
- Polyunsaturated Alkamides/pharmacology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Sara Di Siena
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Blaire Bustamante
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Daniele Di Giacomo
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Monia Di Tommaso
- Laboratory of Lipid Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Laboratory of Lipid Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
36
|
Máthé D, Horváth I, Szigeti K, Donohue SR, Pike VW, Jia Z, Ledent C, Palkovits M, Freund TF, Halldin C, Gulyás B. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse. Brain Res Bull 2013; 91:46-51. [PMID: 23318272 DOI: 10.1016/j.brainresbull.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 02/01/2023]
Abstract
We aimed to evaluate the novel high-affinity and relatively lipophilic CB(1) receptor (CB(1)R) antagonist radioligand [(125)I]SD7015 for SPECT imaging of CB(1)Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CT(PLUS) (Mediso, Budapest, Hungary), in knock-out CB(1) receptor knock-out (CB(1)R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB(1)R-/- mice (n=3) and C57BL6 wildtype mice (n=7) under urethane anaesthesia after injecting [(125)I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6±3.6 (average±SD) in CB(1)R-/- mice and 22.1±12.4 in wildtype mice between 2 and 4 h after injection (p<0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB(1)R(-/-) mice showed practically no radioactivity uptake. [(125)I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB(1)R expression pattern in rodent brain. We conclude that [(125)I]SD7015 should be a useful SPECT radioligand for studying brain CB(1)R in mouse and rat disease models.
Collapse
Affiliation(s)
- Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
38
|
Nunn A, Guy G, Bell JD. Endocannabinoids in neuroendopsychology: multiphasic control of mitochondrial function. Philos Trans R Soc Lond B Biol Sci 2012; 367:3342-52. [PMID: 23108551 PMCID: PMC3481535 DOI: 10.1098/rstb.2011.0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.
Collapse
Affiliation(s)
- Alistair Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | | | | |
Collapse
|
39
|
Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties, Functional Features, and Emerging Specificities of the Two Major Endocannabinoids. Mol Neurobiol 2012; 46:374-92. [DOI: 10.1007/s12035-012-8299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
40
|
Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Máthé D, Csiba L, Gulyás B. The decrease of dopamine D₂/D₃ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015. Brain Res Bull 2012; 87:504-10. [PMID: 22421165 DOI: 10.1016/j.brainresbull.2012.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/24/2023]
Abstract
Cannabinoid type-1 receptors (CB₁Rs) modulate synaptic neurotransmission by participating in retrograde signaling in the adult brain. Increasing evidence suggests that cannabinoids through CB₁Rs play an important role in the regulation of motor activities in the striatum. In the present study, we used human brain samples to examine the relationship between CB₁R and dopamine receptor density in case of Parkinson's disease (PD). Post mortem putamen, nucleus caudatus and medial frontal gyrus samples obtained from PD patients were used for CB₁R and dopamine D₂/D₃ receptor autoradiography. [¹²⁵I]SD7015, a novel selective CB₁R inverse agonist, developed by a number of the present co-authors, and [³H]raclopride, a dopamine D₂/D₃ antagonist, were used as radioligands. Our results demonstrate unchanged CB₁R density in the putamen and nucleus caudatus of deceased PD patients, treated with levodopa (L-DOPA). At the same time dopamine D₂/D₃ receptors displayed significantly decreased density levels in case of PD putamen (control: 47.97 ± 10.00 fmol/g, PD: 3.73 ± 0.07 fmol/g (mean ± SEM), p<0.05) and nucleus caudatus (control: 30.26 ± 2.48 fmol/g, PD: 12.84 ± 5.49 fmol/g, p<0.0005) samples. In contrast to the putamen and the nucleus caudatus, in the medial frontal gyrus neither receptor densities were affected. Our data suggest the presence of an unaltered CB₁R population even in late stages of levodopa treated PD. This further supports the presence of an intact CB₁R population which, in line with the conclusion of earlier publications, may be utilized as a pharmacological target in the treatment of PD. Furthermore we found discrepancy between a maintained CB₁R population and a decreased dopamine D₂/D₃ receptor population in PD striatum. The precise explanation of this conundrum requires further studies with simultaneous examination of the central cannabinoid and dopaminergic systems in PD using higher sample size.
Collapse
Affiliation(s)
- Szabolcs Farkas
- Department of Neurology, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 2012; 69:741-62. [PMID: 21997383 PMCID: PMC11115054 DOI: 10.1007/s00018-011-0840-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43221, USA.
| | | | | | | |
Collapse
|
42
|
Martín-Moreno AM, Brera B, Spuch C, Carro E, García-García L, Delgado M, Pozo MA, Innamorato NG, Cuadrado A, de Ceballos ML. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation 2012; 9:8. [PMID: 22248049 PMCID: PMC3292807 DOI: 10.1186/1742-2094-9-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/16/2012] [Indexed: 12/26/2022] Open
Abstract
Background Alzheimer's disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months) on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG) uptake by positron emission tomography (PET). Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ) levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.
Collapse
Affiliation(s)
- Ana María Martín-Moreno
- Neurodenegeration Group, Dept. of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Doctor Arce 37, Madrid 28002, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience 2012; 207:307-15. [PMID: 22285309 DOI: 10.1016/j.neuroscience.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/28/2011] [Accepted: 01/05/2012] [Indexed: 12/29/2022]
Abstract
Cannabinoids have emerged as brain protective agents under neurodegenerative conditions. Many neuroprotective actions of cannabinoids depend on the activation of specific receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R). The aim of the present study was to determine whether the CB2R and CB1R agonist WIN 55,212-2 (WIN) protects neonatal brain against focal cerebral ischemia-reperfusion and whether anti-inflammatory mechanisms play a role in protection. Seven-day-old rats were subjected to 90-min middle cerebral artery occlusion (MCAO), and injured rats were identified by diffusion-weighted MRI during the occlusion. After reperfusion, rats were subcutaneously administered 1 mg/kg of WIN or vehicle twice daily until sacrifice. MCAO led to increased mRNA expression of CB2R (but not CB1R), chemokine receptors (CCR2 and CX3CR1), and cytokines (IL-1β and TNFα), as well as increased protein expression of chemokines MCP-1 and MIP-1α and microglial activation 24 h after MCAO. WIN administration significantly reduced microglial activation at this point and attenuated infarct volume and microglial accumulation and proliferation in the injured cortex 72 h after MCAO. Cumulatively, our results show that the cannabinoid agonist WIN protects against neonatal focal stroke in part due to inhibitory effects on microglia.
Collapse
|
44
|
Miller LK, Devi LA. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 2011; 63:461-70. [PMID: 21752875 PMCID: PMC3141881 DOI: 10.1124/pr.110.003491] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in the endogenous cannabinoid system have been described in almost every category of disease. These changes can alternatively be protective or maladaptive, such as producing antinociception in neuropathic pain or fibrogenesis in liver disease, making the system an attractive therapeutic target. However, the challenge remains to selectively target the site of disease while sparing other areas, particularly mood and cognitive centers of the brain. Identifying regional changes in cannabinoid receptor-1 and -2 (CB(1)R and CB(2)R) expression is particularly important when considering endocannabinoid system-based therapies, because regional increases in cannabinoid receptor expression have been shown to increase potency and efficacy of exogenous agonists at sites of disease. Although there have been extensive descriptive studies of cannabinoid receptor expression changes in disease, the underlying mechanisms are only just beginning to unfold. Understanding these mechanisms is important and potentially relevant to therapeutics. In diseases for which cannabinoid receptors are protective, knowledge of the mechanisms of receptor up-regulation could be used to design therapies to regionally increase receptor expression and thus increase efficacy of an agonist. Alternatively, inhibition of harmful cannabinoid up-regulation could be an attractive alternative to global antagonism of the system. Here we review current findings on the mechanisms of cannabinoid receptor regulation in disease and discuss their therapeutic implications.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Cannabinoid Receptor Modulators/agonists
- Cannabinoid Receptor Modulators/antagonists & inhibitors
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoids/agonists
- Cannabinoids/antagonists & inhibitors
- Cannabinoids/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- Molecular Targeted Therapy
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
Collapse
Affiliation(s)
- Lydia K Miller
- Department of Pharmacology and Systems Therapeutics, Box 1603, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Jeon P, Yang S, Jeong H, Kim H. Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction. Anat Cell Biol 2011; 44:135-42. [PMID: 21829757 PMCID: PMC3145842 DOI: 10.5115/acb.2011.44.2.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/16/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022] Open
Abstract
Cannabinoids have been proposed to possess neuroprotective properties; though their mechanism of action remains contentious, they are posited to prevent neurodegenerative disorders, including Parkinson's disease, the pathogenesis of which has not been established. Recent studies have demonstrated that induction of proteasomal dysfunction in animal models results in a phenotype similar to Parkinson's disease. Here, we investigated the neuroprotective function of a synthetic cannabinoid-receptor agonist (WIN55.212.2) in dopaminergic neuronal death induced by a proteasomal synthase inhibitor (PSI), additionally testing the hypothesis that WIN55.212.2 modulates cytoplasmic accumulation of parkin and α-synuclein, a key feature of proteasomal dysfunction in Parkinson's. WIN55.212.2 protects PC12 cells from PSI-induced cytotoxicity, concomitantly inhibiting PSI-induced polyADP ribose polymerase expression and activation of caspase-3. While PSI induces cytoplasmic accumulation of α-synuclein and parkin, WIN55.212.2 counters these effects. Interestingly, however, while PSI induces the activation and nuclear translocalization of nuclear factor κB, WIN55.212.2 potentiates this effect. These data are suggestive that WIN55.212.2 might confer a neuroprotective benefit in PSI-induced proteasomal dysfunction, and could further protect against neuronal degeneration stemming from cytoplasmic accumulation of α-synuclein and parkin. These results indicate that WIN55.212.2 may be a candidate for treatment of neurodegenerative diseases, including Parkinson's disease.
Collapse
Affiliation(s)
- Posung Jeon
- Department of Physical Medicine and Rehabilitation, Dong-Eui Medical Center, Busan, Korea
| | | | | | | |
Collapse
|
46
|
Gonzalez R, Schuster RM, Vassileva J, Martin EM. Impact of HIV and a history of marijuana dependence on procedural learning among individuals with a history of substance dependence. J Clin Exp Neuropsychol 2011; 33:735-52. [PMID: 21480022 DOI: 10.1080/13803395.2011.553584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Marijuana (MJ) use and HIV infection are both associated with neurocognitive deficits, yet there is little research to date examining their interactions, specifically how they pertain to procedural learning (PL). We examined a sample of 86 individuals with a history of dependence for multiple substances who underwent a comprehensive evaluation including measures of mental health, substance use history, and three measures of PL: the photoelectric Rotary Pursuit Task (RPT), the Star Mirror Tracing Task (SMT), and the Weather Prediction Task (WPT). We found that a positive HIV serostatus and a history of marijuana dependence were both independently associated with overall poorer performance on the SMT and RPT in this sample of individuals with a history of dependence for multiple substances. Rate of improvement across trial blocks did not differ as a function of HIV serostatus or history of marijuana dependence. Although we found no significant HIV × MJ interaction for any of the PL tasks, we did observe evidence of additive negative effects from HIV and a history of marijuana dependence on overall performance on the SMT and RPT, but not the WPT. The findings suggest that complex motor skills are adversely affected among abstinent polysubstance users with a history of marijuana dependence and that such deficits are compounded by HIV.
Collapse
Affiliation(s)
- Raul Gonzalez
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
47
|
Blázquez C, Chiarlone A, Sagredo O, Aguado T, Pazos MR, Resel E, Palazuelos J, Julien B, Salazar M, Börner C, Benito C, Carrasco C, Diez-Zaera M, Paoletti P, Díaz-Hernández M, Ruiz C, Sendtner M, Lucas JJ, de Yébenes JG, Marsicano G, Monory K, Lutz B, Romero J, Alberch J, Ginés S, Kraus J, Fernández-Ruiz J, Galve-Roperh I, Guzmán M. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. ACTA ACUST UNITED AC 2010; 134:119-36. [PMID: 20929960 DOI: 10.1093/brain/awq278] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntington's disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntington's disease, and suggest that activation of these receptors in patients with Huntington's disease may attenuate disease progression.
Collapse
Affiliation(s)
- Cristina Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Huntington’s Disease and Ataxias Collaborative Project, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang Z, Sun K, Suo W, Yao L, Fu Q, Cui Y, Fu G, Chen H, Lu Y. N-stearoyltyrosine protects primary neurons from Aβ-induced apoptosis through modulating mitogen-activated protein kinase activity. Neuroscience 2010; 169:1840-7. [DOI: 10.1016/j.neuroscience.2010.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
49
|
Nunn AV, Guy GW, Bell JD. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology 2010; 215:617-28. [DOI: 10.1016/j.imbio.2009.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 01/31/2023]
|
50
|
Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Müller A, Melnik A, Waltinger TP, Ullrich O, Kempermann G. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 2010; 8:12. [PMID: 20565726 PMCID: PMC2898685 DOI: 10.1186/1478-811x-8-12] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 06/17/2010] [Indexed: 12/02/2022] Open
Abstract
Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1) deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX)-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.
Collapse
Affiliation(s)
- Susanne A Wolf
- Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, and Volkswagenstiftung Research Group, Department of Experimental Neurology, Charité University Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|