1
|
Meena NP, Kimmel AR. Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing. eLife 2017; 6. [PMID: 28541182 PMCID: PMC5476428 DOI: 10.7554/elife.24627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model Dictyostelium and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; Dictyostelium chemotax toward bacteria and phagocytose them as food sources. We quantified Dictyostelium chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.24627.001
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| |
Collapse
|
2
|
Liao XH, Kimmel AR. A Unique High-Throughput Assay to Identify Novel Small Molecule Inhibitors of Chemotaxis and Migration. ACTA ACUST UNITED AC 2017; 74:12.11.1-12.11.13. [PMID: 28256720 DOI: 10.1002/cpcb.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotaxis and cell migration play pivotal roles in normal physiological processes such as embryogenesis, inflammation, and wound healing, as well as in pathological processes including chronic inflammatory disease and cancer metastasis. Novel chemotaxis/migration inhibitors are desirable for developing effective therapeutics and probing molecular mechanisms. We describe a fluorescence-based phenotypic assay in a 1536-well plate format for high-throughput screening of novel inhibitors of chemotaxis/migration within complex libraries of thousands of compounds. Although the assay utilizes the unique cellular response properties of Dictyostelium, the compounds identified are able to inhibit chemotaxis of mammalian cells. In addition, a parallel cell cytotoxicity counter-screen with an ATP content assay is described that eliminates cytotoxic compounds from the screen. This novel compound screening approach enables rapid identification of novel lead compounds that inhibit chemotaxis in human and other cells for drug development and research tools. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xin-Hua Liao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, and Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Skoge M, Wong E, Hamza B, Bae A, Martel J, Kataria R, Keizer-Gunnink I, Kortholt A, Van Haastert PJM, Charras G, Janetopoulos C, Irimia D. A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells. PLoS One 2016; 11:e0154491. [PMID: 27332963 PMCID: PMC4917115 DOI: 10.1371/journal.pone.0154491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events.
Collapse
Affiliation(s)
- Monica Skoge
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Elisabeth Wong
- BioMEMS Resource Center, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Albert Bae
- Max Planck Institute for Dynamics and Self Organization, Göttingen, Germany
| | - Joseph Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Wentworth Institute of Technology, Boston, Massachusetts, United States of America
| | - Rama Kataria
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | | | - Guillaume Charras
- London Centre for Nanotechnology and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
A High-Throughput, Multi-Cell Phenotype Assay for the Identification of Novel Inhibitors of Chemotaxis/Migration. Sci Rep 2016; 6:22273. [PMID: 26956526 PMCID: PMC4783656 DOI: 10.1038/srep22273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotaxis and cell migration are fundamental, universal eukaryotic processes essential for biological functions such as embryogenesis, immunity, cell renewal, and wound healing, as well as for pathogenesis of many diseases including cancer metastasis and chronic inflammation. To identify novel chemotaxis inhibitors as probes for mechanistic studies and leads for development of new therapeutics, we developed a unique, unbiased phenotypic chemotaxis-dependent Dictyostelium aggregation assay for high-throughput screening using rapid, laser-scanning cytometry. Under defined conditions, individual Dictyostelium secrete chemoattractants, migrate, and aggregate. Chemotaxis is quantified by laser-scanning cytometry with a GFP marker expressed only in cells after chemotaxis/multi-cell aggregation. We applied the assay to screen 1,280 known compounds in a 1536-well plate format and identified two chemotaxis inhibitors. The chemotaxis inhibitory activities of both compounds were confirmed in both Dictyostelium and in human neutrophils in a directed EZ-TAXIscan chemotaxis assay. The compounds were also shown to inhibit migration of two human cancer cell lines in monolayer scratch assays. This test screen demonstrated that the miniaturized assay is extremely suited for high-throughput screening of very large libraries of small molecules to identify novel classes of chemotaxis/migratory inhibitors for drug development and research tools for targeting chemotactic pathways universal to humans and other systems.
Collapse
|
5
|
A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun 2015; 6:7721. [PMID: 26166433 PMCID: PMC4510974 DOI: 10.1038/ncomms8721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration. Directed cell migration requires spatially regulated activity of GTPases Rac1 and RhoA. Here Cao et al. show that growth factor stimulation promotes phosphorylation of tensin-3 and phosphatase and tensin homologue (PTEN) and their association with PI 3-kinase and deleted in liver cancer 1 (DLC1) to regulate GTPase activity.
Collapse
|
6
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Platt JL, Rogers BJ, Rogers KC, Harwood AJ, Kimmel AR. Different CHD chromatin remodelers are required for expression of distinct gene sets and specific stages during development of Dictyostelium discoideum. Development 2014; 140:4926-36. [PMID: 24301467 PMCID: PMC3848188 DOI: 10.1242/dev.099879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression.
Collapse
Affiliation(s)
- James L Platt
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
8
|
Kölsch V, Shen Z, Lee S, Plak K, Lotfi P, Chang J, Charest PG, Romero JL, Jeon TJ, Kortholt A, Briggs SP, Firtel RA. Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol Biol Cell 2012; 24:100-14. [PMID: 23135995 PMCID: PMC3541958 DOI: 10.1091/mbc.e12-04-0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Daydreamer (DydA), a new Mig10/RIAM/lamellipodin family adaptor protein, is a Ras effector required for cell polarization and directional movement during chemotaxis. DydA is phosphorylated by glycogen synthase kinase-3, which is required for some, but not all, of DydA's functions. gskA− cells exhibit very strong chemotactic phenotypes, a subset of which are exhibited by dydA− cells. How independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis. dydA− cells exhibit elevated F-actin and assembled myosin II (MyoII), increased and extended phosphoinositide-3-kinase (PI3K) activity, and extended phosphorylation of the activation loop of PKB and PKBR1, suggesting that DydA is involved in the negative regulation of these pathways. DydA is phosphorylated by glycogen synthase kinase-3 (GSK-3), which is required for some, but not all, of DydA's functions, including the proper regulation of PKB and PKBR1 and MyoII assembly. gskA− cells exhibit very strong chemotactic phenotypes, as previously described, but exhibit an increased rate of random motility. gskA− cells have a reduced MyoII response and a reduced level of phosphatidylinositol (3,4,5)-triphosphate production, but a highly extended recruitment of PI3K to the plasma membrane and highly extended kinetics of PKB and PKBR1 activation. Our results demonstrate that GSK-3 function is essential for chemotaxis, regulating multiple substrates, and that one of these effectors, DydA, plays a key function in the dynamic regulation of chemotaxis.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis. Semin Cell Dev Biol 2012; 23:308-19. [PMID: 22465520 DOI: 10.1016/j.semcdb.2012.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/20/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
|
10
|
Marée AFM, Grieneisen VA, Edelstein-Keshet L. How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput Biol 2012; 8:e1002402. [PMID: 22396633 PMCID: PMC3291540 DOI: 10.1371/journal.pcbi.1002402] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 01/07/2012] [Indexed: 12/03/2022] Open
Abstract
To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) , and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell “fronts”. This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model. Single cells, such as amoeba and white blood cells, change shape and move in response to environmental stimuli. Their behaviour is a consequence of the intracellular properties balanced by external forces. The internal regulation is modulated by several proteins that interact with one another and with membrane lipids. We examine, through in silico experiments using a computational model of a moving cell, the interactions of an important class of such proteins (Rho GTPases) and lipids (phosphoinositides, PIs), their spatial redistribution, and how they affect and are affected by cell shape. Certain GTPases promote the assembly of the actin cytoskeleton. This then leads to the formation of a cell protrusion, the leading edge. The feedback between PIs and GTPases facilitates global communication across the cell, ensuring that multiple, complex, or rapidly changing stimuli can be resolved into a single decision for positioning the leading edge. Interestingly, the cell shape itself affects the intracellular biochemistry, resulting from interactions between the curvature of the chemical fronts and the cell edge. Cells with static shapes consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes. This potential to respond more rapidly to external stimuli depends on the degree of cellular shape deformation.
Collapse
Affiliation(s)
- Athanasius F M Marée
- Computational & Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | | | | |
Collapse
|
11
|
Agarwala EK, Chiel HJ, Thomas PJ. Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging. J Theor Biol 2012; 304:235-72. [PMID: 22381540 DOI: 10.1016/j.jtbi.2012.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 12/30/2022]
Abstract
Efficient coding, redundancy reduction, and other information theoretic optimization principles have successfully explained the organization of many biological phenomena, from the physiology of sensory receptive fields to the variability of certain DNA sequence ensembles. Here we examine the hypothesis that behavioral strategies that are optimal for survival must necessarily involve efficient information processing, and ask whether there can be circumstances in which deliberately sacrificing some information can lead to higher utility? To this end, we present an analytically tractable model for a particular instance of a perception-action loop: a creature searching for a randomly moving food source confined to a 1D ring world. The model incorporates the statistical structure of the creature's world, the effects of the creature's actions on that structure, and the creature's strategic decision process. The underlying model takes the form of a Markov process on an infinite dimensional state space. To analyze it we construct an exact coarse graining that reduces the model to a Markov process on a finite number of "information states". This mathematical technique allows us to make quantitative comparisons between the performance of an information-theoretically optimal strategy with other candidate search strategies on a food gathering task. We find that 1. Information optimal search does not necessarily optimize utility (expected food gain). 2. The rank ordering of search strategies by information performance does not predict their ordering by expected food obtained. 3. The relative advantage of different strategies depends on the statistical structure of the environment, in particular the variability of motion of the source. We conclude that there is no simple relationship between information and utility. Even in the absence of information processing costs or bandwidth constraints, behavioral optimality does not imply information efficiency, nor is there a simple tradeoff between the two objectives of gaining information about a food source versus obtaining the food itself. For a wide range of values of the food source's movement parameter, the strategy of collecting the most information possible about the unknown source location carries an ineliminable structural cost, leading to a situation in which a foraging creature could actually choose to be less well-informed while simultaneously being, on average, better fed.
Collapse
Affiliation(s)
- Edward K Agarwala
- Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
12
|
Heinrich V, Lee CY. Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. J Cell Sci 2012; 124:3041-51. [PMID: 21914817 DOI: 10.1242/jcs.086413] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An innate immune cell can sense a pathogen, either from a distance by recognizing chemoattractant stimuli or by direct physical contact. The pathogen is subsequently neutralized, which usually occurs through its phagocytic internalization. By investigating chemotaxis and phagocytosis from an immunophysical single-cell perspective, it now appears that the demarcation between these two processes is less distinct than originally thought. Several lines of evidence support this notion. First, chemotactic stimulation does not cease at the moment of initial contact between the cell and the pathogenic target. Second, even when classical chemotaxis of neutrophils is suppressed, the early cell response to contact with typical chemoattractant targets, such as zymosan, fungal spores or chemokine-coated particles, can still involve morphological attributes of chemotaxis. Recognizing that the changing morphology of motile cells is inextricably linked to physical cell behavior, this Commentary focuses on the mechanical aspects of the early response of innate immune cells to chemotactic and phagocytic stimuli. On the basis of this perspective, we propose that the combined study of chemotaxis and phagocytosis will, potentially, not only advance our grasp of the mechanisms underlying immune-cell motility but also open new lines of research that will promote a deeper understanding of the innate recognition of pathogens.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
13
|
Deng Q, Yoo SK, Cavnar PJ, Green JM, Huttenlocher A. Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue. Dev Cell 2011; 21:735-45. [PMID: 22014524 PMCID: PMC3199325 DOI: 10.1016/j.devcel.2011.07.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/02/2011] [Accepted: 07/22/2011] [Indexed: 12/23/2022]
Abstract
Neutrophil homeostasis is essential for host defense. Here we identify dual roles for Rac2 during neutrophil homeostasis using a zebrafish model of primary immune deficiency induced by the human inhibitory Rac2D57N mutation in neutrophils. Noninvasive live imaging of Rac2 morphants or Rac2D57N zebrafish larvae demonstrates an essential role for Rac2 in regulating 3D motility and the polarization of F-actin dynamics and PI(3)K signaling in vivo. Tracking of photolabeled Rac2-deficient neutrophils from hematopoietic tissue also shows increased mobilization into the circulation, indicating that neutrophil mobilization does not require traditionally defined cell motility. Moreover, excessive neutrophil retention in hematopoietic tissue resulting from a constitutively active CXCR4 mutation in zebrafish warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is partially rescued by the inhibitory Rac2 mutation. These findings reveal that Rac2 signaling is necessary for both neutrophil 3D motility and CXCR4-mediated neutrophil retention in hematopoietic tissue, thereby limiting neutrophil mobilization, a critical first step in the innate immune response.
Collapse
Affiliation(s)
- Qing Deng
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter J. Cavnar
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie M. Green
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Abstract
Cells recognize external chemical gradients and translate these environmental cues into amplified intracellular signaling that results in elongated cell shape, actin polymerization toward the leading edge, and movement along the gradient. Mechanisms underlying chemotaxis are conserved evolutionarily from Dictyostelium amoeba to mammalian neutrophils. Recent studies have uncovered several parallel intracellular signaling pathways that crosstalk in chemotaxing cells. Here, we review these signaling mechanisms in Dictyostelium discoideum.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
15
|
Welf ES, Haugh JM. Signaling pathways that control cell migration: models and analysis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:231-40. [PMID: 21305705 DOI: 10.1002/wsbm.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dissecting the intracellular signaling mechanisms that govern the movement of eukaryotic cells presents a major challenge, not only because of the large number of molecular players involved, but even more so because of the dynamic nature of their regulation by both biochemical and mechanical interactions. Computational modeling and analysis have emerged as useful tools for understanding how the physical properties of cells and their microenvironment are coupled with certain biochemical pathways to actuate and control cell motility. In this focused review, we highlight some of the more recent applications of quantitative modeling and analysis in the field of cell migration. Both in modeling and experiment, it has been prudent to follow a reductionist approach in order to characterize what are arguably the principal modules: spatial polarization of signaling pathways, regulation of the actin cytoskeleton, and dynamics of focal adhesions. While it is important that we 'cut our teeth' on these subsystems, focusing on the details of certain aspects while ignoring or coarse-graining others, it is clear that the challenge ahead will be to characterize the couplings between them in an integrated framework.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
16
|
Kicka S, Shen Z, Annesley SJ, Fisher PR, Lee S, Briggs S, Firtel RA. The LRRK2-related Roco kinase Roco2 is regulated by Rab1A and controls the actin cytoskeleton. Mol Biol Cell 2011; 22:2198-211. [PMID: 21551065 PMCID: PMC3128523 DOI: 10.1091/mbc.e10-12-0937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We identify a new pathway that is required for proper pseudopod formation. We show that Roco2, a leucine-rich repeat kinase 2 (LRRK2)-related Roco kinase, is activated in response to chemoattractant stimulation and helps mediate cell polarization and chemotaxis by regulating cortical F-actin polymerization and pseudopod extension in a pathway that requires Rab1A. We found that Roco2 binds the small GTPase Rab1A as well as the F-actin cross-linking protein filamin (actin-binding protein 120, abp120) in vivo. We show that active Rab1A (Rab1A-GTP) is required for and regulates Roco2 kinase activity in vivo and that filamin lies downstream from Roco2 and controls pseudopod extension during chemotaxis and random cell motility. Therefore our study uncovered a new signaling pathway that involves Rab1A and controls the actin cytoskeleton and pseudopod extension, and thereby, cell polarity and motility. These findings also may have implications in the regulation of other Roco kinases, including possibly LRRK2, in metazoans.
Collapse
Affiliation(s)
- Sebastian Kicka
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Iglesias PA. Spatial regulation of PI3K signaling during chemotaxis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:247-253. [PMID: 20835994 DOI: 10.1002/wsbm.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' OH position of the inositol ring of phosphoinositides on the inner leaf of the plasma membrane. Receptor-mediated activation of the PI3K pathway plays a crucial role in numerous signaling pathways and regulates a number of critical cellular processes, including growth, differentiation, survival and directed migration. In this focus article, we review the temporal and spatial regulation of PI3K in chemotaxing cells with particular emphasis on the amoeba Dictyostelium as well as neutrophils. We also briefly discuss one model used to elucidate the PI3K pathway.
Collapse
Affiliation(s)
- Pablo A Iglesias
- Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Abstract
Much remains to be understood about how a group of cells break symmetry and differentiate into distinct cell types. The simple eukaryote Dictyostelium discoideum is an excellent model system for studying questions such as cell type differentiation. Dictyostelium cells grow as single cells. When the cells starve, they aggregate to develop into a multicellular structure with only two main cell types: spore and stalk. There has been a longstanding controversy as to how a cell makes the initial choice of becoming a spore or stalk cell. In this review, we describe how the controversy arose and how a consensus developed around a model in which initial cell type choice in Dictyostelium is dependent on the cell cycle phase that a cell happens to be in at the time that it starves.
Collapse
|
19
|
Abstract
Any established or aspiring model organism must justify itself using two criteria: does the model organism offer experimental advantages not offered by competing systems? And will any discoveries made using the model be of wider relevance? This review addresses these issues for the social amoeba Dictyostelium and highlights some of the organisms more recent applications. These cover a remarkably wide gamut, ranging from sociobiological to medical research with much else in between.
Collapse
|
20
|
Scherer A, Kuhl S, Wessels D, Lusche DF, Raisley B, Soll DR. Ca2+ chemotaxis in Dictyostelium discoideum. J Cell Sci 2010; 123:3756-67. [PMID: 20940253 DOI: 10.1242/jcs.068619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Using a newly developed microfluidic chamber, we have demonstrated in vitro that Ca(2+) functions as a chemoattractant of aggregation-competent Dictyostelium discoideum amoebae, that parallel spatial gradients of cAMP and Ca(2+) are more effective than either alone, and that cAMP functions as a stronger chemoattractant than Ca(2+). Effective Ca(2+) gradients are extremely steep compared with effective cAMP gradients. This presents a paradox because there is no indication to date that steep Ca(2+) gradients are generated in aggregation territories. However, given that Ca(2+) chemotaxis is co-acquired with cAMP chemotaxis during development, we speculate on the role that Ca(2+) chemotaxis might have and the possibility that steep, transient Ca(2+) gradients are generated during natural aggregation in the interstitial regions between cells.
Collapse
Affiliation(s)
- Amanda Scherer
- The W. M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
21
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
22
|
Lee S, Shen Z, Robinson DN, Briggs S, Firtel RA. Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Mol Biol Cell 2010; 21:1810-24. [PMID: 20375144 PMCID: PMC2877640 DOI: 10.1091/mbc.e10-01-0009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells activate signaling pathways at the site closest to the chemoattractant source that lead to pseudopod formation and directional movement up the gradient. We demonstrate that cytoskeletal components required for cortical tension, including MyoII and IQGAP/cortexillins help regulate the level and timing of leading-edge pathways. In response to directional stimulation by a chemoattractant, cells rapidly activate a series of signaling pathways at the site closest to the chemoattractant source that leads to F-actin polymerization, pseudopod formation, and directional movement up the gradient. Ras proteins are major regulators of chemotaxis in Dictyostelium; they are activated at the leading edge, are required for chemoattractant-mediated activation of PI3K and TORC2, and are one of the most rapid responders, with activity peaking at ∼3 s after stimulation. We demonstrate that in myosin II (MyoII) null cells, Ras activation is highly extended and is not restricted to the site closest to the chemoattractant source. This causes elevated, extended, and spatially misregulated activation of PI3K and TORC2 and their effectors Akt/PKB and PKBR1, as well as elevated F-actin polymerization. We further demonstrate that disruption of specific IQGAP/cortexillin complexes, which also regulate cortical mechanics, causes extended activation of PI3K and Akt/PKB but not Ras activation. Our findings suggest that MyoII and IQGAP/cortexillin play key roles in spatially and temporally regulating leading-edge activity and, through this, the ability of cells to restrict the site of pseudopod formation.
Collapse
Affiliation(s)
- Susan Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
23
|
Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 2010; 18:226-36. [PMID: 20159593 DOI: 10.1016/j.devcel.2009.11.015] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/29/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P(3)-PI(3,4)P(2) during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
24
|
King JS, Insall RH. Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 2009; 19:523-30. [PMID: 19733079 DOI: 10.1016/j.tcb.2009.07.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Understanding cell migration is centrally important to modern cell biology. However, despite years of study, progress has been hindered by experimental limitations and the complexity of the process. This has led to the popularity of Dictyostelium discoideum, with its experimentally-friendly lifestyle and small, haploid genome, as a tool to dissect the pathways involved in migration. This humble amoeba is now established at the centre of dramatic changes in our understanding of cell movement. In this review we describe the recent reinterpretation of the role of phosphatidylinositol trisphosphate (PIP(3)) and other intracellular messengers that connect signalling and migration, and the transition to models of chemotaxis driven by multiple, intertwined signalling pathways. In shallow gradients, pseudopods are generated with random directions, and we discuss how chemotaxis can operate by biasing this process. Overall we describe how Dictyostelium has the potential to unlock many fundamental questions in the cell motility field.
Collapse
|
25
|
Cathcart MK. Signal-activated phospholipase regulation of leukocyte chemotaxis. J Lipid Res 2008; 50 Suppl:S231-6. [PMID: 19109234 DOI: 10.1194/jlr.r800096-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal-activated phospholipases are a recent focus of the rapidly growing field of lipid signaling. The extent of their impact on the pathways regulating diverse cell functions is beginning to be appreciated. A critical step in inflammation is the attraction of leukocytes to injured or diseased tissue. Chemotaxis of leukocytes, a requisite process for monocyte and neutrophil extravasation from the blood into tissues, is a critical step for initiating and maintaining inflammation in both acute and chronic settings. Recent studies have identified new important and required roles for two signal-activated phospholipases A2 (PLA2) in regulating chemotaxis. The two intracellular phospholipases, cPLA2alpha (Group IVA) and iPLA2beta (Group VIA), act in parallel to provide distinct lipid mediators at different intracellular sites that are both required for leukocytes to migrate toward the chemokine monocyte chemoattractant protein-1. This review will summarize the separate roles of these phospholipases as well as what is currently known about the influence of two other classes of intracellular signal-activated phospholipases, phospholipase C and phospholipase D, in regulating chemotaxis in eukaryotic cells, but particularly in human monocytes. The contributions of these phospholipases to chemotaxis both in vitro and in vivo will be highlighted.
Collapse
Affiliation(s)
- Martha K Cathcart
- Department of Cell Biology, Lerner Research Institute and Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA.
| |
Collapse
|
26
|
Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, Briggs S, Firtel RA. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell 2008; 20:699-707. [PMID: 19037099 DOI: 10.1091/mbc.e08-09-0899] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell motility of amoeboid cells is mediated by localized F-actin polymerization that drives the extension of membrane protrusions to promote forward movements. We show that deletion of either of two members of the Dictyostelium Dock180 family of RacGEFs, DockA and DockD, causes decreased speed of chemotaxing cells. The phenotype is enhanced in the double mutant and expression of DockA or DockD complements the reduced speed of randomly moving DockD null cells' phenotype, suggesting that DockA and DockD are likely to act redundantly and to have similar functions in regulating cell movement. In this regard, we find that overexpressing DockD causes increased cell speed by enhancing F-actin polymerization at the sites of pseudopod extension. DockD localizes to the cell cortex upon chemoattractant stimulation and at the leading edge of migrating cells and this localization is dependent on PI3K activity, suggesting that DockD might be part of the pathway that links PtdIns(3,4,5)P(3) production to F-actin polymerization. Using a proteomic approach, we found that DdELMO1 is associated with DockD and that Rac1A and RacC are possible in vivo DockD substrates. In conclusion, our work provides a further understanding of how cell motility is controlled and provides evidence that the molecular mechanism underlying Dock180-related protein function is evolutionarily conserved.
Collapse
Affiliation(s)
- Alessia Para
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang S, Charest PG, Firtel RA. Spatiotemporal regulation of Ras activity provides directional sensing. Curr Biol 2008; 18:1587-1593. [PMID: 18948008 PMCID: PMC2590931 DOI: 10.1016/j.cub.2008.08.069] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 08/13/2008] [Accepted: 08/27/2008] [Indexed: 11/19/2022]
Abstract
Cells' ability to detect and orient themselves in chemoattractant gradients has been the subject of numerous studies, but the underlying molecular mechanisms remain largely unknown [1]. Ras activation is the earliest polarized response to chemoattractant gradients downstream from heterotrimeric G proteins in Dictyostelium, and inhibition of Ras signaling results in directional migration defects [2]. Activated Ras is enriched at the leading edge, promoting the localized activation of key chemotactic effectors, such as PI3K and TORC2 [2-5]. To investigate the role of Ras in directional sensing, we studied the effect of its misregulation by using cells with disrupted RasGAP activity. We identified an ortholog of mammalian NF1, DdNF1, as a major regulator of Ras activity in Dictyostelium. We show that disruption of nfaA leads to spatially and temporally unregulated Ras activity, causing cytokinesis and chemotaxis defects. By using unpolarized, latrunculin-treated cells, we show that tight regulation of Ras is important for gradient sensing. Together, our findings suggest that Ras is part of the cell's compass and that the RasGAP-mediated regulation of Ras activity affects directional sensing.
Collapse
Affiliation(s)
| | | | - Richard A. Firtel
- Section of Cell and Developmental Biology Division of Biological Sciences Center for Molecular Genetics University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0380 USA
| |
Collapse
|
28
|
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 2008; 5 Suppl 1:S49-58. [PMID: 18426773 DOI: 10.1098/rsif.2008.0067.focus] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about how the sizes of specific organs and tissues are regulated. To try to understand these mechanisms, we have been using a combination of modelling and experiments to study the simple system Dictyostelium discoideum, which forms approximately 20000 cell groups. We found that cells secrete a factor, and as the number of cells increases, the concentration of the factor increases. Diffusion calculations indicated that this lets cells sense the local cell density. Computer simulations predicted, and experiments then showed, that this factor decreases cell-cell adhesion and increases random cell motility. In a group, adhesion forces keep cells together, while random motility forces cause cells to pull apart and separate from each other. As the group size increases above a threshold, the factor concentration goes above a threshold and the cells switch from an adhered state to a separated state. This causes excessively large groups to break apart and/or dissipate, creating an upper limit to group size. In this review, we focus on how computer simulations made testable predictions that led the way to understanding the size regulation mechanism mediated by this factor.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science, Dongguk University, Chung-Gu, Seoul, Korea.
| | | |
Collapse
|
29
|
Kölsch V, Charest PG, Firtel RA. The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 2008; 121:551-9. [PMID: 18287584 DOI: 10.1242/jcs.023333] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K), PTEN and localized phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] play key roles in chemotaxis, regulating cell motility by controlling the actin cytoskeleton in Dictyostelium and mammalian cells. PtdIns(3,4,5)P3, produced by PI3K, acts via diverse downstream signaling components, including the GTPase Rac, Arf-GTPases and the kinase Akt (PKB). It has become increasingly apparent, however, that chemotaxis results from an interplay between the PI3K-PTEN pathway and other parallel pathways in Dictyostelium and mammalian cells. In Dictyostelium, the phospholipase PLA2 acts in concert with PI3K to regulate chemotaxis, whereas phospholipase C (PLC) plays a supporting role in modulating PI3K activity. In adenocarcinoma cells, PLC and the actin regulator cofilin seem to provide the direction-sensing machinery, whereas PI3K might regulate motility.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | | | |
Collapse
|
30
|
Mishra RS, Carnevale KA, Cathcart MK. iPLA2beta: front and center in human monocyte chemotaxis to MCP-1. ACTA ACUST UNITED AC 2008; 205:347-59. [PMID: 18208975 PMCID: PMC2271028 DOI: 10.1084/jem.20071243] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) directs migration of blood monocytes to inflamed tissues. Despite the central role of chemotaxis in immune responses, the regulation of chemotaxis by signal transduction pathways and their in vivo significance remain to be thoroughly deciphered. In this study, we examined the intracellular location and functions of two recently identified regulators of chemotaxis, Ca2+-independent phospholipase (iPLA2β) and cytosolic phospholipase (cPLA2α), and substantiate their in vivo importance. These enzymes are cytoplasmic in unstimulated monocytes. Upon MCP-1 stimulation, iPLA2β is recruited to the membrane-enriched pseudopod. In contrast, cPLA2α is recruited to the endoplasmic reticulum. Although iPLA2β or cPLA2α antisense oligodeoxyribonucleotide (ODN)–treated monocytes display reduced speed, iPLA2β also regulates directionality and actin polymerization. iPLA2β or cPLA2α antisense ODN–treated adoptively transferred mouse monocytes display a profound defect in migration to the peritoneum in vivo. These converging observations reveal that iPLA2β and cPLA2α regulate monocyte migration from different intracellular locations, with iPLA2β acting as a critical regulator of the cellular compass, and identify them as potential targets for antiinflammatory strategies.
Collapse
Affiliation(s)
- Ravi S Mishra
- Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
31
|
Smirnova T, Segall JE. Amoeboid chemotaxis: future challenges and opportunities. Cell Adh Migr 2007; 1:165-70. [PMID: 19262145 DOI: 10.4161/cam.1.4.5305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is the directed movement of a cell towards a gradient of chemicals such as chemokines or growth factors. This phenomenon can be studied in organisms ranging from bacteria to mammalian cells, and here we will focus on eukaryotic amoeboid chemotaxis. Chemotactic responses are mediated by two major classes of receptors: GPCR's and RTK's, with multiple pathways signaling downstream of them, certain ones functioning in parallel. In this review we address two important features of amoeboid chemotaxis that will be important for further advances in the field. First, the application of in vivo imaging will be critical for providing insight into the functional requirements for chemotactic responses. We will briefly cover a number of systems in which in vivo imaging is providing new insights. Second, due to the network-type design of signaling pathways of eukaryotic chemotaxis, more refined phenotypic analysis will be necessary, and we will discuss recent analyses of the role of the phosphoinositide 3-kinase pathway in this light. We will close with some speculations regarding future applications of more detailed in vivo analysis and mechanistic understanding of eukaryotic amoeboid chemotaxis.
Collapse
Affiliation(s)
- Tatiana Smirnova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461 , USA
| | | |
Collapse
|