1
|
Pincigher L, Valenti F, Bergamini C, Prata C, Fato R, Amorati R, Jin Z, Farruggia G, Fiorentini D, Calonghi N, Zalambani C. Myrcene: A Natural Compound Showing Anticancer Activity in HeLa Cells. Molecules 2023; 28:6728. [PMID: 37764505 PMCID: PMC10537210 DOI: 10.3390/molecules28186728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
γ-terpinene, α-terpinene, p-cymene, and myrcene are monoterpenes found in many essential oils extracted from a variety of plants and spices. Myrcene also occurs naturally in plants such as hops, cannabis, lemongrass, and verbena and is used as a flavoring agent in food and beverage manufacturing. In this research, the biological efficacy of γ-terpinene, α-terpinene, p-cymene, and myrcene was studied in human cell lines (HeLa, SH-SY5Y, and HDFa). Cytotoxicity, cell proliferation, cell migration, and morphology assays were performed to obtain detailed information on the anticancer properties. Our results show that myrcene has potential biological activity, especially in HeLa cells. In this cell line, it leads to an arrest of proliferation, a decrease in motility and morphological changes with loss of sphericity and thickness, and DNA damage. In addition, the interaction of γ-terpinene, α-terpinene, p-terpinene, and myrcene with calf thymus DNA (ct-DNA) was studied by UV-visible spectrophotometry. DNA binding experiments show that only myrcene can interact with DNA with an apparent dissociation constant (Kd) of 29 × 10-6 M.
Collapse
Affiliation(s)
- Luca Pincigher
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Romana Fato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, 40129 Bologna, Italy; (R.A.); (Z.J.)
| | - Zongxin Jin
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, 40129 Bologna, Italy; (R.A.); (Z.J.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
- National Institute of Biostructures and Biosystems, Via delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Diana Fiorentini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (L.P.); (F.V.); (C.B.); (C.P.); (R.F.); (G.F.); (C.Z.)
| |
Collapse
|
2
|
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
3
|
Sarode GS, Sarode SC, Maniyar N, Sharma NK, Patil S. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncol Rev 2017; 11:343. [PMID: 29285321 PMCID: PMC5733395 DOI: 10.4081/oncol.2017.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.
Collapse
Affiliation(s)
- Gargi Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nikunj Maniyar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genet 2015; 11:e1005285. [PMID: 26061275 PMCID: PMC4464654 DOI: 10.1371/journal.pgen.1005285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca(2+)-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common "eat me" signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively.
Collapse
|
5
|
Kung HC, Evensen Ø, Hong JR, Kuo CY, Tso CH, Ngou FH, Lu MW, Wu JL. Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell. Int J Mol Sci 2014; 15:19281-306. [PMID: 25342322 PMCID: PMC4227274 DOI: 10.3390/ijms151019281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. In this study, we determined that interferon regulatory factor-1 (IRF-1) was dramatically upregulated upon viral infection in the fish cell. We observed apoptosis in virus-infected cells and found that both PSR and IRF-1 increased simultaneously. Based on a bioinformatics promoter assay, IRF-1 binding sites were identified in the PSR promoter. Compared to normal viral infection, we found that PSR expression was delayed, viral replication was increased and virus-induced apoptosis was inhibited following IRF-1 suppression with morpholino oligonucleotides. A luciferase assay to analyze promoter activity revealed a decreasing trend after the deletion of the IRF-1 binding site on PSR promoter. The results of this study indicated that infectious pancreatic necrosis virus (IPNV) infection induced both the apoptotic and interferon (IFN) pathways, and IRF-1 was involved in regulating PSR expression to induce anti-viral effects. Therefore, this work suggests that PSR expression in salmonid cells during IPNV infection is activated when IRF-1 binds the PSR promoter. This is the first report to show the potential role of IRF-1 in triggering the induction of apoptotic cell clearance-related genes during viral infection and demonstrates the extensive crosstalk between the apoptotic and innate immune response pathways.
Collapse
Affiliation(s)
- Hsin-Chia Kung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan.
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0454, Norway.
| | - Jiann-Ruey Hong
- Institute of Biotechnology, National Cheng-Kung University, Tainan 70101, Taiwan.
| | - Chia-Yu Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chun-Hsi Tso
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Fang-Huar Ngou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan.
| |
Collapse
|
6
|
Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ 2012; 20:64-76. [PMID: 22858544 DOI: 10.1038/cdd.2012.93] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine (PS) exposure on the external leaflet of the plasma membrane is widely observed during apoptosis and forms the basis for the annexin V binding assay to detect apoptotic cell death. Current efforts to explain PS exposure focus on two potential mechanisms, activation of a phospholipid scramblase or calcium-mediated trafficking of lysosomes to the cell surface. Here, we provide evidence that apoptotic PS exposure instead reflects bidirectional trafficking of membrane between the cell surface and cytoplasm. Using a series of cell lines, some of which expose large amounts of PS during apoptosis and some of which do not, we demonstrate that accumulation of plasma membrane-derived cytoplasmic vesicles in a dynamin-, clathrin- and Cdc42-independent manner is a previously undescribed but widely occurring feature of apoptosis. The apoptotic exposure of PS occurs when these vesicles traffic back to cell surface in a calcium-dependent process that is deficient in a substantial fraction of human cancer cell lines. These observations provide a new model for PS externalization during apoptosis and simultaneously identify an altered step that accounts for the paucity of apoptotic PS exposure in many cell lines.
Collapse
Affiliation(s)
- S-H Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
7
|
Frey B, Gaipl US. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol 2010; 33:497-516. [DOI: 10.1007/s00281-010-0228-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
|
8
|
The role of nucleotides in apoptotic cell clearance: implications for disease pathogenesis. J Mol Med (Berl) 2010; 89:13-22. [PMID: 20809090 DOI: 10.1007/s00109-010-0673-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/02/2010] [Accepted: 07/29/2010] [Indexed: 12/20/2022]
Abstract
Apoptosis occurs in many tissues, during both normal and pathogenic processes. Normally, apoptotic cells are rapidly cleared, either by neighboring or recruited phagocytes. The prompt clearance of apoptotic cells requires that the apoptotic cells announce their presence through the release of chemotactic factors, known as "find-me" signals, to recruit phagocytes to the site of death, and through the exposure of so-called "eat-me" signals, which are ligands for phagocytic uptake. The importance of prompt apoptotic cell clearance is revealed by findings that decreasing the efficiency of engulfment results in the persistence of apoptotic cells, which is often associated with chronic inflammation and autoimmunity. Additionally, the proper clearance of apoptotic cells is actively anti-inflammatory, which is thought to play a crucial role in immunologic tolerance. Therefore, defects associated with clearance of apoptotic cells may contribute to the pathogenesis of several inflammatory diseases, including autoimmunity and atherosclerosis. Here, we review the role of nucleotides in the apoptotic cell clearance process and discuss their implications for disease pathogenesis.
Collapse
|
9
|
Abstract
To maintain organismal homeostasis, phagocytes engulf dead cells, which are recognized as dead by virtue of a characteristic "eat me" signal exposed on their surface. The dead cells are then transferred to lysosomes, where their cellular components are degraded for reuse. Inefficient engulfment of dead cells activates the immune system, causing disease such as systemic lupus erythematosus, and if the DNA of the dead cells is not properly degraded, the innate immune response becomes activated, leading to severe anemia and chronic arthritis. Here, we discuss how the endogenous components of dead cells activate the immune system through both extracellular and intracellular pathways.
Collapse
|
10
|
Blume KE, Soeroes S, Waibel M, Keppeler H, Wesselborg S, Herrmann M, Schulze-Osthoff K, Lauber K. Cell surface externalization of annexin A1 as a failsafe mechanism preventing inflammatory responses during secondary necrosis. THE JOURNAL OF IMMUNOLOGY 2010; 183:8138-47. [PMID: 20007579 DOI: 10.4049/jimmunol.0902250] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The engulfment of apoptotic cells is of crucial importance for tissue homeostasis in multicellular organisms. A failure of this process results in secondary necrosis triggering proinflammatory cytokine production and autoimmune disease. In the present study, we investigated the role of annexin A1, an intracellular protein that has been implicated in the efficient removal of apoptotic cells. Consistent with its function as bridging protein in the phagocyte synapse, opsonization of apoptotic cells with purified annexin A1 strongly enhanced their phagocytic uptake. A detailed analysis, however, surprisingly revealed that annexin A1 was hardly exposed to the cell surface of primary apoptotic cells, but was strongly externalized only on secondary necrotic cells. Interestingly, while the exposure of annexin A1 failed to promote the uptake of these late secondary necrotic cells, it efficiently prevented induction of cytokine production in macrophages during engulfment of secondary necrotic cells. Our results therefore suggest that annexin A1 exposure during secondary necrosis provides an important failsafe mechanism counteracting inflammatory responses, even when the timely clearance of apoptotic cells has failed.
Collapse
Affiliation(s)
- Karin E Blume
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Curtis JL, Todt JC, Hu B, Osterholzer JJ, Freeman CM. Tyro3 receptor tyrosine kinases in the heterogeneity of apoptotic cell uptake. Front Biosci (Landmark Ed) 2009; 14:2631-46. [PMID: 19273223 DOI: 10.2741/3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result.
Collapse
Affiliation(s)
- Jeffrey L Curtis
- Pulmonary and Critical Care Medicine, Department of Veterans Affairs Healthsystem and University of Michigan Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
12
|
Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD. Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 2008; 20:1408-18. [PMID: 19116313 DOI: 10.1091/mbc.e08-07-0786] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.
Collapse
Affiliation(s)
- Sean R Stowell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yun JH, Henson PM, Tuder RM. Phagocytic clearance of apoptotic cells: role in lung disease. Expert Rev Respir Med 2008; 2:753-65. [PMID: 20477237 PMCID: PMC3956128 DOI: 10.1586/17476348.2.6.753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Apoptosis and apoptotic clearance are matched processes that are centered in the maintenance of homeostasis. Similar to apoptosis, apoptotic cell clearance is a conserved mechanism that is highly efficient and redundant, highlighting its overall functional importance in homeostasis. Increasing evidence suggests that the mismatch between apoptosis and apoptotic cell clearance underlies pathologic conditions including inflammatory lung diseases, such as chronic obstructive pulmonary disease, cystic fibrosis, asthma, acute lung injury/acute respiratory distress syndrome and cancer immunity. Although direct causality has yet to be established, this paradigm opens novel approaches towards the understanding and treatment of lung diseases. Glucocorticoids, statins and macrolide antibiotics, which are already in use for treating lung conditions, have a positive effect on apoptotic clearance and are among novel agents that are potential candidates for treatment of these disorders.
Collapse
Affiliation(s)
- Jeong H Yun
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA, Tel.: +1 303 724 6049,
| | - Peter M Henson
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA, Tel.: +1 303 398 1380, Fax: +1 303 398 1381,
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA, Tel.: +1 303 724 6062,
| |
Collapse
|
14
|
|