1
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
2
|
Okuyama K, Yanamoto S. Saliva in Balancing Oral and Systemic Health, Oral Cancer, and Beyond: A Narrative Review. Cancers (Basel) 2024; 16:4276. [PMID: 39766175 PMCID: PMC11674559 DOI: 10.3390/cancers16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Saliva plays a multifaceted role in oral health and systemic well-being. It supports digestion, protects oral tissues, maintains a healthy oral microbiome, and facilitates wound healing. Additionally, saliva serves as a diagnostic tool that reflects systemic health and disease/therapeutic states. Furthermore, although saliva shows a protective effect against oral cancer development, once tumor formation occurs, it may be involved in tumor progression and metastasis via exosomes and microRNAs. This review discusses the essential role of saliva; its relationship with the development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC); liquid biopsy tools for early diagnosis and monitoring of HNSCC; and the potential of exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
3
|
Ganeshkumar A, Muthuselvam M, de Lima PMN, Rajaram R, Junqueira JC. Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris. J Fungi (Basel) 2024; 10:408. [PMID: 38921394 PMCID: PMC11205254 DOI: 10.3390/jof10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Chennai 602105, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| | - Rajendren Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| |
Collapse
|
4
|
Yang L, Wang X, Ma Z, Sui Y, Liu X. Fangchinoline inhibits growth and biofilm of Candida albicans by inducing ROS overproduction. J Cell Mol Med 2024; 28:e18354. [PMID: 38686557 PMCID: PMC11058694 DOI: 10.1111/jcmm.18354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 μg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticsThe Second Hospital of Jilin UniversityChangchunChina
| | - Xiaonan Wang
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia SurgeryThe Second Hospital of Jilin UniversityChangchunChina
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticsThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Malec K, Mikołajczyk A, Marciniak D, Gawin-Mikołajewicz A, Matera-Witkiewicz A, Karolewicz B, Nawrot U, Khimyak YZ, Nartowski KP. Pluronic F-127 Enhances the Antifungal Activity of Fluconazole against Resistant Candida Strains. ACS Infect Dis 2024; 10:215-231. [PMID: 38109184 PMCID: PMC10795414 DOI: 10.1021/acsinfecdis.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Candida strains as the most frequent causes of infections, along with their increased drug resistance, pose significant clinical and financial challenges to the healthcare system. Some polymeric excipients were reported to interfere with the multidrug resistance mechanism. Bearing in mind that there are a limited number of marketed products with fluconazole (FLU) for the topical route of administration, Pluronic F-127 (PLX)/FLU formulations were investigated in this work. The aims of this study were to investigate (i) whether PLX-based formulations can increase the susceptibility of resistant Candida strains to FLU, (ii) whether there is a correlation between block polymer concentration and the antifungal efficacy of the FLU-loaded PLX formulations, and (iii) what the potential mode of action of PLX assisting FLU is. The yeast growth inhibition upon incubation with PLX formulations loaded with FLU was statistically significant. The highest efficacy of the azole agent was observed in the presence of 5.0 and 10.0% w/v of PLX. The upregulation of the CDR1/CDR2 genes was detected in the investigated Candida strains, indicating that the efflux of the drug from the fungal cell was the main mechanism of the resistance.
Collapse
Affiliation(s)
- Katarzyna Malec
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of
Biological Material Laboratory, Wroclaw Medical University,
211a Borowska Str, 50-556 Wroclaw, Poland
| | - Dominik Marciniak
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Agnieszka Gawin-Mikołajewicz
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of
Biological Material Laboratory, Wroclaw Medical University,
211a Borowska Str, 50-556 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and
Parasitology, Wroclaw Medical University, 211a Borowska Str,
50-556 Wroclaw, Poland
| | - Yaroslav Z. Khimyak
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
- School of Pharmacy, University of East
Anglia, Chancellors Drive, NR4 7TJ Norwich, U.K.
| | - Karol P. Nartowski
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
- School of Pharmacy, University of East
Anglia, Chancellors Drive, NR4 7TJ Norwich, U.K.
| |
Collapse
|
7
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
9
|
Finkina EI, Bogdanov IV, Ignatova AA, Kanushkina MD, Egorova EA, Voropaev AD, Stukacheva EA, Ovchinnikova TV. Antifungal Activity, Structural Stability, and Immunomodulatory Effects on Human Immune Cells of Defensin from the Lentil Lens culinaris. MEMBRANES 2022; 12:membranes12090855. [PMID: 36135874 PMCID: PMC9503459 DOI: 10.3390/membranes12090855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 05/27/2023]
Abstract
An increase in the frequency of mycoses and spreading of multidrug-resistant fungal pathogens necessitates the search for new antifungal agents. Earlier, we isolated the novel defensin from lentil Lensculinaris seeds, designated as Lc-def, which inhibited the growth of phytopathogenic fungi. Here, we studied an antifungal activity of Lc-def against human pathogenic Candida species, structural stability of the defensin, and its immunomodulatory effects that may help to prevent fungal infection. We showed that Lc-def caused 50% growth inhibition of clinical isolates of Candida albicans, C. krusei, and C. glabrata at concentrations of 25-50 μM, but was not toxic to different human cells. The lentil defensin was resistant to proteolysis by C. albicans and was not cleaved during simulated gastroduodenal digestion. By using the multiplex xMAP assay, we showed for the first time for plant defensins that Lc-def increased the production of such essential for immunity to candidiasis pro-inflammatory cytokines as IL-12 and IL-17 at the concentration of 2 μM. Thus, we hypothesized that the lentil Lc-def and plant defensins in general may be effective in suppressing of mucocutaneous candidiasis due to their antifungal activity, high structural stability, and ability to activate a protective immune response.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Marina D. Kanushkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ekaterina A. Egorova
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Elena A. Stukacheva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| |
Collapse
|
10
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
11
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
12
|
Mondal S, Singh SP. Flow Cytometry-based Measurement of Reactive Oxygen Species in Cyanobacteria. Bio Protoc 2022; 12:e4417. [PMID: 35813020 PMCID: PMC9183968 DOI: 10.21769/bioprotoc.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are Gram-negative oxygen-producing photosynthetic bacteria that are useful in the pharmaceutical and biofuel industries. Monitoring of oxidative stress under fluctuating environmental conditions is important for determining the fitness, survival, and growth of cyanobacteria in the laboratory as well as in large scale cultivation systems. Here, we provide a protocol developed using unicellular Synechococcus elongatus PCC 7942 and filamentous Fremyella diplosiphon BK14 cyanobacteria for high-throughput oxidative stress measurement by 2',7'-dichlorodihydrofluorescein-diacetate (DCFH-DA) and flow cytometry (FCM). We also provide details for the optimization of cell number, dye concentration, and FCM parameters for each organism before it can be utilized to quantify reactive oxygen species (ROS). FCM-based method can be used to measure ROS in a large population of cyanobacterial cells in a high-throughput manner. Graphical abstract.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India
| | - Shailendra P. Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India,
*For correspondence:
| |
Collapse
|
13
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
14
|
Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021; 32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Candida auris emerges as an important causative agent of fungal infections, with worrisome mortality rates, mainly in immunocompromised individuals. This scenario is worsened by the limited availability of antifungal drugs and the increasing development of resistance to them. Due to the relevance of C. auris infections to public health, several studies aimed to discover new antifungal compounds capable of overcoming this fungus. Nonetheless, these information are decentralized, precluding the understandment of the current status of the search for new anti-C. auris compounds. Thus, this integrative review aimed to summarize information regarding anti-C. auris compounds reported in literature. After using predefined selection criteria, 71 articles were included in this review, and data from a total of 101 substances were extracted. Most of the studies tested synthetic substances, including several azoles. Moreover, drug repurposing emerges as a suitable strategy to discover new anti-C. auris agents. Few studies, however, assessed the mechanism of action and the in vivo antifungal activity of the compounds. Therefore, more studies must be performed to evaluate the usefulness of these substances as anti-C. auris therapies.
Collapse
|
15
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
16
|
Dughbaj MA, Jayne JG, Park AYJ, Bensman TJ, Algorri M, Ouellette AJ, Selsted ME, Beringer PM. Anti-Inflammatory Effects of RTD-1 in a Murine Model of Chronic Pseudomonas aeruginosa Lung Infection: Inhibition of NF-κB, Inflammasome Gene Expression, and Pro-IL-1β Biosynthesis. Antibiotics (Basel) 2021; 10:1043. [PMID: 34572625 PMCID: PMC8466744 DOI: 10.3390/antibiotics10091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
Vicious cycles of chronic airway obstruction, lung infections with Pseudomonas aeruginosa, and neutrophil-dominated inflammation contribute to morbidity and mortality in cystic fibrosis (CF) patients. Rhesus theta defensin-1 (RTD-1) is an antimicrobial macrocyclic peptide with immunomodulatory properties. Our objective was to investigate the anti-inflammatory effect of RTD-1 in a murine model of chronic P. aeruginosa lung infection. Mice received nebulized RTD-1 daily for 6 days. Bacterial burden, leukocyte counts, and cytokine concentrations were evaluated. Microarray analysis was performed on bronchoalveolar lavage fluid (BALF) cells and lung tissue homogenates. In vitro effects of RTD-1 in THP-1 cells were assessed using quantitative reverse transcription PCR, enzyme-linked immunosorbent assays, immunoblots, confocal microscopy, enzymatic activity assays, and NF-κB-reporter assays. RTD-1 significantly reduced lung white blood cell counts on days 3 (-54.95%; p = 0.0003) and 7 (-31.71%; p = 0.0097). Microarray analysis of lung tissue homogenates and BALF cells revealed that RTD-1 significantly reduced proinflammatory gene expression, particularly inflammasome-related genes (nod-like receptor protein 3, Mediterranean fever gene, interleukin (IL)-1α, and IL-1β) relative to the control. In vitro studies demonstrated NF-κB activation was reduced two-fold (p ≤ 0.0001) by RTD-1 treatment. Immunoblots revealed that RTD-1 treatment inhibited proIL-1β biosynthesis. Additionally, RTD-1 treatment was associated with a reduction in caspase-1 activation (FC = -1.79; p = 0.0052). RTD-1 exhibited potent anti-inflammatory activity in chronically infected mice. Importantly, RTD-1 inhibits inflammasome activity, which is possibly a downstream effect of NF-κB modulation. These findings support that this immunomodulatory peptide may be a promising therapeutic for CF-associated lung disease.
Collapse
Affiliation(s)
- Mansour A Dughbaj
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Jordanna G Jayne
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - A Young J Park
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marquerita Algorri
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Andre J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing. Biomolecules 2021; 11:biom11070952. [PMID: 34203393 PMCID: PMC8301823 DOI: 10.3390/biom11070952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous wound healing is a vital biological process that aids skin regeneration upon injury. Wound healing failure results from persistent inflammatory conditions observed in diabetes, or autoimmune diseases like psoriasis. Chronic wounds are incurable due to factors like poor oxygenation, aberrant function of peripheral sensory nervature, inadequate nutrients and blood tissue supply. The most significant hallmark of chronic wounds is heavily aberrant immune skin function. The immune response in humans relies on a large network of signalling molecules and their interactions. Research studies have reported on the dual role of host defence peptides (HDPs), which are also often called antimicrobial peptides (AMPs). Their duality reflects their potential for acting as antibacterial peptides, and as immunodulators that assist in modulating several biological signalling pathways related to processes such as wound healing, autoimmune disease, and others. HDPs may differentially control gene regulation and alter the behaviour of epithelial and immune cells, resulting in modulation of immune responses. In this review, we shed light on the understanding and most recent advances related to molecular mechanisms and immune modulatory features of host defence peptides in human skin wound healing. Understanding their functional role in skin immunity may further inspire topical treatments for chronic wounds.
Collapse
|
18
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
19
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
20
|
Basso V, Tran DQ, Ouellette AJ, Selsted ME. Host Defense Peptides as Templates for Antifungal Drug Development. J Fungi (Basel) 2020; 6:jof6040241. [PMID: 33113935 PMCID: PMC7711597 DOI: 10.3390/jof6040241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatment for invasive fungal diseases is limited to three classes of antifungal drugs: azoles, polyenes, and echinocandins. The most recently introduced antifungal class, the echinocandins, was first approved nearly 30 years ago. The limited antifungal drug portfolio is rapidly losing its clinical utility due to the inexorable rise in the incidence of invasive fungal infections and the emergence of multidrug resistant (MDR) fungal pathogens. New antifungal therapeutic agents and novel approaches are desperately needed. Here, we detail attempts to exploit the antifungal and immunoregulatory properties of host defense peptides (HDPs) in the design and evaluation of new antifungal therapeutics and discuss historical limitations and recent advances in this quest.
Collapse
Affiliation(s)
- Virginia Basso
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
| | - Dat Q. Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
21
|
Sumiyoshi M, Miyazaki T, Makau JN, Mizuta S, Tanaka Y, Ishikawa T, Makimura K, Hirayama T, Takazono T, Saijo T, Yamaguchi H, Shimamura S, Yamamoto K, Imamura Y, Sakamoto N, Obase Y, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Novel and potent antimicrobial effects of caspofungin on drug-resistant Candida and bacteria. Sci Rep 2020; 10:17745. [PMID: 33082485 PMCID: PMC7576149 DOI: 10.1038/s41598-020-74749-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Echinocandins, including caspofungin, micafungin, and anidulafungin, are first-line antifungal agents for the treatment of invasive candidiasis. They exhibit fungicidal activity by inhibiting the synthesis of β-1,3-D-glucan, an essential component of the fungal cell wall. However, they are active only against proliferating fungal cells and unable to completely eradicate fungal cells even after a 24 h drug exposure in standard time-kill assays. Surprisingly, we found that caspofungin, when dissolved in low ionic solutions, had rapid and potent antimicrobial activities against multidrug-resistant (MDR) Candida and bacteria cells even in non-growth conditions. This effect was not observed in 0.9% NaCl or other ion-containing solutions and was not exerted by other echinocandins. Furthermore, caspofungin dissolved in low ionic solutions drastically reduced mature biofilm cells of MDR Candida auris in only 5 min, as well as Candida-bacterial polymicrobial biofilms in a catheter-lock therapy model. Caspofungin displayed ion concentration-dependent conformational changes and intracellular accumulation with increased reactive oxygen species production, indicating a novel mechanism of action in low ionic conditions. Importantly, caspofungin dissolved in 5% glucose water did not exhibit increased toxicity to human cells. This study facilitates the development of new therapeutic strategies in the management of catheter-related biofilm infections.
Collapse
Affiliation(s)
- Makoto Sumiyoshi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Juliann Nzembi Makau
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomomi Saijo
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shintaro Shimamura
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasushi Obase
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
22
|
Mondal S, Kumar V, Singh SP. Oxidative stress measurement in different morphological forms of wild-type and mutant cyanobacterial strains: Overcoming the limitation of fluorescence microscope-based method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110730. [PMID: 32464439 DOI: 10.1016/j.ecoenv.2020.110730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Monitoring of oxidative stress caused by a wide range of reactive oxygen species (ROS) is essential to have an idea about the fitness and growth of photosynthetic organisms. The imaging-based oxidative stress measurement in cyanobacteria using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) dye has the limitation of small sample size as the only selected number of cells are analyzed to measure the ROS levels. Here, we developed a method for oxidative stress measurement by DCFH-DA and flow cytometer (FCM) using unicellular Synechococcus elongatus PCC 7942 and filamentous Fremyella diplosiphon BK14 cyanobacteria. F. diplosiphon BK14 inherently possess high levels of ROS and showed higher sensitivity to hydrogen peroxide treatment in comparison to S. elongatus PCC 7942. We successfully measured oxidative stress in glutaredoxin lacking strain (Δgrx3) of S. elongatus PCC 7942, and wild-type Synechocystis sp. PCC 6803 using FCM based method. Importantly, ROS were not detected in these two strains of cyanobacteria by fluorescence microscope-based method due to their small spherical morphology. Δgrx3 strain showed high ROS levels in comparison to its wild-type strain. Treatment of abiotic factors such as high PAR in wild-type and Δgrx3 strains of S. elongatus PCC 7942, low PAR or low PAR + UVR in wild-type S. elongatus PCC 7942, and high PAR or high PAR + NaCl in Synechocystis sp. PCC 6803 increased oxidative stress. In summary, the FCM based method can measure ROS levels produced due to physiological conditions associated with genetic changes or abiotic stress in a large population of cells regardless of their morphology. Therefore, the present study shows the usefulness of the method in monitoring the health of organisms in a large scale cultivation system.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
23
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
24
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
25
|
Tongaonkar P, Punj V, Subramanian A, Tran DQ, Trinh KK, Schaal JB, Laragione T, Ouellette AJ, Gulko PS, Selsted ME. RTD-1 therapeutically normalizes synovial gene signatures in rat autoimmune arthritis and suppresses proinflammatory mediators in RA synovial fibroblasts. Physiol Genomics 2019; 51:657-667. [PMID: 31762409 DOI: 10.1152/physiolgenomics.00066.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1-5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1β-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.
Collapse
Affiliation(s)
- Prasad Tongaonkar
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Akshay Subramanian
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dat Q Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California
| | - Katie K Trinh
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Justin B Schaal
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Basso V, Tran DQ, Schaal JB, Tran P, Eriguchi Y, Ngole D, Cabebe AE, Park AY, Beringer PM, Ouellette AJ, Selsted ME. Rhesus Theta Defensin 1 Promotes Long Term Survival in Systemic Candidiasis by Host Directed Mechanisms. Sci Rep 2019; 9:16905. [PMID: 31729441 PMCID: PMC6858451 DOI: 10.1038/s41598-019-53402-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections in hospitalized and immunosuppressed patients. Mortality rates associated with these infections have risen sharply due to the emergence of multidrug resistant (MDR) strains of C. albicans and other Candida spp., highlighting the urgent need of new antifungal therapies. Rhesus theta (θ) defensin-1 (RTD-1), a natural macrocyclic antimicrobial peptide, was recently shown to be rapidly fungicidal against clinical isolates of MDR C. albicans in vitro. Here we found that RTD-1 was rapidly fungicidal against blastospores of fluconazole/caspofungin resistant C. albicans strains, and was active against established C. albicans biofilms in vitro. In vivo, systemic administration of RTD-1, initiated at the time of infection or 24 h post-infection, promoted long term survival in candidemic mice whether infected with drug-sensitive or MDR strains of C. albicans. RTD-1 induced an early (4 h post treatment) increase in neutrophils in naive and infected mice. In vivo efficacy was associated with fungal clearance, restoration of dysregulated inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-10, and IL-17, and homeostatic reduction in numbers of circulating neutrophils and monocytes. Because these effects occurred using peptide doses that produced maximal plasma concentrations (Cmax) of less than 1% of RTD-1 levels required for in vitro antifungal activity in 50% mouse serum, while inducing a transient neutrophilia, we suggest that RTD-1 mediates its antifungal effects in vivo by host directed mechanisms rather than direct fungicidal activity. Results of this study suggest that θ-defensins represent a new class of host-directed compounds for treatment of disseminated candidiasis.
Collapse
Affiliation(s)
- Virginia Basso
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dat Q Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Oryn Therapeutics, Vacaville, California, United States of America
| | - Justin B Schaal
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Patti Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yoshihiro Eriguchi
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Clinical Immunology and Rheumatology/Infectious DiseaseKyushu University HospitalDepartment of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Diana Ngole
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Anthony E Cabebe
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - A Young Park
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, United States of America
| | - Paul M Beringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, United States of America
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California, United States of America
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America.
- Oryn Therapeutics, Vacaville, California, United States of America.
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California, United States of America.
| |
Collapse
|
27
|
Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019; 20:E5401. [PMID: 31671552 PMCID: PMC6862595 DOI: 10.3390/ijms20215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.
Collapse
Affiliation(s)
- Karine Kappaun
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Anne H S Martinelli
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Leonardo L Fruttero
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Natalia R Moyetta
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Carla D Bonan
- Department of Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 91501-970, RS, Brazil.
| | - Celia R Carlini
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
28
|
Alfouzan W, Dhar R, Albarrag A, Al-Abdely H. The emerging pathogen Candida auris: A focus on the Middle-Eastern countries. J Infect Public Health 2019; 12:451-459. [PMID: 31000491 DOI: 10.1016/j.jiph.2019.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/10/2019] [Indexed: 01/18/2023] Open
Abstract
Recent emergence of Candida auris as a multidrug resistant fungal pathogen, associated with difficult-to-control nosocomial transmission and high mortality, raises serious concerns for public health. Since it was first reported from Japan in 2009, C. auris infections have been diagnosed in several countries from all over the world. However, there is a paucity of reported cases from the Middle East. Literature search resulted in finding only six countries (Kuwait, Israel, Oman, KSA, UAE and Iran) reporting C. auris infections in the past three years. All patients were adults with several underlying comorbidities. Majority of the cases presented with bloodstream infection with crude mortality rate of 60%. All isolates were misidentified as C. haemulonii by commercial systems requiring specialized methods for identification. In vitro antifungal susceptibility testing showed 100% strains to be resistant to fluconazole (MIC 32 ≥ 256 mg/L) while variable resistance against other antifungal agents.
Collapse
Affiliation(s)
- Wadha Alfouzan
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Kuwait; Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.
| | - Rita Dhar
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Kuwait
| | - Ahmed Albarrag
- Department of Pathology, Faculty of Medicine, King Saud University, Saudi Arabia
| | - Hail Al-Abdely
- Section Infectious Diseases, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Tan L, Bai L, Wang L, He L, Li G, Du W, Shen T, Xiang Z, Wu J, Liu Z, Hu M. Antifungal activity of spider venom-derived peptide lycosin-I against Candida tropicalis. Microbiol Res 2018; 216:120-128. [DOI: 10.1016/j.micres.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
30
|
Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care 2018; 6:69. [PMID: 30397481 PMCID: PMC6206635 DOI: 10.1186/s40560-018-0342-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Candida spp. infections are a major cause of morbidity and mortality in critically ill patients. Candida auris is an emerging multi-drug-resistant fungus that is rapidly spreading worldwide. Since the first reports in 2009, many isolates across five continents have been identified as agents of hospital-associated infections. Independent and simultaneous outbreaks of C. auris are becoming a major concern for healthcare and scientific community. Moreover, laboratory misidentification and multi-drug-resistant profiles, rarely observed for other non-albicans Candida species, result in difficult eradication and frequent therapeutic failures of C. auris infections. The aim of this review was to provide an updated and comprehensive report of the global spread of C. auris, focusing on clinical and microbiological characteristics, mechanisms of virulence and antifungal resistance, and efficacy of available control, preventive, and therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone. University of Palermo, Italy, University of Palermo, Via del vespro 129, 90127 Palermo, Italy
| | - Giovanni Misseri
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone. University of Palermo, Italy, University of Palermo, Via del vespro 129, 90127 Palermo, Italy
| | - Teresa Fasciana
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy
| | - Anna Giammanco
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo, Italy
| | - Antonino Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone. University of Palermo, Italy, University of Palermo, Via del vespro 129, 90127 Palermo, Italy
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|