1
|
Wang XK, Yang XY, Wang PH, Hu XX, Nie TY, Li X, Xie CY, Li GQ, Yu J, Yuan H, Zhao HH, Li CR, You XF. In vivo pharmacodynamic study of the novel polymyxin MRX-8. Eur J Pharmacol 2025; 997:177423. [PMID: 40049577 DOI: 10.1016/j.ejphar.2025.177423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
In previous studies, polymyxin MRX-8 demonstrated potent in vitro antibacterial activity with a reduced nephrotoxicity risk and an improved PK/PD profile compared with polymyxin B. In this study, the in vivo antibacterial efficacy of intravenously administered MRX-8 was evaluated in murine models of systemic infection (induced by intraperitoneal injection), lung infection (induced by intratracheal route inoculation), and ascending urinary tract infection (induced by intraurethral inoculation) with P. aeruginosa, K. pneumoniae, E. coli, and A. baumannii as the challenging pathogens. MRX-8 demonstrated superiority to polymyxin B against carbapenem-resistant K. pneumoniae, P. aeruginosa and E. coli infections; however, the efficacy of MRX-8 was less than or comparable with that of polymyxin B against carbapenem-resistant A. baumannii infections. The results suggest MRX-8 could be an efficacious treatment alternative versus Gram-negative, treatment-resistant pathogens that can confound current antimicrobial agents.
Collapse
Affiliation(s)
- Xiu-Kun Wang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Yi Yang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
| | - Peng-He Wang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Xin Hu
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong-Ying Nie
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chun-Yang Xie
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guo-Qing Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Yu
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Yuan
- Shanghai MicuRx Pharmaceutical Co., Ltd., Shanghai, China
| | - Huan-Hu Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Cong-Ran Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| | - Xue-Fu You
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Division for Medicinal Microorganisms Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Theuretzbacher U. The global resistance problem and the clinical antibacterial pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01169-8. [PMID: 40210708 DOI: 10.1038/s41579-025-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
A comprehensive analysis of the clinical antibacterial pipeline demonstrates that there is a limited range of strategies that are primarily focused on modified versions of widely used chemical classes. These modifications aim to circumvent class-specific resistance mechanisms and reduce resistance rates in certain multidrug-resistant pathogens. Owing to the great variation in resistance rates and mechanisms, the clinical success of current approaches varies substantially across different countries, regions, and economic and environmental conditions, which affects the global societal value of these antibiotics that remain vulnerable to cross-resistance. Although there has been some progress in developing urgently needed antibiotics with novel targets and chemical structures, some of which have advanced to phase I/II trials, further breakthroughs are required. Additionally, adjunctive agents designed to enhance the outcome of conventional antibiotic therapies, along with bacteriophages that offer targeted and personalized treatments, are also under investigation. However, the potential of adjunctive therapeutics, such as antivirulence agents, and bacteriophages has yet to be realized in terms of feasibility and global societal impact.
Collapse
|
3
|
Bilal H, Khan MN, Khan S, Shafiq M, Fang W, Khan RU, Rahman MU, Li X, Lv QL, Xu B. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Comput Struct Biotechnol J 2025; 27:423-439. [PMID: 39906157 PMCID: PMC11791014 DOI: 10.1016/j.csbj.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health. The current review synthesizes to address the possible role of Artificial Intelligence and Machine Learning (AI/ML) in mitigating AMR. Supervised learning, unsupervised learning, deep learning, reinforcement learning, and natural language processing are some of the main tools used in this domain. AI/ML models can use various data sources, such as clinical information, genomic sequences, microbiome insights, and epidemiological data for predicting AMR outbreaks. Although AI/ML are relatively new fields, numerous case studies offer substantial evidence of their successful application in predicting AMR outbreaks with greater accuracy. These models can provide insights into the discovery of novel antimicrobials, the repurposing of existing drugs, and combination therapy through the analysis of their molecular structures. In addition, AI-based clinical decision support systems in real-time guide healthcare professionals to improve prescribing of antibiotics. The review also outlines how can AI improve AMR surveillance, analyze resistance trends, and enable early outbreak identification. Challenges, such as ethical considerations, data privacy, and model biases exist, however, the continuous development of novel methodologies enables AI/ML to play a significant role in combating AMR.
Collapse
Affiliation(s)
- Hazrat Bilal
- Jiangxi Key Laboratory of oncology (2024SSY06041), JXHC Key Laboratory of Tumour Metastasis, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330029, PR China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Rahat Ullah Khan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohui Li
- Jiangxi Key Laboratory of oncology (2024SSY06041), JXHC Key Laboratory of Tumour Metastasis, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330029, PR China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of oncology (2024SSY06041), JXHC Key Laboratory of Tumour Metastasis, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330029, PR China
| | - Bin Xu
- Jiangxi Key Laboratory of oncology (2024SSY06041), JXHC Key Laboratory of Tumour Metastasis, NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330029, PR China
| |
Collapse
|
4
|
Iovleva A, Fowler VG, Doi Y. Treatment Approaches for Carbapenem-Resistant Acinetobacter baumannii Infections. Drugs 2025; 85:21-40. [PMID: 39607595 PMCID: PMC11950131 DOI: 10.1007/s40265-024-02104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 11/29/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been associated with over three hundred thousand annual deaths globally. It is resistant to most available antibiotics and associated with high morbidity and mortality. No global consensus currently exists for treatment strategies that balance safety and efficacy because of heterogeneity of treatment regimens in current clinical practice and scarcity of large-scale controlled studies arising from difficulties in establishing robust clinical outcomes. This review outlines the epidemiology and resistance mechanisms of carbapenem-resistant A. baumannii, then summarizes available clinical data on each approved agent with activity against this pathogen. Emerging treatment options such as cefiderocol and sulbactam-durlobactam show promise, but their success hinges on comprehensive clinical validation and access in regions most impacted by this pathogen. New therapeutic modalities that are in various stages of clinical development are also discussed.
Collapse
Affiliation(s)
- Alina Iovleva
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vance G Fowler
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
5
|
Jean SS, Liu CY, Huang TY, Lai CC, Liu IM, Hsieh PC, Hsueh PR. Potentially effective antimicrobial treatment for pneumonia caused by isolates of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii complex species: what can we expect in the future? Expert Rev Anti Infect Ther 2024; 22:1171-1187. [PMID: 39381911 DOI: 10.1080/14787210.2024.2412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the β-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chia-Ying Liu
- Department of Infectious Diseases and Department of Hospitalist, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Huang
- Department of Pharmacy, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
6
|
Bassetti M, Vena A, Larosa B, Giacobbe DR. New antibiotics in clinical pipeline for treating infections caused by metallo-β-lactamases producing Gram-negative bacteria. Curr Opin Infect Dis 2024; 37:582-588. [PMID: 39106036 PMCID: PMC11556884 DOI: 10.1097/qco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW To discuss novel antibiotics under clinical development, focusing on agents showing in-vitro activity against metallo-β-lactamases (MBL)-producing carbapenem-resistant Gram-negative bacteria (CR-GNB). RECENT FINDINGS Currently, only a few approved agents show activity, alone or in synergistic combinations, against MBL-producing CR-GNB. If approved by regulatory agencies in case of favorable results from ongoing (and, for some agents, already completed) phase-3 studies, some novel β-lactam/β-lactamase inhibitor (BL/BLI) combinations could become available in the next few years as additional important options for treating MBL-producing CR-GNB infections. Additional interesting agents that belong both to BL/BLI combinations and to antibiotic classes other than BL and BL/BLI combinations have also shown activity against MBL-producing CR-GNB, with most of them being in early phases of clinical development. SUMMARY Improving the use of these novel agents through virtuous antimicrobial stewardship frameworks able to guarantee both the efficacious treatment of infections requiring their use and the avoidance of their use whenever not necessary remains a challenge of utmost importance that should not be overlooked.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
7
|
Goncharova AR, Gostev VV, Goncharov NE, Kalinogorskaya OS, Gladyshev NS. Antibacterial Therapy Options for Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. ANTIBIOT KHIMIOTER = ANTIBIOTICS AND CHEMOTHERAPY 2024; 69:53-66. [DOI: 10.37489/0235-2990-2024-69-7-8-53-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The review presents current treatment regimens for infections associated with carbapenem-resistant Acinetobacter baumannii, which are leading nosocomial pathogens exhibiting multidrug resistance to available antibacterial drugs. To date, widely used beta-lactam antibiotics, including carbapenems, have lost their effectiveness in combating acinetobacter infections, while new antibiotics remain poorly available to patients. Therefore, the only measure to combat the antibiotic resistance of carbapenem-resistant A. baumannii is to evaluate the efficiency of combination therapy in vitro and in vivo, which is of particular interest to Russian and foreign researchers.
Collapse
Affiliation(s)
- A. R. Goncharova
- Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; North-Western State Medical University named after I. I. Mechnikov; Saint-Petersburg Pasteur Institute
| | - V. V. Gostev
- Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; North-Western State Medical University named after I. I. Mechnikov
| | - N. E. Goncharov
- North-Western State Medical University named after I. I. Mechnikov
| | | | - N. S. Gladyshev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery»
| |
Collapse
|
8
|
Charoenpattarapreeda J, Tegge W, Xu C, Harmrolfs K, Hinkelmann B, Wullenkord H, Hotop SK, Beutling U, Rox K, Brönstrup M. A Targeted Click-to-Release Activation of the Last-Resort Antibiotic Colistin Reduces its Renal Cell Toxicity. Angew Chem Int Ed Engl 2024; 63:e202408360. [PMID: 39113573 DOI: 10.1002/anie.202408360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 10/17/2024]
Abstract
The use of highly potent but very toxic antibiotics such as colistin has become inevitable due to the rise of antimicrobial resistance. We aimed for a chemically-triggered, controlled release of colistin at the infection site to lower its systemic toxicity by harnessing the power of click-to-release reactions. Kinetic experiments with nine tetrazines and three dienophiles demonstrated a fast release via an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene (TCO) and the amine-functionalised tetrazine Tz7. The antibiotic activity of colistin against Escherichia coli was masked by TCO units, but restored upon reaction with d-Ubi-Tz, a tetrazine functionalised with the bacterial binding peptide d-Ubi29-41. While standard TCO did not improve toxicity against human proximal tubular kidney HK-2 cells, the installation of an aspartic acid-modified TCO masking group reduced the overall charge of the peptide and entry to the kidney cells, thereby dramatically lowering its toxicity. The analog Col-(TCO-Asp)1 had favourable pharmacokinetic properties in mice and was successfully activated locally in the lung by d-Ubi-Tz in an in vivo infection model, whereas it remained inactive and non-harmful without the chemical trigger. This study constitutes the first example of a systemically acting two-component antibiotic with improved drug tolerability.
Collapse
Affiliation(s)
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Chunfa Xu
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Hannah Wullenkord
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Site Hannover-Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffensstraße 7, 38124, Braunschweig, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Site Hannover-Braunschweig, Germany
- Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, 30167, Hannover, Germany
| |
Collapse
|
9
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
10
|
Slingerland C, Martin NI. Recent Advances in the Development of Polymyxin Antibiotics: 2010-2023. ACS Infect Dis 2024; 10:1056-1079. [PMID: 38470446 PMCID: PMC11019560 DOI: 10.1021/acsinfecdis.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The polymyxins are nonribosomal lipopeptides produced by Paenibacillus polymyxa and are potent antibiotics with activity specifically directed against Gram-negative bacteria. While the clinical use of polymyxins has historically been limited due to their toxicity, their use is on the rise given the lack of alternative treatment options for infections due to multidrug resistant Gram-negative pathogens. The Gram-negative specificity of the polymyxins is due to their ability to target lipid A, the membrane embedded LPS anchor that decorates the cell surface of Gram-negative bacteria. Notably, the mechanisms responsible for polymyxin toxicity, and in particular their nephrotoxicity, are only partially understood with most insights coming from studies carried out in the past decade. In parallel, many synthetic and semisynthetic polymyxin analogues have been developed in recent years in an attempt to mitigate the nephrotoxicity of the natural products. Despite these efforts, to date, no polymyxin analogues have gained clinical approval. This may soon change, however, as at the moment there are three novel polymyxin analogues in clinical trials. In this context, this review provides an update of the most recent insights with regard to the structure-activity relationships and nephrotoxicity of new polymyxin variants reported since 2010. We also discuss advances in the synthetic methods used to generate new polymyxin analogues, both via total synthesis and semisynthesis.
Collapse
Affiliation(s)
- Cornelis
J. Slingerland
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
11
|
Qu X, Guo C, Liu S, Li X, Xi L, Liu X, Zhang J. Pharmacokinetics and Nephrotoxicity of Polymyxin MRX-8 in Rats: A Novel Agent against Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:354. [PMID: 38667030 PMCID: PMC11047535 DOI: 10.3390/antibiotics13040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
MRX-8 is a novel polymyxin for carbapenem-resistant Gram-negative infections that has been recently evaluated in Phase I clinical trials. Herein, its pharmacokinetics (PK) and nephrotoxicity in rats are reported for the first time. This study aimed at pre-clinical PK and safety assessments. An LC-MS/MS method was developed to determine concentrations of MRX-8 and its major deacylation metabolite, MRX-8039, in rat plasma. Animals were administered a single dose of MRX-8 (2, 4, 6, and 8 mg/kg) or comparator polymyxin B (PMB) (4 and 8 mg/kg) to compare the kidney injury known for the polymyxin drug class. Nephrotoxicity was evaluated using serum creatinine, blood urea nitrogen (BUN) biomarkers, and renal histopathology. In rats, MRX-8 displayed linear PK within the range of 2-8 mg/kg, with approximately 4% of MRX-8 converted to MRX-8039. MRX-8 induced only mild increases in serum creatinine and BUN levels, with an apparent decrease in nephrotoxicity within 24 h, in contrast to PMB, which exhibited a significant and more persistent toxicity. Additional nephrotoxicity biomarkers (plasma NGAL and urinary NGAL, KIM-1, and TIMP-1) have confirmed attenuated MRX-8 kidney injury. Histopathology has revealed significantly greater cellular/tissue toxicity for PMB as compared to MRX-8 (variances of p = 0.008 and p = 0.048 vs. saline control, respectively). Thus, MRX-8 induces a mild and reversible kidney injury in rats compared to PMB. These data support a continued evaluation of the novel polymyxin in human trials.
Collapse
Affiliation(s)
- Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenxue Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaojun Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200052, China;
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Xi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (C.G.); (X.L.); (L.X.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Clinical Pharmacology Center, Huashan Hospital, Fudan University, Shanghai 200437, China
| |
Collapse
|
12
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, Liu XF. Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil Med Res 2024; 11:7. [PMID: 38254241 PMCID: PMC10804841 DOI: 10.1186/s40779-024-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.
Collapse
Affiliation(s)
- Guang-Yu Liu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dan Yu
- National Key Discipline of Pediatrics Key Laboratory of Major Diseases in Children Ministry of Education, Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mei-Mei Fan
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ze-Yu Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Xiao-Fen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
14
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
15
|
Harris PWR, Siow A, Yang SH, Wadsworth AD, Tan L, Hermant Y, Mao Y, An C, Hanna CC, Cameron AJ, Allison JR, Chakraborty A, Ferguson SA, Mros S, Hards K, Cook GM, Williamson DA, Carter GP, Chan STS, Painter GA, Sander V, Davidson AJ, Brimble MA. Synthesis, Antibacterial Activity, and Nephrotoxicity of Polymyxin B Analogues Modified at Leu-7, d-Phe-6, and the N-Terminus Enabled by S-Lipidation. ACS Infect Dis 2022; 8:2413-2429. [PMID: 36413173 DOI: 10.1021/acsinfecdis.1c00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Andrew D Wadsworth
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Lyndia Tan
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Yubing Mao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Chalice An
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Cameron C Hanna
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Jane R Allison
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Kiel Hards
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Gavin A Painter
- Ferrier Research Institute, Te Herenga Waka─Victoria University of Wellington, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand.,School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
16
|
Next-Generation Polymyxin Class of Antibiotics: A Ray of Hope Illuminating a Dark Road. Antibiotics (Basel) 2022; 11:antibiotics11121711. [PMID: 36551367 PMCID: PMC9774142 DOI: 10.3390/antibiotics11121711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Although new-generation antimicrobials, in particular β-lactam/β-lactamase inhibitors, have largely replaced polymyxins in carbapenem-resistant Gram-negative bacterial infections, polymyxins are still needed for carbapanem-resistant Acinetobacter baumannii infections and in settings where novel agents are not readily available. Despite their potent in vitro activity, the clinical utility of polymyxins is significantly limited by their pharmacokinetic properties and nephrotoxicity risk. There is significant interest, therefore, in developing next-generation polymyxins with activity against colistin-resistant strains and lower toxicity than existing polymyxins. In this review, we aim to present the antibacterial activity mechanisms, in vitro and in vivo efficacy data, and toxicity profiles of new-generation polymyxins, including SPR206, MRX-8, and QPX9003, as well as the general characteristics of old polymyxins. Considering the emergence of colistin-resistant strains particularly in endemic regions, the restoration of the antimicrobial activity of polymyxins via PBT2 is also described in this review.
Collapse
|
17
|
Wu S, Yin D, Zhi P, Guo Y, Yang Y, Zhu D, Hu F. In Vitro Activity of MRX-8 and Comparators Against Clinical Isolated Gram-Negative Bacilli in China. Front Cell Infect Microbiol 2022; 12:829592. [PMID: 35646734 PMCID: PMC9135056 DOI: 10.3389/fcimb.2022.829592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
To evaluate in vitro antibacterial activity of MRX-8 against gram-negative bacteria recently isolated from China, 765 clinical isolates were collected randomly from 2017 to 2020, including Enterobacterales and P. aeruginosa and A. baumannii, S. maltophilia, B. cepacia, Alcaligenes app. and Haemophilus spp. isolates. All strains were performed with antimicrobial susceptibility testing by broth microdilution method according to the CLSI 2021. Antimicrobial agents included MRX-8, polymyxin B, colistin, amikacin, ceftriaxone, ceftazidime, cefepime, ceftazidime-avibactam, cefoperazone-sulbactam, meropenem, ciprofloxacin, ampicillin, ampicillin-sulbactam and levofloxacin. For carbapenem-susceptible and carbapenem-resistant E.coli isolates, the MIC50/90 of MRX-8 was 0.125/0.25 mg/L and 0.06/0.125 mg/L, respectively. For carbapenem-susceptible and carbapenem-resistant K. pneumoniae isolates, the MIC50/90 of MRX-8 was 0.25/0.5 mg/L and 0.125/0.5 mg/L, respectively. For polymyxins (polymyxin B and colistin)-resistant E. coli and K. pneumoniae, MIC50 of MRX-8 was 4-16 mg/L and MIC90 was >32 mg/L. The MIC50 and MIC90 of MRX-8 for other Klebsiella spp. except K. pneumoniae, Citrobacter spp., S. enterica and Shigella spp. isolates ranged 0.06-0.125 mg/L and 0.06-0.25mg/L, respectively. For Morganella spp., Proteus spp., Providencia spp., Serratia spp., S. maltophilia and B. cepacia, all MIC50 of MRX-8 was >32mg/L. For carbapenem susceptible and resistant P. aeruginosa, the MIC50 and MIC90 of MRX-8 was both 1mg/L, and that for A. baumannii was 0.5mg/L and 0.5-1mg/L. For Alcaligenes spp. and Haemophilus spp., MIC50/90 was 1/4 mg/L and 0.25/0.5 mg/L. MRX-8 was more effective against most clinically isolated gram-negative isolates, including carbapenem-resistant E. coli, K. pneumoniae, P. aeruginosa and A. baumannii, highlighting its potential as valuable therapeutics.
Collapse
Affiliation(s)
- Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Peiyuan Zhi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Demei Zhu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|