1
|
Kot K, Michaliszyn A, Kalisińska E, Lepczyńska M. The influence of plant extracts on viability of ST3 and ST7 subtypes of Blastocystis sp. Gut Pathog 2024; 16:19. [PMID: 38570865 PMCID: PMC10988960 DOI: 10.1186/s13099-024-00613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Blastocystis sp. is one of the most frequently detected protozoa during stool specimen examination. In the last decade, the studies about the pathogenic potential of Blastocystis sp. have intensified. Additionally, treatment approaches against this parasite are still disputable. The study aimed to investigate the in vitro activity of the substances of natural origin against two subtypes (ST) of Blastocystis sp.-ST3 and ST7. Garlic and turmeric extracts exhibited the highest inhibitory effect in relation to the ST3 viability. While horseradish and turmeric were found to be the most effective extracts to the ST7 viability. The study showed that ginger, garlic, horseradish, and turmeric extracts have potent antimicrobial activity against Blastocystis ST3 and ST7, with the half-maximal inhibitory concentration (IC50) ranging from 3.8 to 4.8 µg/ml and from 3.3 to 72.0 µg/ml, respectively, and thus may be useful in the prevention and control of Blastocystis infections. Additionally, this research confirmed that Blastocystis ST7 is more resistant to the selected plant extracts treatment than Blastocystis ST3 which in consequence may bring some difficulties in its eradication.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Adam Michaliszyn
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Małgorzata Lepczyńska
- Department of Medical Biology, School of Public Health, University of Warmia and Mazury, Żołnierska 14C, 10-561, Olsztyn, Poland
| |
Collapse
|
2
|
Mei X, Wei L, Su C, Yang Z, Tian X, Zhang Z, Wang S. Advances in the axenic isolation methods of Blastocystis sp. and their applications. Parasitology 2024; 151:125-134. [PMID: 38087868 PMCID: PMC10941048 DOI: 10.1017/s0031182023001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Blastocystis sp. is a prevalent protistan parasite found globally in the gastrointestinal tract of humans and various animals. This review aims to elucidate the advancements in research on axenic isolation techniques for Blastocystis sp. and their diverse applications. Axenic isolation, involving the culture and isolation of Blastocystis sp. free from any other organisms, necessitates the application of specific media and a series of axenic treatment methods. These methods encompass antibiotic treatment, monoclonal culture, differential centrifugation, density gradient separation, micromanipulation and the combined use of culture media. Critical factors influencing axenic isolation effectiveness include medium composition, culture temperature, medium characteristics, antibiotic type and dosage and the subtype (ST) of Blastocystis sp. Applications of axenic isolation encompass exploring pathogenicity, karyotype and ST analysis, immunoassay, characterization of surface chemical structure and lipid composition and understanding drug treatment effects. This review serves as a valuable reference for clinicians and scientists in selecting appropriate axenic isolation methods.
Collapse
Affiliation(s)
- Xuefang Mei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Lai Wei
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Changwei Su
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zhenke Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xiaowei Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
3
|
Martín-Escolano R, Ng GC, Tan KSW, Stensvold CR, Gentekaki E, Tsaousis AD. Resistance of Blastocystis to chlorine and hydrogen peroxide. Parasitol Res 2023; 122:167-176. [PMID: 36378332 PMCID: PMC9816239 DOI: 10.1007/s00436-022-07713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Blastocystis is a ubiquitous, widely distributed protist inhabiting the gastrointestinal tract of humans and other animals. The organism is genetically diverse, and so far, at least 28 subtypes (STs) have been identified with ST1-ST9 being the most common in humans. The pathogenicity of Blastocystis is controversial. Several routes of transmission have been proposed including fecal-oral (e.g., zoonotic, anthroponotic) and waterborne. Research on the latter has gained traction in the last few years with the organism having been identified in various bodies of water, tap water, and rainwater collection containers including water that has been previously filtered and/or chlorinated. Herein, we assessed the resistance of 11 strains maintained in culture, spanning ST1-ST9 to various chlorine and hydrogen peroxide concentrations for 24 h, and performed recovery assays along with re-exposure. Following the treatment with both compounds, all subtypes showed increased resistance, and viability could be visualized at the cellular level. These results are hinting at the presence of mechanism of resistance to both chlorine and hydrogen peroxide. As such, this pilot study can be the platform for developing guidelines for water treatment processes.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Geok Choo Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Kevin S W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand. .,School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
4
|
Rojas-Velázquez L, Morán P, Serrano-Vázquez A, Portillo-Bobadilla T, González E, Pérez-Juárez H, Hernández E, Partida-Rodríguez O, Nieves-Ramírez M, Padilla A, Zaragoza M, Ximénez C. The regulatory function of Blastocystis spp. on the immune inflammatory response in the gut microbiome. Front Cell Infect Microbiol 2022; 12:967724. [PMID: 36118018 PMCID: PMC9470931 DOI: 10.3389/fcimb.2022.967724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Blastocystis spp. is a unicellular organism that resides in digestive tract of various vertebrates, with a worldwide distribution and a variable prevalence. For many years, Blastocystis spp. was considered a cyst of a flagellate, a fungus, or a saprophyte yeast of the digestive tract; in 1996, it is placed in the group of stramenopiles (heterokonts). Since its new classification, many questions have arisen around this protist about its role as a pathogen or non-pathogen organism. Recent evidence indicates that Blastocystis spp. participates in the immune inflammatory response in the intestinal microbiome generating an anti-inflammatory response, showing a lower concentration of fecal inflammatory markers in infected human hosts. Here, we review recent findings on the regulatory function of Blastocystis spp. in the immune inflammatory response to comprehend the purpose of Blastocystis spp. in health and disease, defining if Blastocystis spp. is really a pathogen, a commensal or even a mutualist in the human gut microbiome.
Collapse
Affiliation(s)
- Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Tobías Portillo-Bobadilla
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM) e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Enrique González
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Eric Hernández
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miriam Nieves-Ramírez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angeles Padilla
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Zaragoza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| |
Collapse
|
5
|
Yason JA, Liang YR, Png CW, Zhang Y, Tan KSW. Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies. MICROBIOME 2019; 7:30. [PMID: 30853028 PMCID: PMC6410515 DOI: 10.1186/s40168-019-0644-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/01/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Blastocystis is a common gut eukaryote detected in humans and animals. It has been associated with gastrointestinal disease in the past although recent metagenomic studies also suggest that it is a member of normal microbiota. This study investigates interactions between pathogenic human isolates belonging to Blastocystis subtype 7 (ST7) and bacterial representatives of the gut microbiota. RESULTS Generally, Blastocystis ST7 exerts a positive effect on the viability of representative gut bacteria except on Bifidobacterium longum. Gene expression analysis and flow cytometry indicate that the bacterium may be undergoing oxidative stress in the presence of Blastocystis. In vitro assays demonstrate that Blastocystis-induced host responses are able to decrease Bifidobacterium counts. Mice infected with Blastocystis also reveal a decrease in beneficial bacteria Bifidobacterium and Lactobacillus. CONCLUSIONS This study shows that particular isolates of Blastocystis ST7 cause changes in microbiota populations and potentially lead to an imbalance of the gut microbiota. This study suggests that certain isolates of Blastocystis exert their pathogenic effects through disruption of the gut microbiota and provides a counterpoint to the increasing reports indicating the commensal nature of this ubiquitous parasite.
Collapse
Affiliation(s)
- John Anthony Yason
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
- Institute of Biology and Natural Sciences Research Institute, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Yi Ran Liang
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Chin Wen Png
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Yongliang Zhang
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
- Microbiome Otago, Department of Microbiology and Immunology, University of Otago, PO Box 56 720, Cumberland St, Dunedin, 9054, Otago, New Zealand.
| |
Collapse
|