1
|
Schump MD, Bernstein DI, Bravo FJ, Neff CP. Selection, activity, and nuclease stabilization of cross-neutralizing DNA aptamers targeting HSV-1 and HSV-2. Virology 2024; 589:109916. [PMID: 37925791 DOI: 10.1016/j.virol.2023.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Cross-neutralizing aptamers targeting both HSV-1 and HSV-2 were developed by selecting against the ectodomains of glycoprotein D (gD) from both viruses in parallel as well as sequentially using the SELEX method. Since gD facilitates viral invasion, sterically blocking the host-receptor interaction prevents infection. Candidate aptamers were screened, and lead aptamers were identified that exhibited exceptional neutralizing activity against both viruses in vitro. The specificity of the aptamers was confirmed by comparing their activity to scrambled versions of themselves. Modifications of the lead compounds were tested to define critical motifs to guide development. Stability of the aptamers was increased using phosphorothioate backbone linkages, and 2' methoxy substitutions of terminal and key internal bases. Aptamers were applied in a guinea pig vaginal HSV-2 infection model and found to reduce both the viral load of infected animals and the severity of the resulting disease. These results suggest that cross-neutralizing aptamers can be developed into on-demand antiviral interventions effective against both HSV-1 and HSV-2.
Collapse
Affiliation(s)
- Michael D Schump
- Apspeeda Biosciences, 12635 E. Montview Blvd., Ste 100, Aurora, CO, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Charles P Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Elazar M, Glenn JS. Combination of Novel Therapies for HDV. Viruses 2022; 14:v14020268. [PMID: 35215860 PMCID: PMC8877160 DOI: 10.3390/v14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.
Collapse
Affiliation(s)
- Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Palo Alto Veterans Administration, Palo Alto, CA 94305, USA
- Correspondence:
| |
Collapse
|
4
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
5
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
6
|
Targeting the Host for New Therapeutic Perspectives in Hepatitis D. J Clin Med 2020; 9:jcm9010222. [PMID: 31947588 PMCID: PMC7019876 DOI: 10.3390/jcm9010222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis D virus (HDV) is a small satellite virus of hepatitis B virus (HBV) requiring HBV infection to complete its life cycle. It has been recently estimated that 13% of chronic HBV infected patients (60 million) are co-infected with HDV. Chronic hepatitis D is the most severe form of viral hepatitis with the highest risk to develop cirrhosis and liver cancer. Current treatment is based on pegylated-interferon-alpha which rarely controls HDV infection and is complicated by serious side effects. The development of novel antiviral strategies based on host targeting agents has shown promising results in phase I/II clinical trials. This review summarizes HDV molecular virology and physiopathology as well as new therapeutic approaches targeting HDV host factors.
Collapse
|
7
|
Abstract
Chronic hepatitis D (CHD) results from an infection with the hepatitis B virus and hepatitis D virus (HDV). CHD is the most severe form of human viral hepatitis. Current treatment options consist of interferon alfa, which is effective only in a minority of patients. Study of HDV molecular virology has resulted in new approaches entering clinical trials, with phase-3 studies the most advanced. These include the entry inhibitor bulevirtide, the nucleic acid polymer REP 2139-Ca, the farnesyltransferase inhibitor lonafarnib, and pegylated interferon lambda. This article summarizes the available data on these emerging therapeutics.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ben L. Da
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Vaillant A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect Dis 2019; 5:675-687. [PMID: 30199230 DOI: 10.1021/acsinfecdis.8b00156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid polymers (NAPs) are broad spectrum antiviral agents whose antiviral activity in hepatitis B virus (HBV) infection is derived from their ability to block the release of the hepatitis B virus surface antigen (HBsAg). This pharmacological activity blocks replenishment of HBsAg in the circulation, allowing host mediated clearance. This effect has important clinical significance as the clearance of circulating HBsAg dramatically potentiates the ability of immunotherapies to restore functional control of HBV infection which persists after antiviral therapy is removed. These effects are reproducible in preclinical evaluations and in several clinical trials that have evaluated the activity of the lead NAP, REP 2139, in monotherapy and in combination with immunotherapy in hepatitis B e antigen (HBeAg) negative and HBeAg positive HBV infection and also in HBeAg negative HBV/hepatitis D virus (HDV) coinfection. These antiviral effects of REP 2139 are achieved in the absence of any direct immunostimulatory effect in the liver and also without any discernible direct interaction with viral components. The search for the host protein interaction with NAPs that drives their antiviral effects is ongoing, and the interaction targeted by REP 2139 within infected cells has not yet been elucidated. This article provides an updated review of available data on the effects of REP 2139 in HBV and HDV infection and the ability of REP 2139-based combination therapy to achieve functional control of HBV and HDV infection in patients.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
9
|
Anti-Niemann Pick C1 Single-Stranded Oligonucleotides with Locked Nucleic Acids Potently Reduce Ebola Virus Infection In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:686-697. [PMID: 31125846 PMCID: PMC6529764 DOI: 10.1016/j.omtn.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Ebola virus is the causative agent of Ebola virus disease, a severe, often fatal illness in humans. So far, there are no US Food and Drug Administration (FDA)-approved therapeutics directed against Ebola virus. Here, we selected the host factor Niemann-Pick C1 (NPC1), which has been shown to be essential for Ebola virus entry into host cytoplasm, as a therapeutic target for suppression by locked nucleic acid-modified antisense oligonucleotides. Screening of antisense oligonucleotides in human and murine cell lines led to identification of candidates with up to 94% knockdown efficiency and 50% inhibitory concentration (IC50) values in the submicromolar range. Selected candidate oligonucleotides led to efficient NPC1 protein knockdown in vitro without alteration of cell viability. Furthermore, they did not have immune stimulatory activity in cell-based assays. Treatment of Ebola-virus-infected HeLa cells with the most promising candidates resulted in significant (>99%) virus titer reduction, indicating that antisense oligonucleotides against NPC1 are a promising therapeutic approach for treatment of Ebola virus infection.
Collapse
|
10
|
Koh C, Heller T, Glenn JS. Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology 2019; 156:461-476.e1. [PMID: 30342879 PMCID: PMC6340762 DOI: 10.1053/j.gastro.2018.09.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) infection of humans was first reported in 1977, and now it is now estimated that 15-20 million people are infected worldwide. Infection with HDV can be an acute or chronic process that occurs only in patients with an hepatitis B virus infection. Chronic HDV infection commonly results in the most rapidly progressive form of viral hepatitis; it is the chronic viral infection that is most likely to lead to cirrhosis, and it is associated with an increased risk of hepatocellular carcinoma. HDV infection is the only chronic human hepatitis virus infection without a therapy approved by the US Food and Drug Administration. Peginterferon alfa is the only recommended therapy, but it produces unsatisfactory results. We review therapeutic agents in development, designed to disrupt the HDV life cycle, that might benefit patients with this devastating disease.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Nucleic Acid Polymers Are Active against Hepatitis Delta Virus Infection In Vitro. J Virol 2018; 92:JVI.01416-17. [PMID: 29212929 DOI: 10.1128/jvi.01416-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 μM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation.IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 μM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated with HBV immune escape.
Collapse
|
12
|
Schandock F, Riber CF, Röcker A, Müller JA, Harms M, Gajda P, Zuwala K, Andersen AHF, Løvschall KB, Tolstrup M, Kreppel F, Münch J, Zelikin AN. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses. Adv Healthc Mater 2017; 6. [PMID: 28945945 PMCID: PMC7161897 DOI: 10.1002/adhm.201700748] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad‐spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure–activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad‐spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer‐based antivirals and represent promising candidates for further development as preventive microbicides.
Collapse
Affiliation(s)
- Franziska Schandock
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | | | - Annika Röcker
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Janis A. Müller
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Mirja Harms
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Paulina Gajda
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Kaja Zuwala
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Anna H. F. Andersen
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases; Aarhus University Hospital; Aarhus 8000 Denmark
| | - Florian Kreppel
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Jan Münch
- Institute of Molecular Virology; Ulm University Medical Center; Meyerhofstrasse 1 89081 Ulm Germany
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Centre; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
13
|
Guillot C, Martel N, Berby F, Bordes I, Hantz O, Blanchet M, Sureau C, Vaillant A, Chemin I. Inhibition of hepatitis B viral entry by nucleic acid polymers in HepaRG cells and primary human hepatocytes. PLoS One 2017; 12:e0179697. [PMID: 28636622 PMCID: PMC5479567 DOI: 10.1371/journal.pone.0179697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with 240 million individuals chronically infected and at risk of developing cirrhosis and hepatocellular carcinoma. Current treatments rarely cure chronic hepatitis B infection, highlighting the need for new anti-HBV drugs. Nucleic acid polymers (NAPs) are phosphorothioated oligonucleotides that have demonstrated a great potential to inhibit infection with several viruses. In chronically infected human patients, NAPs administration lead to a decline of blood HBsAg and HBV DNA and to HBsAg seroconversion, the expected signs of functional cure. NAPs have also been shown to prevent infection of duck hepatocytes with the Avihepadnavirus duck hepatitis B virus (DHBV) and to exert an antiviral activity against established DHBV infection in vitro and in vivo. In this study, we investigated the specific anti-HBV antiviral activity of NAPs in the HepaRG human hepatoma cell line and primary cultures of human hepatocytes. NAPs with different chemical features (phosphorothioation, 2'O-methyl ribose, 5-methylcytidine) were assessed for antiviral activity when provided at the time of HBV inoculation or post-inoculation. NAPs dose-dependently inhibited HBV entry in a phosphorothioation-dependent, sequence-independent and size-dependent manner. This inhibition of HBV entry by NAPs was impaired by 2'O-methyl ribose modification. NAP treatment after viral inoculation did not elicit any antiviral activity.
Collapse
Affiliation(s)
- Clément Guillot
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Nora Martel
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Françoise Berby
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Isabelle Bordes
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Olivier Hantz
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Camille Sureau
- Molecular Virology Laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France
| | | | - Isabelle Chemin
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| |
Collapse
|
14
|
Elazar M, Koh C, Glenn JS. Hepatitis delta infection - Current and new treatment options. Best Pract Res Clin Gastroenterol 2017; 31:321-327. [PMID: 28774414 DOI: 10.1016/j.bpg.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
In humans, hepatitis D virus (HDV) infection only occurs in the presence of a concomitant hepatitis B virus (HBV) infection, and induces the most severe form of human viral hepatitis. Even though HDV is spread worldwide and is endemic in some regions, screening and treatment has been often neglected in part due to the lack of an effective therapy. Moreover, HDV prevalence rates are increasing in many countries driven by immigration from areas of high endemicity. Currently, no FDA-approved anti-HDV therapy is available, although interferon (IFN) alpha therapy has demonstrated benefit in a minority of patients. In this review, we present a current view of our understanding of the epidemiology, molecular virology and management of HDV infection. We additionally discuss new treatment approaches in development and describe the most promising results of recent and ongoing clinical trials of these new potential agents.
Collapse
Affiliation(s)
- Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, CRC, 5-2740 Bethesda, MD 20892 USA.
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Administration Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
15
|
Elazar M, Glenn JS. Emerging concepts for the treatment of hepatitis delta. Curr Opin Virol 2017; 24:55-59. [PMID: 28475945 DOI: 10.1016/j.coviro.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) causes the most severe form of human viral hepatitis and is associated with a higher risk of cirrhosis, liver decompensation and liver cancer. Interferon alpha is the only agent that has demonstrated efficacy to date, although response rates are low and it is associated with significant side effects. A better understanding of the relevant molecular virology has resulted in the identification of new candidate targets. Future therapeutic options are rapidly evolving as several new agents have entered clinical development, including the entry inhibitor myrcludex-B, the nucleic acid polymer REP2139-Ca inhibiting HBV surface antigen secretion, the farnesyltransferase inhibitor lonafarnib that targets virus assembly, and a better tolerated interferon-interferon lambda.
Collapse
Affiliation(s)
- Menashe Elazar
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Administration Medical Center, Palo Alto, California.
| |
Collapse
|
16
|
Vaillant A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antiviral Res 2016; 133:32-40. [PMID: 27400989 DOI: 10.1016/j.antiviral.2016.07.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022]
Abstract
Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.
| |
Collapse
|
17
|
Noordeen F, Scougall CA, Grosse A, Qiao Q, Ajilian BB, Reaiche-Miller G, Finnie J, Werner M, Broering R, Schlaak JF, Vaillant A, Jilbert AR. Therapeutic Antiviral Effect of the Nucleic Acid Polymer REP 2055 against Persistent Duck Hepatitis B Virus Infection. PLoS One 2015; 10:e0140909. [PMID: 26560490 PMCID: PMC4641618 DOI: 10.1371/journal.pone.0140909] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.
Collapse
Affiliation(s)
- Faseeha Noordeen
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Catherine A. Scougall
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Arend Grosse
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Qiao Qiao
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Behzad B. Ajilian
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Georget Reaiche-Miller
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John Finnie
- SA Pathology, Hanson Institute, Centre For Neurological Diseases, Adelaide, SA, Australia
| | - Melanie Werner
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Joerg F. Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Allison R. Jilbert
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (AJ); (AV)
| |
Collapse
|
18
|
Sauter MM, Gauger JJL, Brandt CR. Oligonucleotides designed to inhibit TLR9 block Herpes simplex virus type 1 infection at multiple steps. Antiviral Res 2014; 109:83-96. [PMID: 24995383 DOI: 10.1016/j.antiviral.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen which requires activation of nuclear factor-kappa B (NFκB) during its replication cycle. The persistent nature of HSV-1 infection, and the emergence of drug-resistant strains, highlights the importance of research to develop new antiviral agents. Toll-like receptors (TLRs) play a prominent role during the early antiviral response by recognizing viral nucleic acid and gene products, activating NFκB, and stimulating the production of inflammatory cytokines. We demonstrate a significant effect on HSV-1 replication in ARPE-19 and Vero cells when oligonucleotides designed to inhibit TLR9 are added 2h prior to infection. A greater than 90% reduction in the yield of infectious virus was achieved at oligonucleotide concentrations of 10-20 μM. TLR9 inhibitory oligonucleotides prevented expression of essential immediate early herpes gene products as determined by immunofluorescence microscopy and Western blotting. TLR9 oligonucleotides also interfered with viral attachment and entry. A TLR9 inhibitory oligonucleotide containing five adjacent guanosine residues (G-ODN) exhibited virucidal activity and inhibited HSV-1 replication when added post-infection. The antiviral effect of the TLR9 inhibitory oligonucleotides did not depend on the presence of TLR9 protein, suggesting a mechanism of inhibition that is not TLR9 specific. TLR9 inhibitory oligonucleotides also reduced NFκB activity in nuclear extracts. Studies using these TLR inhibitors in the context of viral infection should be interpreted with caution.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Joshua J L Gauger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
19
|
Musafia B, Oren-Banaroya R, Noiman S. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS One 2014; 9:e97696. [PMID: 24846127 PMCID: PMC4028238 DOI: 10.1371/journal.pone.0097696] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/23/2014] [Indexed: 01/19/2023] Open
Abstract
This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the influenza virus are discussed.
Collapse
|
20
|
Nucleic acid polymers prevent the establishment of duck hepatitis B virus infection in vivo. Antimicrob Agents Chemother 2013; 57:5299-306. [PMID: 23939904 DOI: 10.1128/aac.01005-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleic acid polymers (NAPs) are novel, broad-spectrum antiviral compounds that use the sequence-independent properties of phosphorothioate oligonucleotides (PS-ONs) as amphipathic polymers to block amphipathic interactions involved in viral entry. Using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection, NAPs have been shown to have both entry and postentry antiviral activity against DHBV infection in vitro in primary duck hepatocytes (PDH). In the current study, various NAPs were assessed for their prophylactic activity in vivo against DHBV infection in ducks. The degenerate NAP REP 2006 prevented the development of widespread and persistent DHBV infection in 14-day-old ducks, while the acidic-pH-sensitive NAP REP 2031 had little or no prophylactic effect. REP 2006 displayed significant toxicity in ducks, which was attributed to CpG-mediated proinflammation, while REP 2031 (which has no CpG motifs) displayed no toxicity. A third NAP, REP 2055, which was designed to retain amphipathic activity at acidic pH and contained no CpG motifs, was well tolerated and displayed prophylactic activity against DHBV infection at doses as low as 1 mg/kg of body weight/day. These studies suggest that NAPs can be easily and predictably tailored to retain anti-DHBV activity and to have minimal toxic effects in vivo. Future studies are planned to establish the therapeutic efficacy of NAPs against persistent DHBV infection.
Collapse
|
21
|
Nucleic acid polymers inhibit duck hepatitis B virus infection in vitro. Antimicrob Agents Chemother 2013; 57:5291-8. [PMID: 23939902 DOI: 10.1128/aac.01003-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleic acid polymers (NAPs) utilize the sequence-independent properties of phosphorothioate oligonucleotides (PS-ONs) to target protein interactions involved in viral replication. NAPs are broadly active against a diverse range of enveloped viruses that use type I entry mechanisms. The antiviral activity of NAPs against hepatitis B virus (HBV) infection was assessed in vitro in duck hepatitis B virus (DHBV)-infected primary duck hepatocytes (PDH). NAPs efficiently entered PDH in the absence of any transfection agent and displayed antiviral activity at concentrations of 0.01 to 10 μM, measured by their ability to prevent the intracellular accumulation of DHBV surface antigen, which was independent of their nucleotide sequence and was specifically dependent on phosphorothioation. Higher levels of antiviral activity were observed with NAPs 40 nucleotides in length or longer. The fully degenerate NAP (REP 2006) was active during DHBV infection or when added 12 h after infection. In contrast, an acidic-pH-sensitive NAP (REP 2031) that was broadly active against other viruses displayed antiviral activity when present during DHBV infection but no activity when added 12 h after infection, suggesting that NAPs exert their postentry effect in an acidic environment unique to DHBV infection. Both REP 2006 and REP 2031 displayed negligible cytotoxicity in PDH at concentrations of up to 10 μM, as assessed using an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] cytotoxicity assay. The antiviral activity of NAPs against DHBV in vitro was strictly dependent on their amphipathic character, suggesting that NAPs interact with amphipathic target(s) that are important for DHBV entry and postentry mechanisms required for infection.
Collapse
|
22
|
In vivo anti-herpes simplex virus activity of a sulfated derivative of Agaricus brasiliensis mycelial polysaccharide. Antimicrob Agents Chemother 2013; 57:2541-9. [PMID: 23507287 DOI: 10.1128/aac.02250-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agaricus brasiliensis (syn. A. subrufescens), a basidiomycete fungus native to the Atlantic forest in Brazil, contains cell walls rich in glucomannan polysaccharides. The β-(1 → 2)-gluco-β-(1 → 3)-mannan was isolated from A. brasiliensis mycelium, chemically modified by sulfation, and named MI-S. MI-S has multiple mechanisms of action, including inhibition of herpes simplex virus (HSV) attachment, entry, and cell-to-cell spread (F. T. G. S. Cardozo, C. M. Camelini, A. Mascarello, M. J. Rossi, R. J. Nunes, C. R. Barardi, M. M. de Mendonça, and C. M. O. Simões, Antiviral Res. 92:108-114, 2011). The antiherpetic efficacy of MI-S was assessed in murine ocular, cutaneous, and genital infection models of HSV. Groups of 10 mice were infected with HSV-1 (strain KOS) or HSV-2 (strain 333). MI-S was given either topically or by oral gavage under various pre- and posttreatment regimens, and the severity of disease and viral titers in ocular and vaginal samples were determined. No toxicity was observed in the uninfected groups treated with MI-S. The topical and oral treatments with MI-S were not effective in reducing ocular disease. Topical application of MI-S on skin lesions was also not effective, but cutaneously infected mice treated orally with MI-S had significantly reduced disease scores (P < 0.05) after day 9, suggesting that healing was accelerated. Vaginal administration of MI-S 20 min before viral challenge reduced the mean disease scores on days 5 to 9 (P < 0.05), viral titers on day 1 (P < 0.05), and mortality (P < 0.0001) in comparison to the control groups (untreated and vehicle treated). These results show that MI-S may be useful as an oral agent to reduce the severity of HSV cutaneous and mucosal lesions and, more importantly, as a microbicide to block sexual transmission of HSV-2 genital infections.
Collapse
|
23
|
Andrei G, Snoeck R. Advances in the treatment of varicella-zoster virus infections. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:107-68. [PMID: 23886000 DOI: 10.1016/b978-0-12-405880-4.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Varicella-zoster virus (VZV) causes two distinct diseases, varicella (chickenpox) and shingles (herpes zoster). Chickenpox occurs subsequent to primary infection, while herpes zoster (usually associated with aging and immunosuppression) appears as a consequence of reactivation of latent virus. The major complication of shingles is postherpetic neuralgia. Vaccination strategies to prevent varicella or shingles and the current status of antivirals against VZV will be discussed in this chapter. Varivax®, a live-attenuated vaccine, is available for pediatric varicella. Zostavax® is used to boost VZV-specific cell-mediated immunity in adults older than 50 years, which results in a decrease in the burden of herpes zoster and pain related to postherpetic neuralgia. Regardless of the availability of a vaccine, new antiviral agents are necessary for treatment of VZV infections. Current drugs approved for therapy of VZV infections include nucleoside analogues that target the viral DNA polymerase and depend on the viral thymidine kinase for their activation. Novel anti-VZV drugs have recently been evaluated in clinical trials, including the bicyclic nucleoside analogue FV-100, the helicase-primase inhibitor ASP2151, and valomaciclovir (prodrug of the acyclic guanosine derivative H2G). Different candidate VZV drugs have been described in recent years. New anti-VZV drugs should be as safe as and more effective than current gold standards for the treatment of VZV, that is, acyclovir and its prodrug valacyclovir.
Collapse
Affiliation(s)
- G Andrei
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Fedorova NE, Klimova RR, Tulenev YA, Chichev EV, Kornev AB, Troshin PA, Kushch AA. Carboxylic Fullerene C60 Derivatives: Efficient Microbicides Against Herpes Simplex Virus And Cytomegalovirus Infections In Vitro. MENDELEEV COMMUNICATIONS 2012. [DOI: 10.1016/j.mencom.2012.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
|
26
|
Gochin M, Zhou G. Amphipathic properties of HIV-1 gp41 fusion inhibitors. Curr Top Med Chem 2011; 11:3022-32. [PMID: 22044226 PMCID: PMC3219813 DOI: 10.2174/156802611798808488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/26/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
Abstract
Small molecule inhibition of HIV fusion has been an elusive goal, despite years of effort by both pharmaceutical and academic laboratories. In this review, we will discuss the amphipathic properties of both peptide and small molecule inhibitors of gp41-mediated fusion. Many of the peptides and small molecules that have been developed target a large hydrophobic pocket situated within the grooves of the coiled coil, a potential hotspot for inhibiting the trimer of hairpin formation that accompanies fusion. Peptide studies reveal molecular properties required for effective inhibition, including elongated structure and lipophilic or amphiphilic nature. The characteristics of peptides that bind in this pocket provide features that should be considered in small molecule development. Additionally, a novel site for small molecule inhibition of fusion has recently been suggested, involving residues of the loop and fusion peptide. We will review the small molecule structures that have been developed, evidence pointing to their mechanism of action and strategies towards improving their affinity. The data points to the need for a strongly amphiphilic character of the inhibitors, possibly as a means to mediate the membrane - protein interaction that occurs in gp41 in addition to the protein - protein interaction that accompanies the fusion-activating conformational transition.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Sciences, Touro University – California, Vallejo, CA 94592, USA.
| | | |
Collapse
|
27
|
Abstract
INTRODUCTION Varicella-zoster virus (VZV) is the etiological agent of two distinct diseases, varicella (chickenpox) and shingles (herpes zoster). Chickenpox occurs following primary infection, while herpes zoster (usually associated with ageing and immunosuppression) is the consequence of reactivation of the latent virus. Post-herpetic neuralgia is the major complication of shingles. AREAS COVERED This review will discuss vaccination strategies and the current status of antivirals against VZV. A live attenuated vaccine, Varivax, is available for pediatric varicella while Zostavax was developed to boost VZV-specific cell-mediated immunity in adults older than 60 years and, via this mechanism, to decrease the burden of herpes zoster and pain associated with post-herpetic neuralgia. Despite the availability of a vaccine, there is a need for new antiviral agents. Current drugs approved for the treatment of VZV infections include nucleoside analogs that target the viral DNA polymerase and depend on the viral thymidine kinase. Novel anti-VZV drugs have recently been evaluated in clinical trials, including the bicyclic nucleoside analog FV-100, the helicase-primase inhibitor ASP2151 and valomaciclovir (prodrug of the acyclic guanosine derivative H2G). EXPERT OPINION New anti-VZV drugs should be as safe as and more effective than acyclovir and its prodrug valacyclovir (current gold standard for the treatment of VZV).
Collapse
Affiliation(s)
- Graciela Andrei
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, K.U.Leuven, Belgium.
| | | |
Collapse
|
28
|
Cardin RD, Bravo FJ, Sewell AP, Cummins J, Flamand L, Juteau JM, Bernstein DI, Vaillant A. Amphipathic DNA polymers exhibit antiviral activity against systemic murine Cytomegalovirus infection. Virol J 2009; 6:214. [PMID: 19954538 PMCID: PMC2794273 DOI: 10.1186/1743-422x-6-214] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/02/2009] [Indexed: 12/25/2022] Open
Abstract
Background Phosphorothioated oligonucleotides (PS-ONs) have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs) and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV) infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9) inhibited both murine CMV (MCMV) and guinea pig CMV (GPCMV) with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C) inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs) was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated antiviral activity against CMV infection in vivo and represent a new class of broad spectrum anti-herpetic agents.
Collapse
Affiliation(s)
- Rhonda D Cardin
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|