1
|
Chen F, Schiffer NE, Song J. Animal Models of Orthopedic Implant-Associated Infections and Revisions. ACS Biomater Sci Eng 2025; 11:2052-2068. [PMID: 40125564 PMCID: PMC11996597 DOI: 10.1021/acsbiomaterials.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Orthopedic implant-associated infections such as prosthetic joint infections (PJIs) lead to devastating complications for patients and impose significant financial burdens on the healthcare systems. Although the primary orthopedic implant associated infection rate is relatively low (0.3-9%), the reinfection rate after implant revisions can be as high as 20% to 40%. To evaluate novel therapeutic strategies for preventing and treating infections associated with primary and revision implants, it is essential to develop appropriate animal models that closely emulate clinical realities. Here we discuss existing animal models developed for orthopedic implant revision surgeries including small animal models in rats and mice, and larger animal models in rabbits, sheep, and mini-pigs. While larger animal models offer the advantage of more closely mimicking human surgical procedures, implant dimensions, and infection treatment protocols, rodent models are more cost-effective and better suited for screening experimental prophylaxes and therapeutics. Existing animal revision models have focused on primary infections established by Staphylococcal aureus (S. aureus) and revisions involving both one-stage and two-stage procedures. Further development of smaller animal implant revision models that implement more clinically relevant surgical procedures and recapitulate polymicrobial infections could facilitate the discovery and more rigorous evaluation of novel implant coating prophylaxes and therapeutics for reducing reinfection rates following implant revisions.
Collapse
Affiliation(s)
- Feiyang Chen
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Naomi E. Schiffer
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
2
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Li Y, Wuermanbieke S, Wang F, Mu W, Ji B, Guo X, Zou C, Chen Y, Zhang X, Cao L. Efficacy and safety of intra-articular-only meropenem after one-stage revision for treating Escherichia coli-induced periprosthetic joint infection in a rat model. Bone Joint Res 2024; 13:546-558. [PMID: 39362652 PMCID: PMC11449542 DOI: 10.1302/2046-3758.1310.bjr-2024-0119.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Aims The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. Methods A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated. Results Escherichia coli was the most common pathogen in GN-PJI, and meropenem was the most sensitive antibiotic. Serum inflammatory markers, weightbearing activity, and Rissing score were significantly improved by meropenem, especially in the IA and IP + IA groups ( p < 0.05). Meropenem in the IA group eradicated E. coli from soft-tissue, bone, and prosthetic surfaces, with the same effect as in the IP + IA group. Radiological results revealed that IA and IP + IA meropenem were effective at relieving bone damage. Haematoxylin and eosin staining also showed that IA and IP + IA meropenem improved synovial inflammation and bone destruction. No pathological changes in the main organs or abnormal serum markers were observed in any of the meropenem-treated rats. The IA group required the lowest amount of meropenem, followed by the IP and IP + IA groups. Conclusion IA-only meropenem with a two-week treatment course was effective and safe for PJI control following one-stage revision in a rat model, with less meropenem use.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shalitanati Wuermanbieke
- Department of Sports Medicine, Karamay Hospital of People’s Hospital of Xinjiang Uygur Autonomous Region, Karamay, China
| | - Fei Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaobin Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chen Zou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Dai T, Ma C, Zhang F, Wang H, Ma Z, Wang H, Wen Y, Chen L. The Efficacy and Safety of an Intra-articular Dual-Acting Antibacterial Agent (TNP-2092) for Implant Infection-Associated Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2024; 229:1658-1668. [PMID: 38147364 DOI: 10.1093/infdis/jiad588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.
Collapse
Affiliation(s)
- Tianyu Dai
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
| | - Chi Ma
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou
| | - Fan Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan
| | - Zhenkun Ma
- Department of Pharmacology & Toxicology, TenNor Therapeutics, Suzhou
| | - Huan Wang
- Department of Pharmacology & Toxicology, TenNor Therapeutics, Suzhou
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Joint Disease Research Center of Wuhan University, Wuhan University, Wuhan, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Joint Disease Research Center of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Boennec N, Renous AS. [Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathway]. Med Sci (Paris) 2024; 40:474-476. [PMID: 38819287 DOI: 10.1051/medsci/2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Natacha Boennec
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| | - Anne-Sophie Renous
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| |
Collapse
|
6
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
7
|
Wei J, Gu H, Tong K. Intra-wound versus systemic vancomycin for preventing surgical site infection induced by methicillin-resistant S. aureus after spinal implant surgery in a rat model. J Orthop Surg Res 2023; 18:299. [PMID: 37055765 PMCID: PMC10100431 DOI: 10.1186/s13018-023-03779-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Systemic vancomycin administration pre-operatively for the infection prophylaxis of spinal implant surgery remains unsatisfactory. This study aimed to explore the efficacy and dosage of local use of vancomycin powder (VP) in preventing surgical site infections after spinal implant surgery in a rat model. METHODS Systemic vancomycin (SV; intraperitoneal injection, 88 mg/kg) or intraoperative intra-wound VP (VP0.5: 44 mg/kg, VP1.0: 88 mg/kg, VP2.0: 176 mg/kg) was applied after spinal implant surgery and methicillin-resistant S. aureus (MRSA; ATCC BAA-1026) inoculation in rats. General status, blood inflammatory biomarkers, microbiological and histopathological evaluation were performed during 2 weeks post-surgery. RESULTS No post-surgical deaths, wound complications and obvious signs of vancomycin adverse effects were observed. Bacterial counts, blood and tissue inflammation were reduced in the VP groups compared with the SV group. VP2.0 group showed better outcomes in weight gain and tissue inflammation than the VP0.5 and VP1.0 group. Microbial counts indicated that no bacteria survived in the VP2.0 group, whereas MRSA was detected in VP0.5 and VP1.0 groups. CONCLUSIONS Intra-wound VP may be more effective than systemic administration in preventing infection caused by MRSA (ATCC BAA-1026) after spinal implant surgery in a rat model.
Collapse
Affiliation(s)
- Jian Wei
- Department of Orthopedic Surgery, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, 545006, China.
| | - Hanwen Gu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kai Tong
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Li J, Leung SYS, Chung YL, Chow SKH, Alt V, Rupp M, Brochausen C, Chui CS, Ip M, Cheung WH, Wong RMY. Hydrogel Delivery of DNase I and Liposomal Vancomycin to Eradicate Fracture-related Methicillin-resistant Staphylococcus aureus Infection and Support Osteoporotic Fracture Healing. Acta Biomater 2023; 164:223-239. [PMID: 37019168 DOI: 10.1016/j.actbio.2023.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Fracture-related infection (FRI) is a devastating complication in orthopedic surgery. A recent study showed that FRI causes more severe infection and further delays healing in osteoporotic bone. Moreover, bacterial biofilm formed on implants cannot be eradicated by systemic antibiotics, warranting novel treatments. Here, we developed a DNase I and Vancomycin hydrogel delivery vehicle to eradicate Methicillin-resistant Staphylococcus aureus (MRSA) infection in vivo. Vancomycin was encapsulated in liposomes, and DNase I and Vancomycin/liposomal-Vancomycin was loaded on thermosensitive hydrogel. In vitro drug release test showed a burst release of DNase I (77.2%) within 72 hours and sustained release of Vancomycin (82.6%) up to day 14. The in vivo efficacy was evaluated in a clinically relevant ovariectomy (OVX) induced osteoporotic metaphyseal fracture model with MRSA infection, and a total of 120 Sprague Dawley rats were used. In the OVX with infection group, biofilm development caused a drastic inflammatory response, trabecular bone destruction, and non-union. In the DNase I and Vancomycin co-delivery hydrogel group (OVX-Inf-DVG), bacteria on bone and implant were eradicated. X-ray and micro-CT showed preservation of trabecular bone and bone union. HE staining showed the absence of inflammatory necrosis, and fracture healing was restored. The local elevation of TNF-α and IL-6 and increased number of osteoclasts were prevented in the OVX-Inf-DVG group. Our findings suggest that dual release of DNase I and Vancomycin initially followed by Vancomycin only later up to 14 days effectively eliminates MRSA infection, prevents biofilm development and provides a sterile environment to promote fracture healing in osteoporotic bone with FRI. STATEMENT OF SIGNIFICANCE: The biofilm formation on the implant is difficult to eradicate, causing recurrent infection and non-union in fracture-related infection (FRI). Here we developed a hydrogel therapy with high in vivo efficacy to eliminate MRSA biofilm infection in a clinically-relevant FRI model in osteoporotic bone. By loading DNase I and vancomycin/liposomal-vancomycin on thermosensitive poly-(DL-lactic acidco-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA hydrogel, a dual release of DNase I and Vancomycin was achieved whilst preserving enzyme activity. In this model, the progressive development of infection caused a drastic inflammatory response, osteoclastogenesis, trabecular bone destruction, and non-union of fracture. These pathological changes were successfully prevented by the dual delivery of DNase I and vancomycin. Our findings provide a promising strategy for FRI in osteoporotic bone.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Chun Sing Chui
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Li Y, Zhang X, Ji B, Wulamu W, Yushan N, Guo X, Cao L. One-stage revision using intra-articular carbapenem infusion effectively treats chronic periprosthetic joint infection caused by Gram-negative organisms. Bone Joint J 2023; 105-B:284-293. [PMID: 36854321 DOI: 10.1302/0301-620x.105b3.bjj-2022-0926.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Gram-negative periprosthetic joint infection (PJI) has been poorly studied despite its rapidly increasing incidence. Treatment with one-stage revision using intra-articular (IA) infusion of antibiotics may offer a reasonable alternative with a distinct advantage of providing a means of delivering the drug in high concentrations. Carbapenems are regarded as the last line of defense against severe Gram-negative or polymicrobial infection. This study presents the results of one-stage revision using intra-articular carbapenem infusion for treating Gram-negative PJI, and analyzes the characteristics of bacteria distribution and drug sensitivity. We retrospectively reviewed 32 patients (22 hips and 11 knees) who underwent single-stage revision combined with IA carbapenem infusion between November 2013 and March 2020. The IA and intravenous (IV) carbapenem infusions were administered for a single Gram-negative infection, and IV vancomycin combined with IA carbapenems and vancomycin was applied for polymicrobial infection including Gram-negative bacteria. The bacterial community distribution, drug sensitivity, infection control rate, functional recovery, and complications were evaluated. Reinfection or death caused by PJI was regarded as a treatment failure. Gram-negative PJI was mainly caused by Escherichia coli (8/34), Enterobacter cloacae (7/34), and Klebsiella pneumoniae (5/34). Seven cases (7/32) involved polymicrobial PJIs. The resistance rates of penicillin, cephalosporin, quinolones, and sulfonamides were > 10%, and all penicillin and partial cephalosporins (first and second generation) were > 30%. Of 32 cases, treatment failed to eradicate infection in only three cases (9.4%), at a mean follow-up of 55.1 months (SD 25 to 90). The mean postoperative Harris Hip Score and Hospital for Special Surgery knee score at the most recent follow-up were 81 (62 to 91) and 79 (56 to 89), respectively. One patient developed a fistula, and another presented with a local rash on an infected joint. The use of IA carbapenem delivered alongside one-stage revision effectively controlled Gram-negative infection and obtained acceptable clinical outcomes with few complications. Notably, first- and second-generation cephalosporins and penicillin should be administrated with caution, due to a high incidence of resistance.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Wuhuzi Wulamu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Nuerailijiang Yushan
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiaobin Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
10
|
Li J, Cheung WH, Chow SK, Ip M, Leung SYS, Wong RMY. Current therapeutic interventions combating biofilm-related infections in orthopaedics : a systematic review of in vivo animal studies. Bone Joint Res 2022; 11:700-714. [PMID: 36214177 PMCID: PMC9582863 DOI: 10.1302/2046-3758.1110.bjr-2021-0495.r3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aims Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K. Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Y. S. Leung
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M. Y. Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China, Ronald Man Yeung Wong. E-mail:
| |
Collapse
|
11
|
Yang C, Luo Y, Shen H, Ge M, Tang J, Wang Q, Lin H, Shi J, Zhang X. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat Commun 2022; 13:4866. [PMID: 35982036 PMCID: PMC9388665 DOI: 10.1038/s41467-022-32405-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to manipulate immune cell co-inhibitory or co-activating signals have revolutionized immunotherapy. However, certain immunologically cold diseases, such as bacterial biofilm infections of medical implants are hard to target due to the complexity of the immune co-stimulatory pathways involved. Here we show that two-dimensional manganese chalcogenophosphates MnPSe3 (MPS) nanosheets modified with polyvinylpyrrolidone (PVP) are capable of triggering a strong anti-bacterial biofilm humoral immunity in a mouse model of surgical implant infection via modulating antigen presentation and costimulatory molecule expression in the infectious microenvironment (IME). Mechanistically, the PVP-modified MPS (MPS-PVP) damages the structure of the biofilm which results in antigen exposure by generating reactive oxidative species, while changing the balance of immune-inhibitory (IL4I1 and CD206) and co-activator signals (CD40, CD80 and CD69). This leads to amplified APC priming and antigen presentation, resulting in biofilm-specific humoral immune and memory responses. In our work, we demonstrate that pre-surgical neoadjuvant immunotherapy utilizing MPS-PVP successfully mitigates residual and recurrent infections following removal of the infected implants. This study thus offers an alternative to replace antibiotics against hard-to-treat biofilm infections.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, P. R. China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China.
| |
Collapse
|
12
|
Jiang T, Gu H, Wei J. Echinacoside Inhibits Osteoclast Function by Down-Regulating PI3K/Akt/C-Fos to Alleviate Osteolysis Caused by Periprosthetic Joint Infection. Front Pharmacol 2022; 13:930053. [PMID: 35814196 PMCID: PMC9263215 DOI: 10.3389/fphar.2022.930053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Infected osteolysis as a common secondary osteoporosis is associated with excessive osteoclastogenesis and bone resorption. The inhibition of osteoclastogenesis and bone resorption have been demonstrated an effective approach in the treatment of osteolytic diseases. Echinacoside (ECH) is a natural phenylethanoid glycoside with multiple biological functions, including anti-inflammatory, antioxidant, and osteoblast differentiation promotion. However, the effects of ECH on osteoclast differentiation and bone resorption function remain unknown. In vitro, we investigated the effects of ECH on osteoclast differentiation and bone resorption induced by RANKL and its potential mechanisms. In vivo, we established a periprosthetic joint infection (PJI) rat model and demonstrated the changes of infected osteolysis and osteoclasts activities in surgical sites. ECH (20 mg/kg) was injected intraperitoneally after debridement for 4 weeks. Radiological evaluation and bone histomorphometric analysis was performed to assess the efficacy of ECH. The results showed that ECH inhibited osteoclast differentiation, F-actin belts formation, bone resorption function and osteoclast-specific gene expression by preventing NFATc1 translocation, down-regulating its expression and affecting the PI3K/Akt/c-Fos pathway in vitro. ECH also alleviated in vivo PJI-induced osteolysis and maintained bone mass by inhibiting osteoclast activity. Our study indicated that ECH attenuated RANKL-induced osteoclastogenesis and PJI-induced bone loss and was shown as a potentially effective therapeutic agent for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Joint Orthopedics, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanwen Gu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Wei
- Department of Joint Orthopedics, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- *Correspondence: Jian Wei,
| |
Collapse
|
13
|
Wei J, Tong K, Wang H, Wen Y, Chen L. Intra-articular versus systemic vancomycin for the treatment of periprosthetic joint infection after debridement and spacer implantation in a rat model. Bone Joint Res 2022; 11:371-385. [PMID: 35708551 PMCID: PMC9233408 DOI: 10.1302/2046-3758.116.bjr-2021-0319.r3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385.
Collapse
Affiliation(s)
- Jian Wei
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Kai Tong
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Department of Basic Medicine, Wuhan University, Wuhan, China
| | - Yinxian Wen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| | - Liaobin Chen
- Department of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Evaluation of Experimental and Clinical Efficacy on Surgical Debridement and Systemic Antibiotics Treatment for Early Knee Infection after Anterior Cruciate Ligament Reconstruction. Antimicrob Agents Chemother 2022; 66:e0011222. [PMID: 35499314 DOI: 10.1128/aac.00112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deep knee infection (DKI) after anterior cruciate ligament reconstruction (ACLR) is rare and challenging. The optimal treatment strategy for infection after ACLR remains controversial. This study aimed to investigate the optimal treatment for early infection after ACLR surgery. Rats with unilateral ACLR were injected with 3.0 × 105 colony forming units (CFU) of Staphylococcus aureus in the knee joint for 7 days. Next, with surgical debridement (SD) and/or 21 days of antimicrobial (systemic vancomycin and oral rifampicin [SVR]) therapy, rats were euthanatized and samples harvested. We evaluated signs of infection by general postoperative conditions, serum inflammatory markers, microbiological counting, knee radiographs, micro-computed tomography (micro-CT), histologic staining, and scanning electron microscopy (SEM). Clinically, the data from 12 patients who suffered from DKI after ACLR were analyzed retrospectively. The DKI rats treated with SVR showed better outcomes in general postoperative conditions, serum inflammatory markers, microbiological counting, biofilm on the interference screw and graft, radiographic signs of periarticular osseous destruction, and inflammatory reaction in the joint tissues than those with SD treatment, while the DKI rats with SD and SVR administration showed the best outcomes. Rats which received SD and SVR administration had their S. aureus contamination completely eradicated. All patients treated with SD & SVR or SVR alone had effectively controlled knee infections and achieved good knee function outcomes in the 6 months after treatment, but one patient developed more serious knee infections. Therefore, surgical debridement combined with systemic antibiotics treatment could effectively eliminate S. aureus contamination in the DKI rat model and in patients after ACLR without affecting knee function. Treatment with systemic antibiotics could also control early DKI, which would be especially applicable in patients who could not tolerate surgery.
Collapse
|
15
|
Tong K, Wei J, Li Z, Wang H, Wen Y, Chen L. Evaluation of the Efficacy of Vancomycin-Soaked Autograft to Eliminate Staphylococcus aureus Contamination After Anterior Cruciate Ligament Reconstruction: Based on an Infected Rat Model. Am J Sports Med 2022; 50:932-942. [PMID: 35099312 DOI: 10.1177/03635465211068114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Vancomycin-soaked autograft application in anterior cruciate ligament reconstruction (ACLR) significantly reduces postoperative infection rates. However, the optimal vancomycin concentrations and time of vancomycin presoaking of autografts for preventing infection are still unknown. PURPOSE To evaluate the efficacy of vancomycin-soaked autografts in preventing infection in rats with ACLR. STUDY DESIGN Controlled laboratory study. METHODS A total of 102 tendons of Wistar rats were harvested under sterile conditions from fresh cadaveric legs. Contamination with 2.0 × 104 colony forming units per milliliter of Staphylococcus aureus and soaking in different vancomycin concentrations for different soaking times was performed in vitro. In vivo, after being contaminated with S. aureus and soaked with optimal vancomycin solution treatment and sterile saline, the grafts were implanted in rat knees to finish ACLR surgery. At 2, 4, and 12 weeks after surgery, samples were harvested to observe signs of infection and tendon-bone incorporation via general postoperative conditions, serum inflammatory markers, microbiological counting, knee radiographs, micro-computed tomography, histologic staining, scanning electron microscopy, and biomechanical testing. RESULTS Bacterial contamination was eliminated when at least 5 or 10 mg/mL of vancomycin was applied for 30 minutes in vitro. Rats in the vancomycin-soaked graft group (5 mg/mL of vancomycin for 30 minutes) showed no significant signs of infection and fewer positive cultures than did those without presoaking. The vancomycin-soaked graft group had reduced serum inflammatory markers, tissue scores, inflammatory reactions in the joint tissue, and radiographic evidence of periarticular osseous destruction compared with the control group. At postoperative week 12, the vancomycin-soaked graft group showed good outcomes in tendon-bone incorporation via micro-computed tomography, histologic staining, and biomechanical testing. CONCLUSION In a rat model of infection after ACLR, presoaking grafts in a 5-mg/mL vancomycin solution for 30 minutes could effectively prevent S. aureus contamination without affecting tendon-bone incorporation and knee function. CLINICAL RELEVANCE The present study could provide a specific solution for the use of vancomycin in the prevention of infection after ACLR clinically.
Collapse
Affiliation(s)
- Kai Tong
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center Wuhan University, Wuhan University, Wuhan, China
| | - Jian Wei
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center Wuhan University, Wuhan University, Wuhan, China
| | - Zhenyu Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center Wuhan University, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Department of Basic Medicine, Wuhan University, Wuhan, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center Wuhan University, Wuhan University, Wuhan, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Joint Disease Research Center Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Wei J, Tong K, Zhou S, Wang H, Wen Y, Chen L. Intra-wound vancomycin powder for the eradication of periprosthetic joint infection after debridement and implant exchange: experimental study in a rat model. BMC Microbiol 2021; 21:333. [PMID: 34876010 PMCID: PMC8650465 DOI: 10.1186/s12866-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Intra-wound vancomycin powder (VP) has been used in clinical practice to prevent periprosthetic joint infection (PJI) after primary knee/hip arthroplasty. The role of intra-wound VP in the setting of debridement and implant exchange after PJI remains undefined. This study aimed to explore the efficacy and safety of intra-wound VP in the control of methicillin-resistant S. aureus (MRSA) infection after debridement and implant exchange. Methods PJI modeling by knee prosthesis implantation and MRSA inoculation, debridement and implant exchange were performed in Wistar rats successively to mimic the one-stage exchange arthroplasty of PJI patients. Two weeks of systemic vancomycin (SV) or/and intraoperative intra-wound VP of single dosage were applied after revision surgery. Results No post-surgery deaths, incision complications and signs of drug toxicity were observed. The microbial counts of SV or intra-wound VP group were significantly reduced compared with the control group, while bacteria were still detected on the bone, soft-tissue and prosthesis. The elimination of bacterial counts, along with improvement of tissue inflammation and serum inflammatory markers, were observed in the rats with SV plus intra-wound VP. Serum levels of vancomycin in all groups were lower than that of causing nephrotoxicity, while no statistic difference was observed in the serum biochemical marker among the groups. Conclusions Intra-wound VP is effective after debridement and implant exchange in our current rat PJI model. Neither SV nor intra-wound VP alone could eradicate the bacteria within a two-weeks treatment course, while SV plus intra-wound VP could eliminate the MRSA infection, without notable hepatic or renal toxicity and any incision complications.
Collapse
Affiliation(s)
- Jian Wei
- Department of Joint Orthopedics, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, 545007, China
| | - Kai Tong
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, China
| | - Siqi Zhou
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, China
| | - Hui Wang
- Department of pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
17
|
Intra-articular vancomycin for the prophylaxis of periprosthetic joint infection caused by methicillin-resistant S. aureus after total knee arthroplasty in a rat model: the dosage, efficacy, and safety. Antimicrob Agents Chemother 2021; 66:e0164121. [PMID: 34807762 DOI: 10.1128/aac.01641-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although intra-articular vancomycin powder (VP) is sometimes applied before the closure of the incision to prevent periprosthetic joint infection (PJI) after joint replacement, the dosage, efficacy and safety remain controversial. This study aimed to explore the dosage, efficacy, and safety of intra-articular VP in the prophylaxis of infection after total knee arthroplasty (TKA) in a rat model. Sixty male rats were randomly divided into five groups after receiving TKA surgery: Control (no antibiotics); systemic vancomycin (SV) (intraperitoneal injection, 88 mg/kg, equal to 1g in a patient weighted 70kg); VP0.5, VP1.0 and VP2.0 (44 mg/kg, 88 mg/kg and 176 mg/kg respectively, intra-articular). All animals were inoculated in the knee with methicillin-resistant S. aureus (MRSA). General status, serum biomarkers, radiology, microbiological assay and histopathological tests were assessed within 14 days post-operatively. Compared with the Control and SV groups, bacterial counts, knee-width, tissue inflammation, and osteolysis were reduced in the VP0.5, VP1.0 and VP2.0 groups, without notable bodyweight loss and incision complications. Among all the VP groups, VP1.0 and VP2.0 groups presented superior outcomes in the knee-width and tissue inflammation than the VP0.5 group. Microbial culture indicated that no MRSA survived in the knee of VP1.0 and VP2.0 groups, while bacteria growth was observed in VP0.5 group. No obvious changes in the structure and functional biomarkers of liver and kidney were observed in both SV and VP groups. Therefore, intra-articular vancomycin powder at the dosage from 88 mg/kg to 176 mg/kg may be effective and safe in preventing PJI induced by methicillin-resistant S. aureus in the rat TKA model.
Collapse
|