1
|
Cavanaugh CM, Betsinger CN, Katchur N, Zhang S, Yang K, Nogalski M, Cristea IM, Notterman D. Effect of host telomerase inhibition on human cytomegalovirus. J Virol 2025; 99:e0157824. [PMID: 39907284 PMCID: PMC11915825 DOI: 10.1128/jvi.01578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
Treatment options remain limited for human cytomegalovirus (HCMV). Host telomerase has been implicated in the pathogenesis and oncogenesis of multiple herpesviruses, most recently including HCMV. In this study, we investigated the effect of telomerase inhibition on HCMV replication, as well as the mechanism of the interaction between HCMV and host telomerase in vitro. We found that lytic HCMV infection increases host telomerase activity, at least in part, through modulation of hTERT expression during earlier phases of the HCMV replication cycle. We found telomerase inhibition strongly reduced viral titer for two HCMV strains in a dose-specific manner. Both post-translational pharmaceutical telomerase inhibition and siRNA-mediated knockdown of hTERT reduce HCMV yield. Telomerase inhibition results in both reduction of viral gene and protein expression across the HCMV replication cycle, and suppressed viral genome replication and viral infectivity, suggesting interference with at least early steps of the HCMV viral life cycle. Altogether, our findings indicate telomerase plays an important, perhaps non-canonical role in lytic HCMV infection which includes the support of viral replication and infectivity. IMPORTANCE Human cytomegalovirus (HCMV) seroprevalence and morbidity in immunocompromised patients and neonates infected in utero remain high globally. Host telomerase has been implicated in the success of multiple infection-induced pathologies, including the success of both lytic infection and oncogenesis in certain herpesviruses. The results of this study suggest a similar biologically important role for host telomerase in lytic HCMV infection. Furthermore, these results may provide the potential for a novel, adjunctive anti-viral treatment for HCMV infection as well as insight into the viral products likely to be involved with HCMV regulation of telomerase.
Collapse
Affiliation(s)
- Chloe M Cavanaugh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Cora N Betsinger
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Nicole Katchur
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Sherry Zhang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Maciej Nogalski
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Schalkwijk HH, Andrei G, Snoeck R. Combined use of pritelivir with acyclovir or foscarnet suppresses evolution of HSV-1 drug resistance. Virus Evol 2024; 10:veae101. [PMID: 39717706 PMCID: PMC11665824 DOI: 10.1093/ve/veae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The widespread use of antivirals in immunocompromised individuals has led to frequent occurrences of drug-resistant herpes simplex virus 1 (HSV-1) infections. Current antivirals target the viral DNA polymerase (DP), resulting in cross-resistance patterns that emphasize the need for novel treatment strategies. In this study, we assessed whether combining antivirals with different targets affects drug resistance emergence by passaging wild-type HSV-1 under increasing concentrations of acyclovir (ACV), foscarnet (phosphonoformic acid, PFA), or the helicase-primase inhibitor pritelivir (PTV), individually or in combination (ACV + PTV or PFA + PTV). The resistance selection procedure was initiated from two different drug concentrations for each condition. Deep sequencing and subsequent phenotyping showed the rapid acquisition of resistance mutations under monotherapy pressure, whereas combination therapy resulted in either no mutations or mutations conferring ACV and/or PFA resistance. Notably, mutations associated with PTV resistance were not detected after five passages under combination pressure. Strains resistant to both ACV and PTV were eventually obtained upon further passaging under ACV + PTV pressure initiated from lower drug concentrations. PFA + PTV dual treatment induced PFA resistance mutations in the DP, but PTV resistance mutations were not acquired, even after 15 passages. Our data suggest that combining the helicase-primase inhibitor PTV with a DP inhibitor may be an effective strategy to prevent drug resistance evolution in HSV-1.
Collapse
Affiliation(s)
- Hanna Helena Schalkwijk
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1043, Leuven 3000, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1043, Leuven 3000, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1043, Leuven 3000, Belgium
| |
Collapse
|
3
|
Palazzotti D, Sguilla M, Manfroni G, Cecchetti V, Astolfi A, Barreca ML. Small Molecule Drugs Targeting Viral Polymerases. Pharmaceuticals (Basel) 2024; 17:661. [PMID: 38794231 PMCID: PMC11124969 DOI: 10.3390/ph17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Small molecules that specifically target viral polymerases-crucial enzymes governing viral genome transcription and replication-play a pivotal role in combating viral infections. Presently, approved polymerase inhibitors cover nine human viruses, spanning both DNA and RNA viruses. This review provides a comprehensive analysis of these licensed drugs, encompassing nucleoside/nucleotide inhibitors (NIs), non-nucleoside inhibitors (NNIs), and mutagenic agents. For each compound, we describe the specific targeted virus and related polymerase enzyme, the mechanism of action, and the relevant bioactivity data. This wealth of information serves as a valuable resource for researchers actively engaged in antiviral drug discovery efforts, offering a complete overview of established strategies as well as insights for shaping the development of next-generation antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (D.P.); (M.S.); (G.M.); (V.C.); (A.A.)
| |
Collapse
|
4
|
Schalkwijk HH, Georgala A, Gillemot S, Temblador A, Topalis D, Wittnebel S, Andrei G, Snoeck R. A Herpes Simplex Virus 1 DNA Polymerase Multidrug Resistance Mutation Identified in a Patient With Immunodeficiency and Confirmed by Gene Editing. J Infect Dis 2023; 228:1505-1515. [PMID: 37224525 DOI: 10.1093/infdis/jiad184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 can cause severe infections in individuals who are immunocompromised. In these patients, emergence of drug resistance mutations causes difficulties in infection management. METHODS Seventeen herpes simplex virus 1 isolates were obtained from orofacial/anogenital lesions in a patient with leaky severe combined immunodeficiency over 7 years, before and after stem cell transplantation. Spatial/temporal evolution of drug resistance was characterized genotypically-with Sanger and next-generation sequencing of viral thymidine kinase (TK) and DNA polymerase (DP)-and phenotypically. CRISPR/Cas9 was used to introduce the novel DP Q727R mutation, and dual infection-competition assays were performed to assess viral fitness. RESULTS Isolates had identical genetic backgrounds, suggesting that orofacial/anogenital infections derived from the same virus lineage. Eleven isolates proved heterogeneous TK virus populations by next-generation sequencing, undetectable by Sanger sequencing. Thirteen isolates were acyclovir resistant due to TK mutations, and the Q727R isolate additionally exhibited foscarnet/adefovir resistance. Recombinant Q727R mutant virus showed multidrug resistance and increased fitness under antiviral pressure. CONCLUSIONS Long-term follow-up of a patient with severe combined immunodeficiency revealed virus evolution and frequent reactivation of wild-type and TK mutant strains, mostly as heterogeneous populations. The DP Q727R resistance phenotype was confirmed with CRISPR/Cas9, a useful tool to validate novel drug resistance mutations.
Collapse
Affiliation(s)
| | - Aspasia Georgala
- Department of Infectious Diseases, Jules Bordet Institute, Université Libre de Bruxelles, Brussels
| | - Sarah Gillemot
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Arturo Temblador
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Dimitri Topalis
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Sebastian Wittnebel
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven
| |
Collapse
|
5
|
Krasnov VP, Andronova VL, Belyavsky AV, Borisevich SS, Galegov GA, Kandarakov OF, Gruzdev DA, Vozdvizhenskaya OA, Levit GL. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents. Molecules 2023; 28:7375. [PMID: 37959793 PMCID: PMC10649544 DOI: 10.3390/molecules28217375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Valeriya L. Andronova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | | | - George A. Galegov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| |
Collapse
|
6
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J, Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115524. [PMID: 35811028 DOI: 10.1016/j.jep.2022.115524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has a long history in many countries of being used as a herbal medicine. It is also widely used in Chinese herbal medicine for the treatment of infections. Hypericin, a main component extracted from Hypericum perforatum L., has attracted the attention of many researchers for its remarkable antiviral, antitumor and antidepressant effects. AIM OF THE STUDY To find plant molecules that inhibit the alkaline nuclease (AN) of herpes simplex virus type 1 (HSV-1) and suppress viral replication. MATERIALS AND METHODS Bioinformatics methods were used to determine which compounds from a variety of natural compounds in our laboratory interact with AN. By this means we predicted that hypericin may interact with AN and suppress HSV-1 replication. Experiments were then carried out to verify whether hypericin inhibits the bioactivity of AN. The Pichia pastoris expression system was used to obtain recombinant AN. The exonuclease and endonuclease activity of AN treated with hypericin were tested by electrophoresis. Immunohistochemical staining of the HSV-1 nucleocapsids was used to find out whether hypericin inhibits the intracellular function of AN. Real-time PCR and western blotting analysis were performed to test viral gene expression and viral protein synthesis. The extent of viral replication inhibited by hypericin was determined by a plaque assay and a time of addition assay. RESULTS Recombinant AN was obtained by Pichia pastoris expression system. The exonuclease and endonuclease activity of recombinant AN were inhibited by hypericin in the electrophoresis assay. Hypericin showed no inhibitory effect on BeyoZonase™ Super Nuclease or DNase I. T5 Exonuclease activity was inhibited partially by10 μM hypericin, and was completely suppressed by 50 μM hypericin. Hind Ⅲ was inhibited by hypericin at concentrations greater than 100 μM, but EcoR I, BamH I, and Sal I were not inhibited by hypericin. HSV-1 nucleocapsids gathered in the nucleus when the viruses were treated with hypericin. Plaque formation was significantly reduced by hypericin (EC50 against HSV-1 F is 2.59 ± 0.08 μM and EC50 against HSV-1 SM44 is 2.94 ± 0.10 μM). UL12, ICP27, ICP8, gD, and UL53 gene expression (P < 0.01, 4.0 μM hypericin treated group vs control group) and ICP4 (P < 0.05, 6.0 μM hypericin treated group vs control group), ICP8 and gD (P < 0.05, 2.0 μM hypericin treated group vs control group) protein synthesis were inhibited by hypericin. In the time of addition assay, HSV-1 was suppressed by hypericin in the early stages of viral replication. Hypericin exhibits potent virucidal activity against HSV-1 and inhibits the adsorption and penetration of HSV-1. CONCLUSION Hypericin inhibits the bioactivity of AN and suppresses HSV-1 replication. The data revealed a novel mechanism of the antiherpetic effect of hypericin.
Collapse
Affiliation(s)
- Kang Cao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Yan Zhang
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China; Department of Pathology, Fourth People's Hospital of Zhenjiang City, Zhenjiang, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yanjuan Peng
- Department of Pharmacology, Chengdu Medical College, Chengdu, China
| | - Qu Pan
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Qiuxia Jiao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qian Zhang
- Department of Nursing, The Second People's Hospital of Xindu District, Chengdu, China
| | - Ran Guo
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiali Zhang
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tian Chen
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
8
|
Schalkwijk HH, Gillemot S, Reynders M, Selleslag D, Andrei G, Snoeck R. Heterogeneity and viral replication fitness of HSV-1 clinical isolates with mutations in the thymidine kinase and DNA polymerase. J Antimicrob Chemother 2022; 77:3153-3162. [PMID: 36059135 DOI: 10.1093/jac/dkac297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Prolonged antiviral therapy in immunocompromised individuals can result in the emergence of (multi)drug-resistant herpes simplex virus 1 (HSV-1) infections, forming a therapeutic challenge. OBJECTIVES To evaluate spatial and temporal differences in drug resistance of HSV-1 samples from a HSCT recipient and to determine the effect of resistance mutations on viral replication fitness. PATIENTS AND METHODS Five HSV-1 isolates were recovered from a HSCT recipient who suffered from persistent HSV-1 lesions, consecutively treated with aciclovir, foscarnet, cidofovir and a combination of ganciclovir and cidofovir. Spatial and temporal differences in HSV-1 drug resistance were evaluated genotypically [Sanger sequencing and next-generation sequencing (NGS) of the viral thymidine kinase (TK) and DNA polymerase (DP)] and phenotypically (plaque reduction assay). Viral replication fitness was determined by dual infection competition assays. RESULTS Rapid evolution to aciclovir and foscarnet resistance was observed due to acquisition of TK (A189V and R222H) and DP (L778M and L802F) mutations. Virus isolates showed heterogeneous populations, spatial virus compartmentalization and minor viral variants in three out of five isolates (detectable by NGS but not by Sanger sequencing). Mutations in the TK and DP genes did not alter replication fitness without drug pressure. TK and/or DP mutants influenced replication fitness under antiviral pressure and showed increased fitness under pressure of the drug they showed resistance to. CONCLUSIONS The use of NGS and dual infection competition assays revealed rapid evolution of HSV-1 drug resistance in a HSCT recipient with spatial and temporal compartmentalization of viral variants that had altered replication fitness under antiviral pressure.
Collapse
Affiliation(s)
- Hanna Helena Schalkwijk
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sarah Gillemot
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Dominik Selleslag
- Department of Internal Medicine, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Majewska A, Mlynarczyk-Bonikowska B. 40 Years after the Registration of Acyclovir: Do We Need New Anti-Herpetic Drugs? Int J Mol Sci 2022; 23:ijms23073431. [PMID: 35408788 PMCID: PMC8998721 DOI: 10.3390/ijms23073431] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus types 1 and 2 HSV1 and 2, namely varicella-zoster VZV and cytomegalovirus CMV, are among the most common pathogens worldwide. They remain in the host body for life. The course of infection with these viruses is often asymptomatic or mild and self-limiting, but in immunocompromised patients, such as solid organ or bone marrow transplant recipients, the course can be very severe or even life-threatening. Unfortunately, in the latter group, the highest percentage of infections with strains resistant to routinely used drugs is observed. On the other hand, frequent recurrences of genital herpes can be a problem even in people with normal immunity. Genital herpes also increases the risk of acquiring sexually transmitted diseases, including HIV infection and, if present in pregnant women, poses a risk to the fetus and newborn. Even more frequently than herpes simplex, congenital infections can be caused by cytomegalovirus. We present the most important anti-herpesviral agents, the mechanisms of resistance to these drugs, and the associated mutations in the viral genome. Special emphasis was placed on newly introduced drugs such as maribavir and brincidofovir. We also briefly discuss the most promising substances in preclinical testing as well as immunotherapy options and vaccines currently in use and under investigation.
Collapse
Affiliation(s)
- Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland;
| | - Beata Mlynarczyk-Bonikowska
- Department of Dermatology, Immunodermatology and Venereology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
- Correspondence: ; Tel.: +48-225021313
| |
Collapse
|
10
|
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|