1
|
Nuwagaba J, Li JA, Ngo B, Sutton RE. 30 years of HIV therapy: Current and future antiviral drug targets. Virology 2025; 603:110362. [PMID: 39705895 PMCID: PMC11788039 DOI: 10.1016/j.virol.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation. Challenges of HAART include lifelong adherence, toxicity, drug interactions, and drug resistance. Future therapeutic strategies may focus on underexplored antiviral targets. HIV-1 Tat and Rev proteins have essential HIV-1 regulatory functions of transcriptional elongation of the viral long terminal repeat and nuclear export of intron-containing HIV-1 RNA, respectively. These non-enzymatic proteins should thus be investigated to identify small molecules that inhibit HIV-1 replication, without causing undue toxicity. Continued innovation is essential to address therapeutic gaps and bring us closer to a potential HIV-1 cure.
Collapse
Affiliation(s)
- Julius Nuwagaba
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Brandon Ngo
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
2
|
Tedbury PR, Mahboubi D, Puray-Chavez M, Shah R, Ukah OB, Wahoski CC, Fadel HJ, Poeschla EM, Gao X, McFadden WM, Gaitanidou M, Kesesidis N, Kirby KA, Vanderford TH, Kvaratskhelia M, Achuthan V, Behrens RT, Engelman AN, Sarafianos SG. Disruption of LEDGF/p75-directed integration derepresses antisense transcription of the HIV-1 genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627169. [PMID: 39677798 PMCID: PMC11643104 DOI: 10.1101/2024.12.06.627169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Disruption of HIV-1 Integrase (IN) interactions with the host-factor Lens Epithelium-Derived Growth Factor (LEDGF)/p75 leads to decreased, random integration, increased latent infection, and described here, accumulation of HIV-1 antisense RNA (asRNA). asRNA increase was observed following interruptions of IN-LEDGF/p75 interactions either through pharmacologic perturbations of IN-LEDGF/p75 by treatment with allosteric HIV-1 integrase inhibitors (ALLINIs) or in cell lines with LEDGF genetic knockout. Additionally, by impairing Tat-dependent HIV transcription, asRNA abundance markedly increases. Illumina sequencing characterization of asRNA transcripts in primary T cells infected in the presence of ALLINIs showed that most initiate from within the HIV-1. Overall, loss of IN-LEDGF/p75 interactions increase asRNA abundance. Understanding the relationship between ALLINIs, integration sites, asRNA, and latency could aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Darius Mahboubi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine; Columbia, MO, USA
- C.S. Bond Life Sciences Center, University of Missouri; Columbia, MO, USA
| | - Raven Shah
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Obiaara B. Ukah
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine; Columbia, MO, USA
- C.S. Bond Life Sciences Center, University of Missouri; Columbia, MO, USA
| | - Claudia C. Wahoski
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Hind J. Fadel
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Eric M. Poeschla
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Xinlin Gao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Maria Gaitanidou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Nikolaos Kesesidis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Karen A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Emory University; Atlanta, GA, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine; Aurora, CO, USA
| | - Vasudevan Achuthan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, USA
- Children’s Healthcare of Atlanta; Atlanta, GA, USA
| |
Collapse
|
3
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024; 15:e0046524. [PMID: 39404354 PMCID: PMC11559089 DOI: 10.1128/mbio.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents that potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into phase 2a clinical trials. Previous cell culture-based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. Although both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect the direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor-mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR-induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared with the WT virus. By rationally modifying PIR, we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.IMPORTANCEAntiretroviral therapies save the lives of millions of people living with HIV (PLWH). However, the evolution of multi-drug-resistant viral phenotypes is a major clinical problem, and there are limited or no treatment options for heavily treatment-experienced PLWH. Allosteric HIV-1 integrase inhibitors (ALLINIs) are a novel class of antiretroviral compounds that work by a unique mechanism of binding to the non-catalytic site on the viral protein and inducing aberrant integrase multimerization. Accordingly, ALLINIs potently inhibit both wild-type HIV-1 and all drug-resistant viral phenotypes that have so far emerged against currently used therapies. Pirmitegravir, a highly potent and safe investigational ALLINI, is currently advancing through clinical trials. Here, we have elucidated the structural and mechanistic bases behind the emergence of HIV-1 integrase mutations in infected cells that confer resistance to pirmitegravir. In turn, our findings allowed us to rationally develop an improved ALLINI with substantially enhanced potency against the pirmitegravir-resistant virus.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Patacchini E, Madia VN, Albano A, Ruggieri G, Messore A, Ialongo D, Saccoliti F, Scipione L, Cosconati S, Koneru PC, Haney R, Kvaratskhelia M, Di Santo R, Costi R. Quinolinonyl Derivatives as Dual Inhibitors of the HIV-1 Integrase Catalytic Site and Integrase-RNA interactions. ACS Med Chem Lett 2024; 15:1533-1540. [PMID: 39291012 PMCID: PMC11403752 DOI: 10.1021/acsmedchemlett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
The HIV-1 integrase (IN) plays a critical role in the viral lifecycle by integrating the viral DNA into the host chromosome. The catalytic function of IN has been exploited as a target, with five drugs acting as active site binders (IN strand transfer inhibitors, INSTIs). However, IN mutations conferring low-level resistance to INSTIs have been reported. Therefore, new IN inhibitors with different mechanisms of action are needed. The allosteric inhibition of IN, exerted by allosteric IN inhibitors (ALLINIs), is gaining interest. ALLINIs inhibit IN by inducing aberrant IN multimerization with different mechanisms. Furthermore, recent discoveries unveiled that IN has an under-studied yet equally vital second function. This involves IN binding to the RNA genome in virions, necessary for proper virion maturation. In this work, we describe a series of quinolinonyl derivatives as inhibitors of both the IN catalytic functions and IN-RNA interactions, which impair both early and late steps of viral replication.
Collapse
Affiliation(s)
- Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Aurora Albano
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Giuseppe Ruggieri
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Pratibha C Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
5
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
6
|
Batisse C, Lapaillerie D, Humbert N, Real E, Zhu R, Mély Y, Parissi V, Ruff M, Batisse J. Integrase-LEDGF/p75 complex triggers the formation of biomolecular condensates that modulate HIV-1 integration efficiency in vitro. J Biol Chem 2024; 300:107374. [PMID: 38762180 PMCID: PMC11208922 DOI: 10.1016/j.jbc.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.
Collapse
Affiliation(s)
- Claire Batisse
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Laboratory (MFP), UMR-5234 CNRS-University of Bordeaux, Bordeaux, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Eleonore Real
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Rui Zhu
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, Illkirch Cedex, France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Laboratory (MFP), UMR-5234 CNRS-University of Bordeaux, Bordeaux, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| | - Marc Ruff
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| | - Julien Batisse
- Department of Integrated Structural Biology, Chromatin Stability and DNA Mobility, IGBMC, U-596 INSERM, UMR-7104 CNRS, University of Strasbourg, Illkirch Cedex, France; GDR CNRS 2194 "DYNAVIR" (Viral DNA Integration and Chromatin Dynamics Network), France.
| |
Collapse
|
7
|
Parums DV. Editorial: Forty Years of Waiting for Prevention and Cure of HIV Infection - Ongoing Challenges and Hopes for Vaccine Development and Overcoming Antiretroviral Drug Resistance. Med Sci Monit 2024; 30:e944600. [PMID: 38557932 PMCID: PMC10996429 DOI: 10.12659/msm.944600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
In April 1984, 40 years ago, the Secretary of the US Department of Health and Human Services announced that Dr. Robert Gallo and his colleagues at the National Cancer Institute (NCI) had confirmed the cause of acquired immunodeficiency syndrome (AIDS) as a retrovirus, which became known as human immunodeficiency virus (HIV) in 1986. For the past 40 years, prevention and cure of HIV infection have been the dual 'holy grail' sought but still not achieved. By the beginning of 2024, the World Health Organization (WHO) estimated that in the past 40 years, between 65.0 million and 113.0 million people have been infected with HIV, and between 32.9 million and 51.3 million people have died from HIV infection. On 29 February 2024, the WHO published an updated report in response to increasing reports of HIV drug resistance (HIVDR). Currently, HIV vaccines in development are in early-stage clinical trials. People with HIV are more likely to develop tuberculosis, with increasing rates of antimicrobial resistance. MTBVAC is the first live attenuated vaccine to prevent Mycobacterium tuberculosis infection, with phase 2a safety and efficacy clinical trial data expected at the end of 2024. This editorial aims to summarize the current challenges and hopes for developing vaccines to prevent HIV infection and approaches to overcome antiretroviral drug resistance as a cure for HIV/AIDS.
Collapse
Affiliation(s)
- Dinah V Parums
- Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
8
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577387. [PMID: 38328097 PMCID: PMC10849636 DOI: 10.1101/2024.01.26.577387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|