1
|
Kavanaugh LG, Hariharan SM, Conn GL. Determination of Pseudomonas aeruginosa MexXY-OprM substrate profile in a major efflux knockout system reveals distinct antibiotic substrate classes. Microbiol Spectr 2025; 13:e0290324. [PMID: 39912696 PMCID: PMC11878066 DOI: 10.1128/spectrum.02903-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Defining the substrates of resistance-nodulation-division systems is often complicated by the presence of multiple systems in a single bacterial species. Using a major efflux knockout strain, we developed a Pseudomonas aeruginosa system that enables controlled expression of MexXY-OprM in the absence of background efflux complexes with overlapping substrate profiles. This system identified three groups of potential substrates: substrates, partial substrates, and nonsubstrates, and defined trimethoprim as a new substrate for MexXY-OprM.IMPORTANCEIncreasing antibiotic resistance in pathogenic bacteria is a major public health concern. One way bacteria can sustain growth in the presence of antibiotics is through active removal of these molecules via efflux pumps. In Pseudomonas aeruginosa, expression of the MexXY-OprM efflux pump is induced by treatment with certain antibiotics, resulting in the efflux of a diverse set of antimicrobials. Here, we designed an inducible system that allows for the determination of preferred antibiotic substrates for efflux by MexXY-OprM in a major efflux knockout strain. We show there are three distinct substrate classes-substrates, partial substrates, and nonsubstrates-and, for the first time, that the clinically important antibiotic trimethoprim is a substrate for MexXY-OprM. Our system's flexible design will enable future studies of other P. aeruginosa efflux systems that can tease apart the overlapping substrate profiles of multidrug efflux pumps that can contribute to treatment failures.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Shraddha M. Hariharan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Habib MB, Shah NA, Amir A, Alghamdi HA, Tariq MH, Nisa K, Ammoun M. Decoding MexB efflux pump genes: structural, molecular, and phylogenetic analysis of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2025; 14:1519737. [PMID: 39906216 PMCID: PMC11791646 DOI: 10.3389/fcimb.2024.1519737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Objective Emerging drug resistance in Pseudomonas aeruginosa is of great concern in clinical settings. P. aeruginosa activates its efflux-pump system in order to evade the effect of antibiotics. The current investigation aims to detect MexB genes in P. aeruginosa, their structural and molecular analysis and their impact on antimicrobial susceptibility profiling. Methods A total of 42 clinical specimens were aseptically collected from hospitalized patients who had underlying infections related to medical implants. Matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) were used for the identification of isolates. The methods used in this study were antibiotic susceptibility profiling, minimum inhibitory concentration (MIC), polymerase chain reaction (PCR), sanger sequencing, phylogenetic analysis, MolProbity score, Ramachandran plot analysis and multiple sequence alignment. Results The highest resistance was shown by P. aeruginosa against cefoperazone (67%), gentamycin and amikacin (66%) each, followed by cefotaxime (64%). The prevalence of multi-drug resistant (MDR) and extensively drug resistant (XDR) was 57% and 12%, respectively. The presence of an active efflux-pump system was indicated by the MexB genes found in most of the resistant isolates (p<0.05). Following addition of efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a significant decrease (p<0.05) in MIC was observed in resistance, that revealed the presence of active efflux pump system. Phylogenetic analysis revealed evolutionary relationships with the P. aeruginosa strains isolated in Switzerland, Denmark and Germany. Protein domain architecture revealed that MexB gene proteins were involved in particular efflux pump function. Protein sequences aligned by multiple sequence alignment revealed conserved regions and sequence variants, which suggested antibiotic translocation and evolutionary divergence. These highly conserved regions could be used for diagnostic purposes of efflux pump MexB genes. Conclusion To avoid their spread in hospital settings, responsible authorities ought to begin rigorous initiatives in order to reduce the prevalence of multi-drug resistant, extensively drug resistant, and efflux pump carrying isolates in clinical settings.
Collapse
Affiliation(s)
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Kiran Nisa
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mariam Ammoun
- Department of Pathology, Viva Health Laboratories, Windsor, United Kingdom
| |
Collapse
|
3
|
Charkhi P, Haghshenas MR, Mirzaei B, Khalili Y, Goli HR. Combination Effect of Phenylalanine-Arginine-Beta-Naphthylamide and Curcumin on the Expression of the mexY Gene in Aminoglycoside-Resistant Clinical Isolates of Pseudomonas aeruginosa. Health Sci Rep 2024; 7:e70255. [PMID: 39659815 PMCID: PMC11629023 DOI: 10.1002/hsr2.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Background and Aims Overexpression of MexXY-OprM efflux pump causes resistance to aminoglycosides in Pseudomonas aeruginosa. We aimed to investigate the relationship between resistance to aminoglycosides and the MexXY-OprM expression level in P. aeruginosa clinical isolates without and after treatment with curcumin and/or phenylalanine-arginine-beta-naphthylamide (PAβN) as the efflux pump inhibitors. Methods We collected 100 clinical isolates from hospitalized patients. The minimum inhibitory concentrations of aminoglycosides were determined by the micro-broth dilution method in the presence and absence of PAβN and/or curcumin. Then, real-time PCR was used to determine the expression level of the MexXY-OprM efflux pump. Results In this study, 34%, 35%, 10%, 38%, 43%, 42%, and 39% of the clinical isolates were resistant to gentamicin, tobramycin, amikacin, netilmicin, spectinomycin, kanamycin, and streptomycin, respectively. Also, 45% of the isolates showed an overexpression of the mexY gene, while 31 (68.88%) isolates exhibited a 2-3-fold overexpression, and 14 (31.11%) isolates had a more than threefold overexpression of the mexY gene. However, 4 (8.88%) isolates showed a ≥ 10-fold overexpression of this gene. The combination of PAβN with spectinomycin, netilmicin, streptomycin, and kanamycin exhibited a reduced MIC range of these aminoglycosides in 93.02%, 86.8%, 76.9%, and 71.4% of resistant isolates, respectively. Additionally, all gentamicin-, tobramycin-, kanamycin-, streptomycin-, and netilmicin-resistant isolates showed a decreased MIC range in combination with curcumin. The most synergistic effect of curcumin and PAβN was observed in combination with spectinomycin, while the least synergistic effect was detected with kanamycin. Conclusion Curcumin can be a significant efflux inhibitor as an adjuvant in combination with aminoglycosides for successful treatment of patients infected by P. aeruginosa overexpressing the MexXY-OprM efflux pump.
Collapse
Affiliation(s)
- Parisa Charkhi
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mohammad Reza Haghshenas
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Bahman Mirzaei
- Department of Medical Microbiology and Virology, School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Younes Khalili
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Hamid Reza Goli
- Molecular and Cell Biology Research Centre, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Department of Medical Microbiology and Virology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
4
|
Kavanaugh LG, Hariharan SM, Conn GL. Determination of Pseudomonas aeruginosa MexXY-OprM substrate profile in a major efflux knockout system reveals distinct antibiotic substrate classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619101. [PMID: 39605423 PMCID: PMC11601363 DOI: 10.1101/2024.10.18.619101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Defining the substrates of Resistance-Nodulation-Division (RND) systems is often complicated by the presence of multiple systems in a single bacterial species. Using a major efflux knockout strain, we developed a Pseudomonas aeruginosa system that enables controlled expression of MexXY-OprM in the absence of background efflux complexes with overlapping substrate profiles. This system identified three groups of potential substrates: substrates, partial substrates, and nonsubstrates, and defined trimethoprim as a new substrate for MexXY-OprM.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA
| | | | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Phan TV, Nguyen VTV, Le MT, Nguyen BGD, Vu TT, Thai KM. Identification of efflux pump inhibitors for Pseudomonas aeruginosa MexAB-OprM via ligand-based pharmacophores, 2D-QSAR, molecular docking, and molecular dynamics approaches. Mol Divers 2024; 28:3295-3311. [PMID: 37919619 DOI: 10.1007/s11030-023-10758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Efflux pumps have been reported as one of the significant mechanisms by which bacteria evade the effects of multiple antibiotics. The tripartite efflux pump MexAB-OprM in Pseudomonas aeruginosa is one of the most significant multidrug efflux systems due to its broad resistance to antibiotics such as chloramphenicol, fluoroquinolones, lipophilic β-lactam antibiotics, nalidixic acid, novobiocin, rifampicin, and tetracycline. A promising strategy to overcome this resistance mechanism is to combine antibiotics with efflux pump inhibitors (EPIs), which can increase their intracellular concentration to enhance their biological activities. Based on 143 EPIs with chemically diverse skeletons, the 3D pharmacophore and 2D-QSAR modelings were developed and used for the virtual screening on 9.2 million compounds including ZINC15, DrugBank, and Traditional Chinese Medicine databases to identify new EPIs. The molecular docking was also performed to evaluate the binding affinity of potential EPIs to the distal-binding pocket of MexB and resulted in 611 potential EPIs. The structure-activity relationship analyses suggested that nitrogen heterocyclic compounds, piperazine and pyridine scaffolds, and amide derivatives are the most favorable chemically features for MexAB inhibitory activities. The results from molecular dynamics analysis in 100 ns indicated that ZINC009296881 and ZINC009200074 were the most potential MexB inhibitors with strong binding affinity to the distal pocket and MM/GBSA ∆Gbind values of - 38.97 and - 30.19 kcal mol-1, respectively. The predicted pharmacokinetic properties and toxicity of these compounds indicated their potential oral drugs.
Collapse
Affiliation(s)
- Thien-Vy Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Vu-Thuy-Vy Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Minh-Tri Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward., Thu Duc Dist, Ho Chi Minh City, 700000, Vietnam
| | | | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
6
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Hussin A, Nathan S, Shahidan MA, Nor Rahim MY, Zainun MY, Khairuddin NAN, Ibrahim N. Identification and mechanism determination of the efflux pump subunit amrB gene mutations linked to gentamicin susceptibility in clinical Burkholderia pseudomallei from Malaysian Borneo. Mol Genet Genomics 2024; 299:12. [PMID: 38381232 DOI: 10.1007/s00438-024-02105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
The bacterium Burkholderia pseudomallei is typically resistant to gentamicin but rare susceptible strains have been isolated in certain regions, such as Thailand and Sarawak, Malaysia. Recently, several amino acid substitutions have been reported in the amrB gene (a subunit of the amrAB-oprA efflux pump gene) that confer gentamicin susceptibility. However, information regarding the mechanism of the substitutions conferring the susceptibility is lacking. To understand the mechanism of amino acid substitution that confers susceptibility, this study identifies the corresponding mutations in clinical gentamicin-susceptible B. pseudomallei isolates from the Malaysian Borneo (n = 46; Sarawak: 5; Sabah: 41). Three phenotypically confirmed gentamicin-susceptible (GENs) strains from Sarawak, Malaysia, were screened for mutations in the amrB gene using gene sequences of gentamicin-resistant (GENr) strains (QEH 56, QEH 57, QEH20, and QEH26) and publicly available sequences (AF072887.1 and BX571965.1) as the comparator. The effect of missense mutations on the stability of the AmrB protein was determined by calculating the average energy change value (ΔΔG). Mutagenesis analysis identified a polymorphism-associated mutation, g.1056 T > G, a possible susceptible-associated in-frame deletion, Delta V412, and a previously confirmed susceptible-associated amino acid substitution, T368R, in each of the three GENs isolates. The contribution of Delta V412 needs further confirmation by experimental mutagenesis analysis. The mechanism by which T368R confers susceptibility, as elucidated by in silico mutagenesis analysis using AmrB-modeled protein structures, is proposed to be due to the location of T368R in a highly conserved region, rather than destabilization of the AmrB protein structure.
Collapse
Affiliation(s)
- Ainulkhir Hussin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Yusof Nor Rahim
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Mohamad Yusof Zainun
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | | | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
| |
Collapse
|
8
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:12. [PMID: 39843773 PMCID: PMC11721654 DOI: 10.1038/s44259-023-00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/17/2023] [Indexed: 01/24/2025]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533986. [PMID: 37425949 PMCID: PMC10327050 DOI: 10.1101/2023.03.24.533986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
11
|
Jabalameli F, Emaneini M, Beigverdi R, Halimi S, Siroosi M. Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates. Ann Clin Microbiol Antimicrob 2023; 22:61. [PMID: 37475017 PMCID: PMC10360276 DOI: 10.1186/s12941-023-00613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Biofilms play a role in recalcitrance and treatability of bacterial infections, but majority of known antibiotic resistance mechanisms are biofilm-independent. Biofilms of Pseudomonas aeruginosa, especially in cystic fibrosis patients infected with the alginate producing strains in their lungs, are hard to treat. Changes in growth-related bacterial metabolism in biofilm affect their antibiotic recalcitrance which could be considered for new therapies designed based on these changes. In this study, effects of nitrate, arginine, and ferrous were investigated on antibiotic recalcitrance in alginate-encapsulated P. aeruginosa strains isolated from cystic fibrosis patients in the presence of amikacin, tobramycin, and ciprofloxacin. Also, expression of an efflux pump gene, mexY, was analyzed in selected strains in the presence of amikacin and ferrous. METHODS Clinical P. aeruginosa strains were isolated from cystic fibrosis patients and minimum inhibitory concentration of amikacin, tobramycin, and ciprofloxacin was determined against all the strains. For each antibiotic, a susceptible and a resistant or an intermediate-resistant strain were selected, encapsulated into alginate beads, and subjected to minimal biofilm eradication concentration (MBEC) test. After determining MBECs, sub-MBEC concentrations (antibiotics at concentrations one level below the determined MBEC) for each antibiotic were selected and used to study the effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of encapsulated strains. Effects of ferrous and amikacin on expression of the efflux pump gene, mexY, was studied on amikacin sensitive and intermediate-resistant strains. One-way ANOVA and t test were used as the statistical tests. RESULTS According to the results, the supplements had a dose-related effect on decreasing the number of viable cells; maximal effect was noted with ferrous, as ferrous supplementation significantly increased biofilm susceptibility to both ciprofloxacin and amikacin in all strains, and to tobramycin in a resistant strain. Also, treating an amikacin-intermediate strain with amikacin increased the expression of mexY gene, which has a role in P. aeruginosa antibiotic recalcitrance, while treating the same strain with ferrous and amikacin significantly decreased the expression of mexY gene, which was a promising result. CONCLUSIONS Our results support the possibility of using ferrous and arginine as an adjuvant to enhance the efficacy of conventional antimicrobial therapy of P. aeruginosa infections.
Collapse
Affiliation(s)
- Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Siroosi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Trampari E, Prischi F, Vargiu AV, Abi-Assaf J, Bavro VN, Webber MA. Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:2. [PMID: 38686215 PMCID: PMC11057200 DOI: 10.1038/s44259-023-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2024]
Abstract
Antibiotic resistance is a pressing healthcare challenge and is mediated by various mechanisms, including the active export of drugs via multidrug efflux systems, which prevent drug accumulation within the cell. Here, we studied how Salmonella evolved resistance to two key antibiotics, cefotaxime and azithromycin, when grown planktonically or as a biofilm. Resistance to both drugs emerged in both conditions and was associated with different substitutions within the efflux-associated transporter, AcrB. Azithromycin exposure selected for an R717L substitution, while cefotaxime for Q176K. Additional mutations in ramR or envZ accumulated concurrently with the R717L or Q176K substitutions respectively, resulting in clinical resistance to the selective antibiotics and cross-resistance to other drugs. Structural, genetic, and phenotypic analysis showed the two AcrB substitutions confer their benefits in profoundly different ways. R717L reduces steric barriers associated with transit through the substrate channel 2 of AcrB. Q176K increases binding energy for cefotaxime, improving recognition in the distal binding pocket, resulting in increased efflux efficiency. Finally, we show the R717 substitution is present in isolates recovered around the world.
Collapse
Affiliation(s)
- Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, S. P. 8, km. 0.700, 09042 Monserrato, Italy
| | - Justin Abi-Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UA UK
| |
Collapse
|
13
|
Recent advances in nanoparticle-mediated antibacterial applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
14
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
15
|
Dželalija M, Kvesić M, Novak A, Fredotović Ž, Kalinić H, Šamanić I, Ordulj M, Jozić S, Goić Barišić I, Tonkić M, Maravić A. Microbiome profiling and characterization of virulent and vancomycin-resistant Enterococcus faecium from treated and untreated wastewater, beach water and clinical sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159720. [PMID: 36306843 DOI: 10.1016/j.scitotenv.2022.159720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2″)-Ia, and aph(2″)-Ib and aph(2″)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.
Collapse
Affiliation(s)
- Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Marija Kvesić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, Ruđera Boškovića 31, 21000 Split, Croatia; Doctoral study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Anita Novak
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Marin Ordulj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Slaven Jozić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Ivana Goić Barišić
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Marija Tonkić
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; University Hospital Split, Spinčićeva 1, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| |
Collapse
|
16
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
17
|
Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI, Ruggerone P. Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa. Phys Chem Chem Phys 2022; 24:16566-16575. [PMID: 35766032 PMCID: PMC9278589 DOI: 10.1039/d2cp00951j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in Pseudomonas aeruginosa. This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of Escherichia coli. In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka et al., Nat. Commun., 2021, 12, 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB–quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones. Putative binding modes (BMs) of quinolones to the bacterial efflux transporter MexB were identified. Multiple interaction patterns are possible, supporting the hypothesis that substrates oscillate between different BMs with similar affinity.![]()
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Citt. Universitaria, I-09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
18
|
Rahmati A, Shakib P, Javadi A, Zolfaghari MR. Synthesis and Evaluation of Antimicrobial Activities of Gold and ZnO Nanoparticles on Inhibiting the MexAB-OprM Efflux Pump in Pseudomonas aeruginosa Isolates. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Berberine Derivatives as Pseudomonas aeruginosa MexXY-OprM Inhibitors: Activity and In Silico Insights. Molecules 2021; 26:molecules26216644. [PMID: 34771051 PMCID: PMC8587913 DOI: 10.3390/molecules26216644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
The natural alkaloid berberine has been demonstrated to inhibit the Pseudomonas aeruginosa multidrug efflux system MexXY-OprM, which is responsible for tobramycin extrusion by binding the inner membrane transporter MexY. To find a structure with improved inhibitory activity, we compared by molecular dynamics investigations the binding affinity of berberine and three aromatic substituents towards the three polymorphic sequences of MexY found in P. aeruginosa (PAO1, PA7, and PA14). The synergy of the combinations of berberine or berberine derivatives/tobramycin against the same strains was then evaluated by checkerboard and time-kill assays. The in silico analysis evidenced different binding modes depending on both the structure of the berberine derivative and the specific MexY polymorphism. In vitro assays showed an evident MIC reduction (32-fold and 16-fold, respectively) and a 2–3 log greater killing effect after 2 h of exposure to the combinations of 13-(2-methylbenzyl)- and 13-(4-methylbenzyl)-berberine with tobramycin against the tobramycin-resistant strain PA7, a milder synergy (a 4-fold MIC reduction) against PAO1 and PA14, and no synergy against the ΔmexXY strain K1525, confirming the MexY-specific binding and the computational results. These berberine derivatives could thus be considered new hit compounds to select more effective berberine substitutions and their common path of interaction with MexY as the starting point for the rational design of novel MexXY-OprM inhibitors.
Collapse
|
20
|
Šamanić I, Kalinić H, Fredotović Ž, Dželalija M, Bungur AM, Maravić A. Bacteria tolerant to colistin in coastal marine environment: Detection, microbiome diversity and antibiotic resistance genes' repertoire. CHEMOSPHERE 2021; 281:130945. [PMID: 34289613 DOI: 10.1016/j.chemosphere.2021.130945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 05/22/2023]
Abstract
The global spread of mobilized colistin resistance (mcr) genes in clinical and natural environments dangerously diminishes the effectiveness of this last-resort antibiotic, becoming an urgent health threat. We used a multidisciplinary approach to detect mcr-1 gene and colistin (CL)-resistant bacteria in seawater from two Croatian public beaches. Illumina-based sequencing of metagenomic 16S rRNA was used to assess the taxonomic, functional, and antibiotic resistance genes (ARGs) profiling of the bacterial community tolerant to CL regarding different culture-based isolation methodologies. Data revealed that the choice of methodology alters the diversity and abundance of taxa accounting for the CL-resistance phenotype. The mcr-1 gene was identified by cloning and sequencing in one sample, representing the first report of mcr-1 gene in Croatia. Culturing of CL-resistant strains revealed their resistance phenotypes and concurrent production of clinically significant β-lactamases, such as CTX-M-15, CTX-M-3 and SHV-12. We also report the first identification of blaCTX-M-15 gene in Klebsiella huaxiensis and K. michiganensis, as well as the blaTEM-1+CTX-M-3 in Serratia fonticola. ARGs profiles derived from metagenomic data and predicted by PICRUSt2, showed the highest abundance of genes encoding for multidrug efflux pumps, followed by the transporter genes accounting for the tetracycline, macrolide and phenicol resistance. Our study evidenced the multidrug resistance features of CL-tolerant bacterial communities thriving in surface beach waters. We also showed that combined application of the metagenomic approaches and culture-based techniques enabled successful detection of mcr-1 gene, which could be underreported in natural environment.
Collapse
Affiliation(s)
- Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ana-Marija Bungur
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia.
| |
Collapse
|
21
|
Zwama M, Nishino K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics (Basel) 2021; 10:774. [PMID: 34201908 PMCID: PMC8300642 DOI: 10.3390/antibiotics10070774] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
The rise in multidrug resistance (MDR) is one of the greatest threats to human health worldwide. MDR in bacterial pathogens is a major challenge in healthcare, as bacterial infections are becoming untreatable by commercially available antibiotics. One of the main causes of MDR is the over-expression of intrinsic and acquired multidrug efflux pumps, belonging to the resistance-nodulation-division (RND) superfamily, which can efflux a wide range of structurally different antibiotics. Besides over-expression, however, recent amino acid substitutions within the pumps themselves-causing an increased drug efflux efficiency-are causing additional worry. In this review, we take a closer look at clinically, environmentally and laboratory-evolved Gram-negative bacterial strains and their decreased drug sensitivity as a result of mutations directly in the RND-type pumps themselves (from Escherichia coli, Salmonella enterica, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Acinetobacter baumannii and Legionella pneumophila). We also focus on the evolution of the efflux pumps by comparing hundreds of efflux pumps to determine where conservation is concentrated and where differences in amino acids can shed light on the broad and even broadening drug recognition. Knowledge of conservation, as well as of novel gain-of-function efflux pump mutations, is essential for the development of novel antibiotics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|