1
|
Li X, Wang W, Gao Q, Lai S, Liu Y, Zhou S, Yan Y, Zhang J, Wang H, Wang J, Feng Y, Yang R, Su J, Li B, Liao Y. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230113. [PMID: 39713199 PMCID: PMC11655311 DOI: 10.1002/exp.20230113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/02/2024] [Indexed: 12/24/2024]
Abstract
Infected burn wounds are characterized by persistent drug-resistant bacterial infection coupled with an inflammatory response, impeding the wound-healing process. In this study, an intelligent nanoparticle system (CCM+TTD@ZIF-8 NPs) was prepared using curcumin (CCM), an aggregation-induced emission luminogens (TTD), and ZIF-8 for infection-induced wound healing. The CCM+TTD@ZIF-8 NPs showed multiple functions, including bacteria targeting, fluorescence imaging and pH response-guided photodynamic therapy (PDT), and anti-inflammatory. The positive charges of ZIF-8 NPs allowed the targeting of drug-resistant bacteria in infected wounds, thereby realizing fluorescence imaging of bacteria by emitting red fluorescence at the infected site upon blue light irradiation. The pH-responsive characteristics of the CCM+TTD@ZIF-8 NPs also enabled controllable CCM release onto the infected wound site, thereby promoting the specific accumulation of ROS at the infected site, with outstanding bactericidal efficacy against drug-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) strains in vitro/in vivo. Additionally, due to the excellent bactericidal effect and anti-inflammatory properties of CCM+TTD@ZIF-8 NPs combined with blue light irradiation, the regeneration of epidermal tissue, angiogenesis, and collagen deposition was achieved, accelerating the healing process of infected burn wounds. Therefore, this CCM+TTD@ZIF-8 NPs with multifunctional properties provides great potential for infected burn wound healing.
Collapse
Affiliation(s)
- Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Qiuxia Gao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- School of InspectionNingxia Medical UniversityYinchuanNingxiaChina
| | - Shanshan Lai
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yan Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingaporeSingapore
| | - Sitong Zhou
- Department of DermatologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yan Yan
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Jie Zhang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouGuangdongChina
| | - Jianyu Su
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Bin Li
- School of InspectionNingxia Medical UniversityYinchuanNingxiaChina
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
2
|
Arslan NP, Orak T, Ozdemir A, Altun R, Esim N, Eroglu E, Karaagac SI, Aktas C, Taskin M. Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi. J Basic Microbiol 2024; 64:e2400510. [PMID: 39410821 PMCID: PMC11609500 DOI: 10.1002/jobm.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Bacteria and fungi are natural sources of metabolites exhibiting diverse bioactive properties such as wound healing, antioxidative, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anticancer activities. Two important groups of bacteria or fungi-derived metabolites with wound-healing potential are polysaccharides and peptides. In addition to bacteria-derived cellulose and hyaluronic acid and fungi-derived chitin and chitosan, these organisms also produce different polysaccharides (e.g., exopolysaccharides) with wound-healing potential. The most commonly used bacterial peptides in wound healing studies are bacteriocins and lipopeptides. Bacteria or fungi-derived polysaccharides and peptides exhibit both the in vitro and the in vivo wound healing potency. In the in vivo models, including animals and humans, these metabolites positively affect wound healing by inhibiting pathogens, exhibiting antioxidant activity, modulating inflammatory response, moisturizing the wound environment, promoting the proliferation and migration of fibroblasts and keratinocytes, increasing collagen synthesis, re-epithelialization, and angiogenesis. Therefore, peptides and polysaccharides derived from bacteria and fungi have medicinal importance. This study aims to overview current literature knowledge (especially within the past 5 years) on the in vitro and in vivo wound repair potentials of polysaccharides and peptides obtained from bacteria (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria) and fungi (yeasts, filamentous microfungi, and mushrooms).
Collapse
Affiliation(s)
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Aysenur Ozdemir
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Ramazan Altun
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art FacultyBingol UniversityBingolTurkey
| | - Elvan Eroglu
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Sinem Ilayda Karaagac
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Cigdem Aktas
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| |
Collapse
|
3
|
Licini C, Morroni G, Lucarini G, Vitto VAM, Orlando F, Missiroli S, D'Achille G, Perrone M, Spadoni T, Graciotti L, Bigossi G, Provinciali M, Offidani A, Mattioli-Belmonte M, Cirioni O, Pinton P, Simonetti O, Marchi S. ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation. Cell Death Dis 2024; 15:407. [PMID: 38862500 PMCID: PMC11167056 DOI: 10.1038/s41419-024-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 β (IL-1β) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1β production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tatiana Spadoni
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
4
|
Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024; 13:434. [PMID: 38921732 PMCID: PMC11206676 DOI: 10.3390/pathogens13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Hongyue Liang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| |
Collapse
|
5
|
Rizzetto G, Gambini D, Maurizi A, Molinelli E, De Simoni E, Pallotta F, Brescini L, Cirioni O, Offidani A, Simonetti O, Giacometti A. The sources of antimicrobial peptides against Gram-positives and Gramnegatives: our research experience. LE INFEZIONI IN MEDICINA 2023; 31:306-322. [PMID: 37701381 PMCID: PMC10495054 DOI: 10.53854/liim-3103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023]
Abstract
Antibiotic resistance of Gram-positive and Gramnegative bacteria is becoming increasingly prevalent. For this reason, the search for new molecules that can overcome current resistance and also recover antibiotics that are no longer effective is becoming increasingly urgent. Our research group at the 'Polytechnic University of Marche' managed to study the effectiveness of certain antimicrobial peptides (AMPs). We decided to review our experience with AMPs by classifying them according to their origin and evaluating their effect on Gram-negative and Gram-positive bacteria. AMPs can derive from mammals, amphibians, microorganisms, and insects. In conclusion, our research experience shows that the richest source of AMPs are amphibians. However, the studies done are mainly in vitro or in animal models, requiring further human studies to assess the efficacy and safety of these molecules. AMPs may be a new therapeutic option for infections sustained by multi-resistant micro-organisms and for overcoming the mechanisms of resistance to antibiotics currently used. In particular, combining AMPs with antibiotics, including those with limited antimicrobial activity due to antimicrobial resistance, has often shown a synergistic effect, increasing or restoring their efficacy. The possibility of using manageable and relatively safe antibiotics again is crucial, considering the widespread increase in bacterial resistance in hospitals and the community. Despite a plethora of research on AMPs and their application as potential treatment on infectious diseases, this area needs further exploration. There is evidence that the characteristics of AMPs can seriously improve through structural chemical modifications and different delivery systems to become alternatives drugs to conventional antibiotics. The aim is to provide an overview of the possible sources from which AMPs are extracted, evaluating their action exclusively on Gram-positive and negative bacteria. This is to determine, based on our experience, which might be the most promising sources of AMPs for future research as well.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Daisy Gambini
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Maurizi
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Pallotta
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Molinelli E, De Simoni E, Candelora M, Sapigni C, Brisigotti V, Rizzetto G, Offidani A, Simonetti O. Systemic Antibiotic Therapy in Hidradenitis Suppurativa: A Review on Treatment Landscape and Current Issues. Antibiotics (Basel) 2023; 12:978. [PMID: 37370297 DOI: 10.3390/antibiotics12060978] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, and inflammatory skin disease characterized by painful, deep-seated, nodules, abscesses, and sinus tracts in sensitive areas of the body, including axillary, inguinal, and anogenital regions. Antibiotics represent the first-line pharmacological treatment of HS because of their anti-inflammatory properties and antimicrobial effects. This narrative review summarizes the most significant current issues on the role of systemic antibiotics in the management of HS, critically analyzing the main limits of their use (antibiotic resistance and toxicity). Although, in the last decades, several cytokines have been implicated in the pathomechanism of HS and the research on the use of novel biologic agents in HS has been intensified, antibiotics remain a valid therapeutic approach. Future challenges regarding antibiotic therapy in HS comprise their use in association with biologics in the management of acute flare or as a bridge therapy to surgery.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Matteo Candelora
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60126 Ancona, Italy
| |
Collapse
|
7
|
Liu G, Liu A, Yang C, Zhou C, Zhou Q, Li H, Yang H, Mo J, Zhang Z, Li G, Si H, Ou C. Portulaca oleracea L. organic acid extract inhibits persistent methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol 2023; 13:1076154. [PMID: 36713183 PMCID: PMC9874160 DOI: 10.3389/fmicb.2022.1076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus continues to be one of the most important pathogens capable of causing a wide range of infections in different sites of the body in humans and livestock. With the emergence of methicillin-resistant strains and the introduction of strict laws on antibiotic usage in animals, antibiotic replacement therapy has become increasingly popular. Previous studies have shown that Portulaca oleracea L. extract exerts a certain degree of bacteriostatic effect, although the active ingredients are unknown. In the present study, the antibacterial activity of the organic acid of P. oleracea (OAPO) against S. aureus was examined using a series of experiments, including the minimum inhibitory concentration, growth curve, and bacteriostasis curve. In vitro antibacterial mechanisms were evaluated based on the integrity and permeability of the cell wall and membrane, scanning electron microscopy, and soluble protein content. A mouse skin wound recovery model was used to verify the antibacterial effects of OAPO on S. aureus in vivo. The results showed that OAPO not only improved skin wound recovery but also decreased the bacterial load in skin wounds. Moreover, the number of inflammatory cells and cytokines decreased in the OAPO-treated groups. In summary, this study reports a botanical extract that can inhibit S. aureus in vitro and in vivo, indicating the potential use of OAPO to prevent and control S. aureus infection in the near future.
Collapse
Affiliation(s)
- Gengsong Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Aijing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiaoyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haizhu Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongchun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Mo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,*Correspondence: Changbo Ou, ✉
| |
Collapse
|
8
|
Ullah N, Khan D, Ahmed N, Zafar A, Shah KU, ur Rehman A. Lipase-sensitive fusidic acid polymeric nanoparticles based hydrogel for on-demand delivery against MRSA-infected burn wounds. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
10
|
Molinelli E, Sapigni C, D’Agostino GM, Brisigotti V, Rizzetto G, Bobyr I, Cirioni O, Giacometti A, Brescini L, Mazzanti S, Offidani A, Simonetti O. The Effect of Dalbavancin in Moderate to Severe Hidradenitis Suppurativa. Antibiotics (Basel) 2022; 11:1573. [PMID: 36358228 PMCID: PMC9686733 DOI: 10.3390/antibiotics11111573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 09/06/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by painful nodules, abscesses, and fistulas, localized to the areas of the folds where apocrine glands are present: the armpits, groin, inframammary region, and genital or perineal region. The management is still challenging, and it includes mainly systemic antibiotics, immunosuppressors, and biologic agents. Antibiotics are frequently used in the management of HS for their anti-inflammatory, immunomodulatory, and antimicrobial properties, but no data have been reported regarding the use of dalbavancin in HS. The aim of our practice was to evaluate efficacy, flare, and disease-free survival after dalbavancin therapy in a selected population with HS. We report the experience of the Ancona Dermatology Clinic in treating HS flare-ups with dalbavancin and its rationale for use. Our observation shows that the use of dalbavancin is an effective and well-tolerated treatment for the management of Hurley stage II-III HS; currently, dalbavancin should be considered as a supportive therapy for selected patients.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Giovanni Marco D’Agostino
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Ivan Bobyr
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Oscar Cirioni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Sara Mazzanti
- Clinic of Infectious Diseases, Department of Biochemical Sciences and Public Health, Polytechnic University of the Marche Region, 60121 Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60121 Ancona, Italy
| |
Collapse
|
11
|
Rizzetto G, Molinelli E, Radi G, Cirioni O, Brescini L, Giacometti A, Offidani A, Simonetti O. MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics (Basel) 2022; 11:1504. [PMID: 36358159 PMCID: PMC9686594 DOI: 10.3390/antibiotics11111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Psoriatic patients present various infectious risk factors, but there are few studies in the literature evaluating the actual impact of psoriasis in severe staphylococcal skin infections. Our narrative review of the literature suggests that psoriatic patients are at increased risk of both colonization and severe infection, during hospitalization, by S. aureus. The latter also appears to play a role in the pathogenesis of psoriasis through the production of exotoxins. Hospitalized psoriatic patients are also at increased risk of MRSA skin infections. For this reason, new molecules are needed that could both overcome bacterial resistance and inhibit exotoxin production. In our opinion, in the near future, topical quorum sensing inhibitors in combination with current anti-MRSA therapies will be able to overcome the increasing resistance and block exotoxin production. Supplementation with Vitamin E (VE) or derivatives could also enhance the effect of anti-MRSA antibiotics, considering that psoriatic patients with metabolic comorbidities show a low intake of VE and low serum levels, making VE supplementation an interesting new perspective.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulia Radi
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
12
|
Fioriti S, Cirioni O, Simonetti O, Franca L, Candelaresi B, Pallotta F, Neubauer D, Kamysz E, Kamysz W, Canovari B, Brescini L, Morroni G, Barchiesi F. In Vitro Activity of Novel Lipopeptides against Triazole-Resistant Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8080872. [PMID: 36012859 PMCID: PMC9409728 DOI: 10.3390/jof8080872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH2, C14-WRR-NH2) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time–kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time–kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances.
Collapse
Affiliation(s)
- Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Franca
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Bianca Candelaresi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Francesco Pallotta
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Elzbieta Kamysz
- Laboratory of Chemistry of Biological Macromolecules, Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Benedetta Canovari
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206298; Fax: +39-0712206297
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61122 Pesaro, Italy
| |
Collapse
|
13
|
Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics (Basel) 2022; 11:antibiotics11070944. [PMID: 35884198 PMCID: PMC9311791 DOI: 10.3390/antibiotics11070944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Daptomycin is active against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and the on-label indications for its use include complicated skin and skin structure infections (cSSSI). We performed a narrative review of the literature with the aim to evaluate the role of daptomycin in the skin wound healing process, proposing our point of view on the possible association with other molecules that could improve the skin healing process. Daptomycin may improve wound healing in MRSA-infected burns, surgical wounds, and diabetic feet, but further studies in humans with histological examination are needed. In the future, the combination of daptomycin with other molecules with synergistic action, such as vitamin E and derivates, IB-367, RNA III-inhibiting peptide (RIP), and palladium nanoflowers, may help to improve wound healing and overcome forms of antibiotic resistance.
Collapse
|
14
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
15
|
Efficacy of Cathelicidin LL-37 in an MRSA Wound Infection Mouse Model. Antibiotics (Basel) 2021; 10:antibiotics10101210. [PMID: 34680791 PMCID: PMC8532939 DOI: 10.3390/antibiotics10101210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. Methods: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. Results: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. Conclusions: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.
Collapse
|
16
|
High Prevalence of Antibiotic Resistance among Opportunistic Pathogens Isolated from Patients with COVID-19 under Mechanical Ventilation: Results of a Single-Center Study. Antibiotics (Basel) 2021; 10:antibiotics10091080. [PMID: 34572662 PMCID: PMC8467890 DOI: 10.3390/antibiotics10091080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023] Open
Abstract
The effect of the COVID-19 pandemic on antibiotic resistance diffusion in healthcare settings has not been fully investigated. In this study we evaluated the prevalence of antibiotic resistance among opportunistic pathogens isolated from patients with COVID-19 under mechanical ventilation. An observational, retrospective, analysis was performed on confirmed cases of COVID-19 patients who were admitted to the ICU department of San Salvatore Hospital in Pesaro, Italy, from 1 February 2021 to 31 May 2021. We considered all consecutive patients aged ≥ 18, under mechanical ventilation for longer than 24 h. Eighty-nine patients, 66 (74.1%) men and 23 (25.9%) women, with a median age of 67.1 years, were recruited. Sixty-eight patients (76.4%) had at least one infection, and 11 patients (12.3%) were colonized, while in the remaining 10 patients (11.2%) neither colonization nor infection occurred. In total, 173 microorganisms were isolated. There were 73 isolates (42.2%) causing bacterial or fungal infections while the remaining 100 isolates (57.8%) were colonizers. Among Gram-negative bacteria, E. coli, A. baumannii and K. pneumoniae were the most common species. Among Gram-positive bacteria, S. aureus and E. faecalis were the most common species. Overall, there were 58/105 (55.2%) and 22/59 (37.2%) MDR isolates among Gram-negative and Gram-positive bacteria, respectively. The prevalence of an MDR microorganism was significantly higher in those patients who had been exposed to empiric antibiotic treatment before ICU admission. In conclusion, we found a high prevalence of antibiotic resistance among opportunistic pathogens isolated from patients with COVID-19 under mechanical ventilation.
Collapse
|
17
|
Huang Y, Lv G, Hu L, Wu Y, Guo N, Zhu Y, Ding L, Li Q, Liu S, Yang Y, Shao H. Efficacy and Safety of High Vs Standard Daptomycin Doses Examined in Chinese Patients With Severe Burn Injuries by Pharmacokinetic Evaluation. J Burn Care Res 2021; 41:705-713. [PMID: 32006005 PMCID: PMC7195552 DOI: 10.1093/jbcr/iraa020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies and the concentration-dependent antibacterial actions of daptomycin suggested that a high dose would be needed for difficult-to-treat infections in burn patients. Here, we evaluated the effects of administration of low and high doses of daptomycin in patients with severe burn injuries. The study retrospectively analyzed 10 patients with severe burn injuries, using pharmacokinetic (PK) and pharmacodynamic (PD) evaluations of daptomycin doses given to combat serious infections. Daptomycin was administered as a single dose or by multiple doses intravenously at a standard dose of 6 mg/kg/d or a high dose of 12 mg/kg/d for 7 to 14 days. The serum concentrations of daptomycin from patients were analyzed by liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS). Burn injury patients treated with high-dose daptomycin had a linear PK profile and a negative correlation between the AUC0–24 and Baux score (R2 = .953 and R2 = .801). The Cmax, AUC0–24, and t(h)½ increased significantly compared with patients given a standard dose. The efficacy of daptomycin against Staphylococcus aureus showed significantly higher rates of (AUC0–24)/MIC and Cmax/MIC after high-dose daptomycin compared with the standard dose, reflected in a significant correlation between a high dose and the Baux score (r = .976, P < .001). Positive S. aureus cultures from two of three high-dose and none of two daptomycin low-dose patients converted from positive to negative after therapy. No serious adverse events or discontinuation of the drug occurred during the treatment period. Daptomycin doses up to 12 mg/kg/d were well tolerated in Chinese patients with severe burn injuries, which were complicated by infections with S. aureus.
Collapse
Affiliation(s)
- Yingzi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guozhong Lv
- Department of Burn and Plastic Surgery, Wuxi Third People's Hospital, China
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yunfu Wu
- Department of Critical Care Medicine, Suzhou Municipal Hospital, China
| | - Nan Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yugang Zhu
- Department of Burn and Plastic Surgery, Wuxi Third People's Hospital, China
| | - Lingtao Ding
- Department of Burn and Plastic Surgery, Wuxi Third People's Hospital, China
| | - Qing Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Morroni G, Fioriti S, Salari F, Brenciani A, Brescini L, Mingoia M, Giovanetti E, Pocognoli A, Giacometti A, Molinelli E, Offidani A, Simonetti O, Cirioni O. Characterization and Clonal Diffusion of Ceftaroline Non-Susceptible MRSA in Two Hospitals in Central Italy. Antibiotics (Basel) 2021; 10:antibiotics10081026. [PMID: 34439075 PMCID: PMC8388857 DOI: 10.3390/antibiotics10081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Ceftaroline represents a novel fifth-generation cephalosporin to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Methods: Ceftaroline susceptibility of 239 MRSA isolates was assessed by disk diffusion and a MIC test strip following both EUCAST and CLSI guidelines. Non-susceptible isolates were epidemiologically characterized by pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing, and further investigated by PCR and whole genome sequencing to detect penicillin-binding protein (PBP) mutations as well as antibiotic resistance and virulence genes. Results: Fourteen isolates out of two hundred and thirty-nine (5.8%) were non-susceptible to ceftaroline (MIC > 1 mg/L), with differences between the EUCAST and CLSI interpretations. The characterized isolates belonged to seven different pulsotypes and three different clones (ST228/CC5-t041-SCCmecI, ST22/CC22-t18014-SCCmecIV, and ST22/CC22-t022-SCCmecIV), confirming a clonal diffusion of ceftaroline non-susceptible strains. Mutations in PBPs involved PBP2a for ST228-t041-SCCmecI strains and all the other PBPs for ST22-t18014-SCCmecIV and ST22-t022-SCCmecIV clones. All isolates harbored antibiotic resistance and virulence genes with a clonal distribution. Conclusion: Our study demonstrated that ceftaroline non-susceptibile isolates belonged not only to ST228 strains (the most widespread clone in Italy) but also to ST22, confirming the increasing role of these clones in hospital infections.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Federica Salari
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | | | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Oriana Simonetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0715963494
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| |
Collapse
|
19
|
Kausar R, Khan AU, Jamil B, Shahzad Y, ul-Haq I. Development and pharmacological evaluation of vancomycin loaded chitosan films. Carbohydr Polym 2021; 256:117565. [DOI: 10.1016/j.carbpol.2020.117565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
|
20
|
Dey P, Puppala ER, Naidu VGM, Das G, Ramesh A. Multifunctional Synthetic Amphiphile for Niche Therapeutic Applications: Mitigation of MRSA Biofilms and Potential in Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:8830-8840. [PMID: 35019558 DOI: 10.1021/acsabm.0c01164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The relentless menace of implant- and skin wound-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA) biofilms demands the design of therapeutics that have an edge over conventional antibiotics. The present study reports the potential of pluri-active amphiphiles having a 12-carbon alkyl chain and a salicaldehyde head group (C1) or a napthaldehyde head group (C2) in mitigating wound site- and implant-associated MRSA biofilms and as a topical wound healing agent. The amphiphiles impeded S. aureus MRSA 100 biofilm formation on collagen both on extraneous addition and on impregnation into collagen and inflicted damage to MRSA cells embedded in collagen matrix infused with simulated wound fluid, with C1 being more potent than C2. Adhesion of the MRSA biofilm was hampered on C1-coated orthopedic stainless-steel wire, while eluates from C1-coated wires were non-toxic to HEK 293 cells, highlighting the prospect of C1 as an implant-associated antibacterial coating. Upon treatment with C1, expression of the adhesin fnbA gene was low in the MRSA biofilm and downregulated in non-adherent MRSA cells, while δ-toxin (hld) gene expression in the MRSA biofilm increased, implying that C1 hindered cell-cell adhesion and planktonic-biofilm transition and also reduced biofilm adhesion. Oral administration of C1 (300 and 1000 mg/kg) was non-toxic to BALB/c mice as evidenced in stable hematological parameters and normal histopathological features of vital organs. Topical application of C1 (50 and 100 mg/kg) on a skin excision wound in female BALB/c mice resulted in effective wound closure, fibrous tissue proliferation, and tissue reorganization. Confocal microscopy revealed that topical application of C1 in an ex vivo murine skin explant could alleviate invasion of skin by MRSA, while solution-based studies indicated subdued MRSA adhesion onto the skin explants. The pluri-active synthetic amphiphile C1 provides a framework for developing antibacterials that hold translational potential as a therapeutic for implant- and skin wound-associated MRSA infections.
Collapse
Affiliation(s)
- Poulomi Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781125, India
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781125, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
21
|
Baidamshina DR, Koroleva VA, Trizna EY, Pankova SM, Agafonova MN, Chirkova MN, Vasileva OS, Akhmetov N, Shubina VV, Porfiryev AG, Semenova EV, Sachenkov OA, Bogachev MI, Artyukhov VG, Baltina TV, Holyavka MG, Kayumov AR. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int J Biol Macromol 2020; 164:4205-4217. [DOI: 10.1016/j.ijbiomac.2020.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
22
|
Liu X, Wang Z, Feng X, Bai E, Xiong Y, Zhu X, Shen B, Duan Y, Huang Y. Platensimycin-Encapsulated Poly(lactic-co-glycolic acid) and Poly(amidoamine) Dendrimers Nanoparticles with Enhanced Anti-Staphylococcal Activity in Vivo. Bioconjug Chem 2020; 31:1425-1437. [DOI: 10.1021/acs.bioconjchem.0c00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
| | | | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China
| |
Collapse
|
23
|
New Evidence and Insights on Dalbavancin and Wound Healing in a Mouse Model of Skin Infection. Antimicrob Agents Chemother 2020; 64:AAC.02062-19. [PMID: 31932371 DOI: 10.1128/aac.02062-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Dalbavancin is an effective antibiotic that is widely used to treat skin infection. Our aim was to determine the effect of dalbavancin administration on wound healing compared to that of vancomycin and to elucidate if epidermal growth factor receptor (EGFR), matrix metalloproteinase 1 (MMP-1), MMP-9, and vascular endothelial growth factor (VEGF) could be involved in its therapeutic mechanism. A mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection was established. Mice were treated daily with vancomycin (10 mg/kg) and weekly with dalbavancin at day 1 (20 mg/kg) and day 8 (10 mg/kg). After 14 days, wounds were excised, and bacterial counts were performed. Wound healing was assessed by histological and immunohistochemical staining, followed by protein extraction and immunoblotting. Our microbiological results confirmed that both dalbavancin and vancomycin are effective in reducing the bacterial load in wounds. The dalbavancin group showed a strong effect compared with infected untreated animals and the vancomycin-treated group. The wounds treated with dalbavancin showed robust epidermal coverage with reconstitution of the regular and keratinized epidermal lining and well-organized granulation tissue with numerous blood vessels, although slightly less than that in the uninfected group. While in the vancomycin-treated group the epithelium appeared, in general, still hypertrophic, the granulation tissue appeared even less organized. We observed elevated EGFR and VEGF expression in both treated groups, although it was higher in dalbavancin-treated mice. MMP-1 and MMP-9 were decreased in uninfected tissue and in both treated tissues compared with untreated infected wounds. This study showed faster healing with dalbavancin treatment that might be associated with higher EGFR and VEGF levels.
Collapse
|
24
|
Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep 2020; 10:1032. [PMID: 31974417 PMCID: PMC6978467 DOI: 10.1038/s41598-020-57559-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/06/2020] [Indexed: 11/14/2022] Open
Abstract
We analyzed the potential antibacterial effects of two different PdB against methicillin-resistant S. aureus and P. aeruginosa. The third-degree burn wound healing effects of PdB was also studied. Blood samples were obtained from 10 healthy volunteers and biological assays of the PdB were performed and the antimicrobial activity against MRSA and P. aeruginosa was determined using disk diffusion (DD), broth microdilution (BMD), and time-kill assay methods. 48 Wistar albino rats were burned and infected with MRSA. Two groups were injected PdB, the control groups were treated with plasma and received no treatment respectively. In the next step, the rats were euthanized and skin biopsies were collected and histopathologic changes were examined. The results of DD and BMD showed that both PdB performed very well on MRSA, whereas P. aeruginosa was only inhibited by F-PdB and was less susceptible than MRSA to PdBs. The time-kill assay also showed that F-PdB has an antibacterial effect at 4 hours for two strains. Histopathological studies showed that the treated groups had less inflammatory cells and necrotic tissues. Our data suggest that PdB may possess a clinical utility as a novel topical antimicrobial and wound healing agent for infected burn wounds.
Collapse
|
25
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Deng Y, Weng X, Li Y, Su M, Wen Z, Ji X, Ren N, Shen B, Duan Y, Huang Y. Late-Stage Functionalization of Platensimycin Leading to Multiple Analogues with Improved Antibacterial Activity in Vitro and in Vivo. J Med Chem 2019; 62:6682-6693. [PMID: 31265289 PMCID: PMC6755679 DOI: 10.1021/acs.jmedchem.9b00616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial fatty acid synthases are promising antibacterial targets against multidrug-resistant pathogens. Platensimycin (PTM) is a potent FabB/FabF inhibitor, while its poor pharmacokinetics hampers the clinical development. In this study, a focused library of PTM derivatives was prepared through thiolysis of PTM oxirane (1), followed by various C-C cross-coupling reactions in high yields. Antibacterial screening of these compounds in vitro yielded multiple hits with improved anti-Staphylococcus activities over PTM. Among them, compounds A1, A3, A17, and A28 exhibited improved antibacterial activities over PTM against methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritonitis model. Compound A28 was further shown to be effective against MRSA infection in a mouse wound model, in comparison to mupirocin. Therefore, the facile preparation and screening of these PTM derivatives, together with their potent antibacterial activities in vivo, suggest a promising strategy to improve the antibacterial activity and pharmacokinetic properties of PTM.
Collapse
Affiliation(s)
- Youchao Deng
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Xiang Weng
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Yuling Li
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Meng Su
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Xinxin Ji
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Nan Ren
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | | | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410011 , China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| |
Collapse
|
27
|
Su M, Qiu L, Deng Y, Ruiz CH, Rudolf JD, Dong LB, Feng X, Cameron MD, Shen B, Duan Y, Huang Y. Evaluation of Platensimycin and Platensimycin-Inspired Thioether Analogues against Methicillin-Resistant Staphylococcus aureus in Topical and Systemic Infection Mouse Models. Mol Pharm 2019; 16:3065-3071. [PMID: 31244223 PMCID: PMC6763203 DOI: 10.1021/acs.molpharmaceut.9b00293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens causing hospital-acquired and community-acquired infections. Methicillin-resistant S. aureus (MRSA)-formed biofilms in wounds are difficult to treat with conventional antibiotics. By targeting FabB/FabF of bacterial fatty acid synthases, platensimycin (PTM) was discovered to act as a promising natural antibiotic against MRSA infections. In this study, PTM and its previously synthesized sulfur-Michael derivative PTM-2t could reduce over 95% biofilm formation by S. aureus ATCC 29213 when used at 2 μg/mL in vitro. Topical application of ointments containing PTM or PTM-2t (2 × 4 mg/day/mouse) was successfully used to treat MRSA infections in a BABL/c mouse burn wound model. As a potential prodrug lead, PTM-2t showed improved in vivo efficacy in a mouse peritonitis model compared with PTM. Our study suggests that PTM and its analogue may be used topically or locally to treat bacterial infections. In addition, the use of prodrug strategies might be instrumental to improve the poor pharmacokinetic properties of PTM.
Collapse
Affiliation(s)
- Meng Su
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Lin Qiu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Youchao Deng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Claudia H. Ruiz
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
28
|
Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv Transl Res 2019; 9:748-763. [DOI: 10.1007/s13346-019-00616-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Zhang Y, Xu J, Chai Y, Zhang J, Hu Z, Zhou H. Nano-silver modified porcine small intestinal submucosa for the treatment of infected partial-thickness burn wounds. Burns 2018; 45:950-956. [PMID: 30595540 DOI: 10.1016/j.burns.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/25/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM Silver has been widely used as a topical antimicrobial agent in burn wound care. In a previous study, we demonstrated the introduction of nano-silver particles to porcine small intestinal submucosa (NS-PSIS) led to significant enhancement in antibacterial property in repairing contaminated abdominal defect. In this study, we explored the efficacy of NS-PSIS in the treatment of Pseudomonas aeruginosa-infected partial-thickness burn wounds. METHODS 48 male Sprague-Dawley rats were divided into four groups of equal number. Standardized and reproducible Pseudomonas aeruginosa-infected partial-thickness thermal burns wound model were created using these rats. NS-PSIS, PSIS (porcine small intestinal submucosa) or lipido-colloid dressingss (Urgotul™) were tested for 14days to assess their ability to heal the rats' burn wounds. Control group was without any treatment after the establishment of infected burn-wound. The wound contraction rate, animal body weight change, histological examination, and the quantification of IL-6 and C-reactive protein (CRP) were measured to evaluate the healing effects. RESULTS NS-PSIS significantly promoted wound healing and recovered the normal growth of rats. There were significantly lower expression levels of pro-inflammatory cytokine (IL-6) and CRP in NS-PSIS group as compared with the PSIS or Urgotul group in the treatment of infected partial-thickness burn wounds. Histological exams revealed significant less inflammatory cells infiltrating, more re-epithelization and neovascularization in NS-PSIS group. There were also less inflammatory cells infiltrations in the major organs in NS-PSIS group. CONCLUSIONS Nano-silver modified porcine small intestinal submucosa (NS-PSIS) can be used as a biological derivative dressing for the treatment of infected partial-thickness burn wounds.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No 528, Zhangheng Road, Shanghai, China
| | - Jian Xu
- Department of Surgery, Shanghai Baoshan District Combining Traditional Chinese and Western Medicine Hospital, No 181, Youyi Road, Shanghai, China
| | - Yunsheng Chai
- Division of Colorectal Surgery, Changzheng Hospital, Second Military Medical University, No 415, Fengyang Road, Shanghai, China
| | - Jian Zhang
- Division of Colorectal Surgery, Changzheng Hospital, Second Military Medical University, No 415, Fengyang Road, Shanghai, China
| | - Zhiqian Hu
- Division of Colorectal Surgery, Changzheng Hospital, Second Military Medical University, No 415, Fengyang Road, Shanghai, China.
| | - Haiyang Zhou
- Division of Colorectal Surgery, Changzheng Hospital, Second Military Medical University, No 415, Fengyang Road, Shanghai, China.
| |
Collapse
|
30
|
Ogunniyi AD, Kopecki Z, Hickey EE, Khazandi M, Peel E, Belov K, Boileau A, Garg S, Venter H, Chan WY, Hill PB, Page SW, Cowin AJ, Trott DJ. Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLoS One 2018; 13:e0200195. [PMID: 30011298 PMCID: PMC6047774 DOI: 10.1371/journal.pone.0200195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022] Open
Abstract
There are very few articles in the literature describing continuous models of bacterial infections that mimic disease pathogenesis in humans and animals without using separate cohorts of animals at each stage of disease. In this work, we developed bioluminescent mouse models of partial-thickness scald wound infection and sepsis that mimic disease pathogenesis in humans and animals using a recombinant luciferase-expressing Staphylococcus aureus strain (Xen29). Two days post-scald wound infection, mice were treated twice daily with a 2% topical mupirocin ointment for 7 days. For sepsis experiments, mice were treated intraperitoneally with 6 mg/kg daptomycin 2 h and 6 h post-infection and time to moribund monitored for 72 h. Consistent bacterial burden data were obtained from individual mice by regular photon intensity quantification on a Xenogen IVIS Lumina XRMS Series III biophotonic imaging system, with concomitant significant reduction in photon intensities in drug-treated mice. Post-mortem histopathological examination of wounds and bacterial counts in blood correlated closely with disease severity and total flux obtained from Xen29. The bioluminescent murine models provide a refinement to existing techniques of multiple bacterial enumeration during disease pathogenesis and promote animal usage reduction. The models also provide an efficient and information-rich platform for preclinical efficacy evaluation of new drug classes for treating acute and chronic human and animal bacterial infections.
Collapse
Affiliation(s)
- Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
- * E-mail:
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Elizabeth E. Hickey
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra Boileau
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Wei Yee Chan
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Peter B. Hill
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Stephen W. Page
- Luoda Pharma, Caringbah, New South Wales, Australia
- Neoculi Pty Ltd, Burwood, Victoria, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|