1
|
Zheng Z, Cheng Q, Ye L, Xu Y, Chen S. Characterization of VIM-71, a novel VIM-type metallo-β-lactamase variant encoded by an integrative and conjugative element recovered from a Vibrio alginolyticus strain in China. Microbiol Res 2024; 278:127532. [PMID: 37879253 DOI: 10.1016/j.micres.2023.127532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
A novel VIM-type metallo-β-lactamase variant, VIM-71, which is encoded by a multidrug-resistant Vibrio alginolyticus strain recovered from a shrimp sample in China, was identified. Compared to VIM-1, VIM-71 differs in 22 amino acid positions based on the primary protein sequence and confers a similar resistance profile to penicillins, but the level of resistance to carbapenems encoded by this enzyme was lower than that of VIM-1. The blaVIM-71 gene was found located in an integrative and conjugative element of the SXT/R391 family in the chromosome. These findings implied that genetic elements that encode clinically important carbapenemases continue to evolve in Vibrio spp.
Collapse
Affiliation(s)
- Zhiwei Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qipeng Cheng
- College of Life Sciences, Anhui Normal University, Wuhu, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yating Xu
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang LW. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Front Microbiol 2022; 12:752535. [PMID: 35095785 PMCID: PMC8792953 DOI: 10.3389/fmicb.2021.752535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.
Collapse
Affiliation(s)
- Yeongjin Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yeseul Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yongdae Kwon
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sumin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
- *Correspondence: Sang Hee Lee,
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
- Lin-Woo Kang,
| |
Collapse
|
4
|
Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active Site Glutamic Acid. Antimicrob Agents Chemother 2021; 65:e0093621. [PMID: 34310207 DOI: 10.1128/aac.00936-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural diversity in metallo-β-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum, and kinetic analyses demonstrate that although it is active against a wide range of antibiotics its efficiency is lower than that of other B3 MBLs, but with improved efficiency towards cephalosporins relative to other β-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggests scope for increased MBL-mediated β-lactam resistance. It is thus relevant to include SIE-1 into MBL inhibitor design studies to widen the therapeutic scope of much needed anti-resistance drugs.
Collapse
|
5
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
6
|
Selleck C, Pedroso MM, Wilson L, Krco S, Knaven EG, Miraula M, Mitić N, Larrabee JA, Brück T, Clark A, Guddat LW, Schenk G. Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Sci Rep 2020; 10:12882. [PMID: 32732933 PMCID: PMC7392888 DOI: 10.1038/s41598-020-68612-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022] Open
Abstract
Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding β-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used β-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent β-lactamases (MBLs) from the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans. Previous studies have demonstrated that their β-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.
Collapse
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Esmée Gianna Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Manfredi Miraula
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching, Germany
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
7
|
Kim Y, Maltseva N, Wilamowski M, Tesar C, Endres M, Joachimiak A. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity. Protein Sci 2019; 29:723-743. [PMID: 31846104 PMCID: PMC7020990 DOI: 10.1002/pro.3804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
Emergence of Enterobacteriaceae harboring metallo‐β‐lactamases (MBL) has raised global threats due to their broad antibiotic resistance profiles and the lack of effective inhibitors against them. We have been studied one of the emerging environmental MBL, the L1 from Stenotrophomonas maltophilia K279a. We determined several crystal structures of L1 complexes with three different classes of β‐lactam antibiotics (penicillin G, moxalactam, meropenem, and imipenem), with the inhibitor captopril and different metal ions (Zn+2, Cd+2, and Cu+2). All hydrolyzed antibiotics and the inhibitor were found binding to two Zn+2 ions mainly through the opened lactam ring and some hydrophobic interactions with the binding pocket atoms. Without a metal ion, the active site is very similarly maintained as that of the native form with two Zn+2 ions, however, the protein does not bind the substrate moxalactam. When two Zn+2 ions were replaced with other metal ions, the same di‐metal scaffold was maintained and the added moxalactam was found hydrolyzed in the active site. Differential scanning fluorimetry and isothermal titration calorimetry were used to study thermodynamic properties of L1 MBL compared with New Deli Metallo‐β‐lactamase‐1 (NDM‐1). Both enzymes are significantly stabilized by Zn+2 and other divalent metals but showed different dependency. These studies also suggest that moxalactam and its hydrolyzed form may bind and dissociate with different kinetic modes with or without Zn+2 for each of L1 and NDM‐1. Our analysis implicates metal ions, in forming a distinct di‐metal scaffold, which is central to the enzyme stability, promiscuous substrate binding and versatile catalytic activity. Statement The L1 metallo‐β‐lactamase from an environmental multidrug‐resistant opportunistic pathogen Stenotrophomonas maltophilia K279a has been studied by determining 3D structures of L1 enzyme in the complexes with several β‐lactam antibiotics and different divalent metals and characterizing its biochemical and ligand binding properties. We found that the two‐metal center in the active site is critical in the enzymatic process including antibiotics recognition and binding, which explains the enzyme's activity toward diverse antibiotic substrates. This study provides the critical information for understanding the ligand recognition and for advanced drug development.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois
| | - Christine Tesar
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| |
Collapse
|
8
|
Zhang L, Calvo-Bado L, Murray AK, Amos GCA, Hawkey PM, Wellington EM, Gaze WH. Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. ENVIRONMENT INTERNATIONAL 2019; 132:105120. [PMID: 31487611 DOI: 10.1016/j.envint.2019.105120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/10/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of evidence indicates that anthropogenic activities can result in increased prevalence of antimicrobial resistance genes (ARGs) in bacteria in natural environments. Many environmental studies have used next-generation sequencing methods to sequence the metagenome. However, this approach is limited as it does not identify divergent uncharacterized genes or demonstrate activity. Characterization of ARGs in environmental metagenomes is important for understanding the evolution and dissemination of resistance, as there are several examples of clinically important resistance genes originating in environmental species. The current study employed a functional metagenomic approach to detect genes encoding resistance to extended spectrum β-lactams (ESBLs) and carbapenems in sewage sludge, sludge amended soil, quaternary ammonium compound (QAC) impacted reed bed sediment and less impacted long term curated grassland soil. ESBL and carbapenemase genes were detected in sewage sludge, sludge amended soils and QAC impacted soil with varying degrees of homology to clinically important β-lactamase genes. The flanking regions were sequenced to identify potential host background and genetic context. Novel β-lactamase genes were found in Gram negative bacteria, with one gene adjacent to an insertion sequence ISPme1, suggesting a recent mobilization event and/ the potential for future transfer. Sewage sludge and quaternary ammonium compound (QAC) rich industrial effluent appear to disseminate and/or select for ESBL genes which were not detected in long term curated grassland soils. This work confirms the natural environment as a reservoir of novel and mobilizable resistance genes, which may pose a threat to human and animal health.
Collapse
Affiliation(s)
- L Zhang
- School of Life Sciences, University of Warwick, Coventry, UK; European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, Cornwall, UK.
| | - L Calvo-Bado
- School of Life Sciences, University of Warwick, Coventry, UK; Micropathology Ltd, Venture Centre, Sir William Lyons Road, Coventry, UK
| | - A K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, Cornwall, UK
| | - G C A Amos
- School of Life Sciences, University of Warwick, Coventry, UK; National Institute for Biological Standards and Control
| | - P M Hawkey
- University of Birmingham, Division of Immunity & Infection, Birmingham, UK
| | - E M Wellington
- School of Life Sciences, University of Warwick, Coventry, UK
| | - W H Gaze
- School of Life Sciences, University of Warwick, Coventry, UK; European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, Cornwall, UK.
| |
Collapse
|
9
|
Yu Y, Wang X, Gao Y, Yang Y, Sun L, Wang G, Deng X, Niu X. Molecular modeling and QM/MM calculation clarify the catalytic mechanism of β-lactamase N1. J Mol Model 2019; 25:118. [PMID: 30982150 DOI: 10.1007/s00894-019-4001-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
Abstract
The treatment of bacterial infections is currently threatened by the emergence of pathogenic bacteria producing β-lactamase, which catalyzes the hydrolysis of β-lactams. Although the hydrolysis of the substrate nitrocefin by a metallo-β-lactamase, namely β-lactamase N1 from USA300 (a typical methicillin-resistant Staphylococcus aureus), has previously been reported in the literature, its mechanism remains elusive. Here, we show that molecular modeling and quantum-mechanical/molecular mechanics (QM/MM) calculations describing the complex of β-lactamase N1 with nitrocefin (the substrate of β-lactamase N1) can predict the catalytic mechanism of nitrocefin hydrolysis by β-lactamase N1. Molecular dynamics simulation shows that the catalytic reaction begins with hydrogen bond formation between Gln171 and a water molecule, which is thereby captured for nitrocefin hydrolysis by β-lactamase N1. In addition, the carboxyl group coordinates Zn2 in a chelating fashion. The binding energy decompositions suggest that Phe169 anchors nitrocefin by π-stacking interactions between the benzene rings. Specifically, Phe169 and Zn2 position the nitrocefin in specific orientations. The active site of β-lactamase N1 contains two residues (Gln171 and Phe169) that we expected to be crucial for guiding the nitrocefin hydrolysis reaction. Compelling evidence is provided that the mutants F169A and Q171A show lower enzymatic activity than the wild-type protein. On the basis of the QM/MM calculations, we propose that nitrocefin hydrolysis is initiated by the interaction between the oxygen atom of water and the C18 atom of nitrocefin, leading to the opening of the four-membered ring of nitrocefin and the formation of a substrate intermediate. In the next step, a hydrogen atom transfers from the nitrogen atom to the C11 atom of nitrocefin, resulting in the stable product.
Collapse
Affiliation(s)
- Yiding Yu
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Xiyan Wang
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Yawen Gao
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Yanan Yang
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Lin Sun
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Guizhen Wang
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, 130062, China.
| | - Xiaodi Niu
- Department of Food Quality and Safety, Jilin University, Xi'an Road 5333, Changchun, 130062, China.
| |
Collapse
|
10
|
Draft genome sequence of a metallo-β-lactamase (blaAIM-1)-producing Klebsiella pneumoniae ST1916 isolated from a patient with chronic diarrhoea. J Glob Antimicrob Resist 2019; 16:165-167. [DOI: 10.1016/j.jgar.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 11/19/2022] Open
|
11
|
Park KS, Hong MK, Jeon JW, Kim JH, Jeon JH, Lee JH, Kim TY, Karim AM, Malik SK, Kang LW, Lee SH. The novel metallo-β-lactamase PNGM-1 from a deep-sea sediment metagenome: crystallization and X-ray crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:644-649. [PMID: 30279316 DOI: 10.1107/s2053230x18012268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022]
Abstract
Metallo-β-lactamases (MBLs) are present in major Gram-negative pathogens and environmental species, and pose great health risks because of their ability to hydrolyze the β-lactam rings of antibiotics such as carbapenems. PNGM-1 was the first reported case of a subclass B3 MBL protein that was identified from a metagenomic library from deep-sea sediments that predate the antibiotic era. In this study, PNGM-1 was overexpressed, purified and crystallized. Crystals of native and selenomethionine-substituted PNGM-1 diffracted to 2.10 and 2.30 Å resolution, respectively. Both the native and the selenomethionine-labelled PNGM-1 crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 122, b = 83, c = 163 Å, β = 110°. Matthews coefficient (VM) calculations suggested the presence of 6-10 molecules in the asymmetric unit, corresponding to a solvent content of ∼31-58%. Structure determination is currently in progress.
Collapse
Affiliation(s)
- Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Myoung Ki Hong
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Wan Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Ji Hwan Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Tae Yeong Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Sumera Kausar Malik
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin Woo Kang
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| |
Collapse
|
12
|
Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol 2018; 84:e00698-18. [PMID: 30006399 PMCID: PMC6121990 DOI: 10.1128/aem.00698-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The worldwide proliferation of life-threatening metallo-β-lactamase (MBL)-producing Gram-negative bacteria is a serious concern to public health. MBLs are compromising the therapeutic efficacies of β-lactams, particularly carbapenems, which are last-resort antibiotics indicated for various multidrug-resistant bacterial infections. Inhibition of enzymes mediating antibiotic resistance in bacteria is one of the major promising means for overcoming bacterial resistance. Compounds having potential MBL-inhibitory activity have been reported, but none are currently under clinical trials. The need for developing safe and efficient MBL inhibitors (MBLIs) is obvious, particularly with the continuous spread of MBLs worldwide. In this review, the emergence and escalation of MBLs in Gram-negative bacteria are discussed. The relationships between different class B β-lactamases identified up to 2017 are represented by a phylogenetic tree and summarized. In addition, approved and/or clinical-phase serine β-lactamase inhibitors are recapitulated to reflect the successful advances made in developing class A β-lactamase inhibitors. Reported MBLIs, their inhibitory properties, and their purported modes of inhibition are delineated. Insights into structural variations of MBLs and the challenges involved in developing potent MBLIs are also elucidated and discussed. Currently, natural products and MBL-resistant β-lactam analogues are the most promising agents that can become clinically efficient MBLIs. A deeper comprehension of the mechanisms of action and activity spectra of the various MBLs and their inhibitors will serve as a bedrock for further investigations that can result in clinically useful MBLIs to curb this global menace.
Collapse
Affiliation(s)
- Anou M Somboro
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Park KS, Kim TY, Kim JH, Lee JH, Jeon JH, Karim AM, Malik SK, Lee SH. PNGM-1, a novel subclass B3 metallo-β-lactamase from a deep-sea sediment metagenome. J Glob Antimicrob Resist 2018; 14:302-305. [DOI: 10.1016/j.jgar.2018.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
|
14
|
Di Pisa F, Pozzi C, Benvenuti M, Docquier JD, De Luca F, Mangani S. Boric acid and acetate anion binding to subclass B3 metallo-β-lactamase BJP-1 provides clues for mechanism of action and inhibitor design. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|