1
|
Chen RH, Nguyen TA, Kim HY, Stocker SL, Alffenaar JWC. Saliva-based point-of-care assay to measure the concentration of pyrazinamide using a mobile UV spectrophotometer. J Antimicrob Chemother 2025; 80:254-261. [PMID: 39508356 PMCID: PMC11695902 DOI: 10.1093/jac/dkae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Pyrazinamide, one of the first-line antituberculosis drugs, displays variability in drug exposure that is associated with treatment response. A simple, low-cost assay may be helpful to optimize treatment. This study aimed to develop and validate a point-of-care assay to quantify the concentration of pyrazinamide in saliva. METHODS All measurements were conducted using the nano-volume drop function on the mobile ultraviolet (UV) spectrophotometer (NP80, Implen, Germany). Assay development involved applying second derivative spectroscopy in combination with the Savitzky-Golay filter between wavelengths of 200-300 nm to increase spectral resolution. Assay validation included assessing selectivity, linearity, accuracy, precision, carry-over and matrix effects. Specificity was also analysed by evaluating the impact of co-administered medications on pyrazinamide results. Sample stability was measured at various temperatures up to 40°C. RESULTS The calibration curve (7.5-200 mg/L) was linear (R2 = 0.9991). The overall accuracy (bias%) and precision (CV%) ranged from -0.66% to 5.15%, and 0.56% to 4.95%, respectively. Carry-over and matrix effects were both acceptable with a bias% of <±4% and CV% of <7.5%. Commonly co-administered medications displayed negligible interferences. Levofloxacin displayed analytical interference (bias% = -10.21%) at pyrazinamide concentrations < 25 mg/L, but this will have little clinical implications. Pyrazinamide was considered stable in saliva after 7 days in all storage conditions with a CV% of <6.5% and bias% of <±10.5% for both low- and high-quality control concentrations. CONCLUSIONS A saliva-based assay for pyrazinamide has been successfully developed and validated using the mobile UV spectrophotometer.
Collapse
Affiliation(s)
- Ricky Hao Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Thi Anh Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
| | - Sophie L Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- St Vincent’s Clinical Campus, School of Clinical Medicine, The University of New South Wales, Darlinghurst, NSW, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Pardos SL, Hope W, Kotsaki A, Das S, Giamarellos-Bourboulis EJ, Kontopoulouk T, Akinosoglou K, O'Hare M, Attwood MLG, Bowker KE, Noel AR, Lovering AM, Bayliss MAJ, Evans RN, MacGowan AP. Population pharmacokinetics/pharmacodynamics of minocycline plus rifampicin in patients with complicated skin and skin structure infections caused by MRSA. J Antimicrob Chemother 2024; 79:3303-3312. [PMID: 39412246 DOI: 10.1093/jac/dkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/24/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The population pharmacokinetics/pharmacodynamics (PK/PD) of minocycline, rifampicin and linezolid in patients with complicated skin and soft tissue infections (cSSTIs) caused by MRSA are described. METHODS Samples were collected in a Phase 4 study of oral minocycline plus rifampicin versus linezolid showing minocycline plus rifampicin to be non-inferior to linezolid. Antibiotics were assayed by HPLC or LC-MS, and a population PK model was developed using Pmetrics. The association between PK/PD indices and patient outcomes was explored. RESULTS A three-compartment model (with an absorption compartment) with first-order input and elimination best described the data for the three drugs. No covariates were included in the final model. The population median values (95% credibility limits) of the clearance and volume of distribution were 7.412 L/h (5.121-8.361) and 14.155 L (6.799-33.901) for minocycline, 5.683 L/h (3.703-7.726) and 7.736 L (6.031-8.948) for rifampicin, and 1.970 L/h (1.326-2.499) and 20.169 L (12.857-32.629) for linezolid, respectively. Maximum a posteriori probability-Bayesian estimation plots of observed versus predicted had a slope of 0.999 r20.967 for minocycline, slope 0.998 r20.769 for rifampicin and slope 0.998 r20.895 for linezolid. PK/PD indices were not related to clinical outcome. Taking a translational minocycline fAUC24h/MIC target of >0.5 for minocycline in the presence of rifampicin, 96% (49/51) of patients reached the target. CONCLUSIONS Population PK models of minocycline, rifampicin and linezolid were developed in patients with MRSA cSSTI and almost all patients reached the predefined PD index targets. As a result, neither AUC, MIC nor the AUC/MIC ratio could be related to clinical outcome.
Collapse
Affiliation(s)
| | - William Hope
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Antigone Kotsaki
- 4th Department of Internal Medicine, National and Kapodistrain University of Athens Medical School, Athens, Greece
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | | | - Theano Kontopoulouk
- 1st Department of Internal Medicine, Evangelismos General Hospital, Athens, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine, University of Patrea Medical School, Rion, Greece
| | - Miriam O'Hare
- Micron Research Ltd, 109B Lancaster Way, Ely CB6 3 NX, UK
| | - Marie L G Attwood
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Karen E Bowker
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Alan R Noel
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Andrew M Lovering
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark A J Bayliss
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Rebecca N Evans
- Bristol Trials Centre, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Clifton, Bristol BS8 1NU, UK
| | - Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
3
|
Petermann YJ, Said B, Cathignol AE, Sariko ML, Thoma Y, Mpagama SG, Csajka C, Guidi M. State of the art of real-life concentration monitoring of rifampicin and its implementation contextualized in resource-limited settings: the Tanzanian case. JAC Antimicrob Resist 2024; 6:dlae182. [PMID: 39544428 PMCID: PMC11561919 DOI: 10.1093/jacamr/dlae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The unique medical and socio-economic situation in each country affected by TB creates different epidemiological contexts, thus providing exploitable loopholes for the spread of the disease. Country-specific factors such as comorbidities, health insurance, social stigma or the rigidity of the health system complicate the management of TB and the overall outcome of each patient. First-line TB drugs are administered in a standardized manner, regardless of patient characteristics other than weight. This approach does not consider patient-specific conditions such as HIV infection, diabetes mellitus and malnutrition, which can affect the pharmacokinetics of TB drugs, their overall exposure and response to treatment. Therefore, the 'one-size-fits-all' approach is suboptimal for dealing with the underlying inter-subject variability in the pharmacokinetics of anti-TB drugs, further complicated by the recent increased dosing regimen of rifampicin strategies, calling for a patient-specific methodology. In this context, therapeutic drug monitoring (TDM), which allows personalized drug dosing based on blood drug concentrations, may be a legitimate solution to address treatment failure. This review focuses on rifampicin, a critical anti-TB drug, and examines its suitability for TDM and the socio-economic factors that may influence the implementation of TDM in clinical practice in resource-limited settings, illustrated by Tanzania, thereby contributing to the advancement of personalized TB treatment.
Collapse
Affiliation(s)
- Yuan J Petermann
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bibie Said
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Annie E Cathignol
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Margaretha L Sariko
- Kilimanjaro Clinical Research Institute Kilimanjaro, Moshi, United Republic of Tanzania
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva & Lausanne, Switzerland
| | - Monia Guidi
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Hoa PQ, Kim HK, Jang TW, Seo H, Oh JY, Kim HC, Shin AY, Min J, Jayanti RP, Hung TM, Anh NK, Ahn S, Long NP, Cho YS, Shin JG. Population pharmacokinetic model of rifampicin for personalized tuberculosis pharmacotherapy: Effects of SLCO1B1 polymorphisms on drug exposure. Int J Antimicrob Agents 2024; 63:107034. [PMID: 37977236 DOI: 10.1016/j.ijantimicag.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Rifampicin (RIF) exhibits high pharmacokinetic (PK) variability among individuals; a low plasma concentration might result in unfavorable treatment outcomes and drug resistance. This study evaluated the contributions of non- and genetic factors to the interindividual variability of RIF exposure, then suggested initial doses for patients with different weight bands. METHODS This multicenter prospective cohort study in Korea analyzed demographic and clinical data, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) genotypes, and RIF concentrations. Population PK modeling and simulations were conducted using nonlinear mixed-effect modeling. RESULTS In total, 879 tuberculosis (TB) patients were divided into a training dataset (510 patients) and a test dataset (359 patients). A one-compartment model with allometric scaling for effect of body size best described the RIF PKs. The apparent clearance (CL/F) was 16.6% higher among patients in the SLCO1B1 rs4149056 wild-type group than among patients in variant group, significantly decreasing RIF exposure in the wild-type group. The developed model showed better predictive performance compared with previously reported models. We also suggested that patients with body weights of <40 kg, 40-55 kg, 55-70 kg, and >70 kg patients receive RIF doses of 450, 600, 750, and 1050 mg/day, respectively. CONCLUSIONS Total body weight and SLCO1B1 rs4149056 genotypes were the most significant covariates that affected RIF CL/F variability in Korean TB patients. We suggest initial doses of RIF based on World Health Organization weight-band classifications. The model may be implemented in treatment monitoring for TB patients.
Collapse
Affiliation(s)
- Pham Quang Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyun Kuk Kim
- Department of Internal Medicine, Division of Pulmonology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Tae Won Jang
- Department of Internal Medicine, Pulmonary Division, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, Division of Pulmonary Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jee Youn Oh
- Department of Internal Medicine, Division of Pulmonology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, Republic of Korea
| | - Ah Young Shin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinsoo Min
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Tran Minh Hung
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Ky Anh
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Sangzin Ahn
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea.
| |
Collapse
|
6
|
Xavier RM, Sharumathi SM, Kanniyappan Parthasarathy A, Mani D, Mohanasundaram T. Limited sampling strategies for therapeutic drug monitoring of anti-tuberculosis medications: A systematic review of their feasibility and clinical utility. Tuberculosis (Edinb) 2023; 141:102367. [PMID: 37429151 DOI: 10.1016/j.tube.2023.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Therapeutic drug monitoring (TDM) is recommended for medications with high inter-individual variability, narrow therapeutic index drugs, possible drug-drug interactions, drug toxicity, and subtherapeutic concentrations, as well as to assess noncompliance. The area under the plasma concentration-time curve (AUC) is a significant pharmacokinetic parameter since it calculates the drug's total systematic exposure in the body. However, multiple blood samples from the patient are required to calculate the area under the curve, which is inconvenient for both the patient and the healthcare professional. To alleviate the issue, the limited sampling strategy (LSS) was devised, in which sampling is minimized while obtaining complete and precise findings to anticipate the area under the curve. One can reduce costs, labor, and discomfort for patients and healthcare workers by applying this limited sampling strategy. This article examines a systematic evaluation of all the limited sampling done in anti-tuberculosis (anti-TB) medications resulting from the literature search of several research papers. This article also briefly describes the two methodologies: Multiple regression analysis (MRA) and the Bayesian approach used to develop a limited sampling strategy model. Anti-TB medications have been found to have considerable inter-individual variability, and isoniazid has a narrow therapeutic index, both of which are criteria for therapeutic drug monitoring. To avoid multi-drug resistance and therapy failure, it is proposed that limited sampling strategy-based therapeutic drug monitoring of anti-TB medications be undertaken to generate an individualized dose regimen, particularly for individuals at high risk of treatment failure or delayed response.
Collapse
Affiliation(s)
- Rinu Mary Xavier
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - S M Sharumathi
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Arun Kanniyappan Parthasarathy
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Deepalakshmi Mani
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| | - Tharani Mohanasundaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India.
| |
Collapse
|
7
|
Ghimire S, Molinas G, Battaglia A, Martinez N, Gómez Paciello L, Aguirre S, Alffenaar JWC, Sturkenboom MGG, Magis-Escurra C. Dried Blood Spot Sampling to Assess Rifampicin Exposure and Treatment Outcomes among Native and Non-Native Tuberculosis Patients in Paraguay: An Exploratory Study. Pharmaceutics 2023; 15:pharmaceutics15041089. [PMID: 37111575 PMCID: PMC10146788 DOI: 10.3390/pharmaceutics15041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
The aim of this study was to evaluate the difference in drug exposure of rifampicin in native versus non-native Paraguayan populations using dried blood spots (DBS) samples collected utilizing a limited sampling strategy. This was a prospective pharmacokinetic study that enrolled hospitalized tuberculosis (TB) patients from both native and non-native populations receiving oral rifampicin 10 mg/kg once-daily dosing. Steady-state DBS samples were collected at 2, 4, and 6 h after intake of rifampicin. The area under the time concentration curve 0–24 h (AUC0–24) was calculated using a Bayesian population PK model. Rifampicin AUC0–24 < 38.7 mg*h/L was considered as low. The probability of target attainment (PTA) was calculated using AUC0–24/MIC > 271 as a target and estimated MIC values of 0.125 and 0.25 mg/L. In total, 50 patients were included. Native patients (n = 30) showed comparable drug exposure to the non-natives (n = 20), median AUC0–24 24.7 (17.1–29.5 IQR) and 21.6 (15.0–35.4 IQR) mg*h/L (p = 0.66), respectively. Among total patients, only 16% (n = 8) had a rifampicin AUC0–24 > 38.7 mg*h/L. Furthermore, PTA analysis showed that only 12 (24%) of the patients met a target AUC0–24 /MIC ≥ 271, assuming an MIC of 0.125 mg/L, which plummeted to 0% at a wild-type MIC of 0.25 mg/L. We successfully used DBS and limited sampling for the AUC0–24 estimation of rifampicin. Currently, our group, the EUSAT-RCS consortium, is preparing a prospective multinational, multicenter phase IIb clinical trial evaluating the safety and efficacy of high-dose rifampicin (35 mg/kg) in adult subjects using the DBS technique for AUC0–24 estimation.
Collapse
Affiliation(s)
- Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
- Correspondence:
| | - Gladys Molinas
- Instituto Nacional de Enfermedades Respiratorias y del Ambiente “Juan Max Boettner”, Asuncion 1430, Paraguay
| | - Arturo Battaglia
- Instituto Nacional de Enfermedades Respiratorias y del Ambiente “Juan Max Boettner”, Asuncion 1430, Paraguay
| | - Nilza Martinez
- Instituto Nacional de Enfermedades Respiratorias y del Ambiente “Juan Max Boettner”, Asuncion 1430, Paraguay
| | - Luis Gómez Paciello
- Instituto Nacional de Enfermedades Respiratorias y del Ambiente “Juan Max Boettner”, Asuncion 1430, Paraguay
| | - Sarita Aguirre
- Programa Nacional de Control de la Tuberculosis, Asuncion 1430, Paraguay
| | - Jan-Willem C. Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Westhead Hospital, West Mead, NSW 2145, Australia
- Sydney Institute of Infectious Diseases, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Marieke G. G. Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud University Medical Center-TB Expert Center Dekkerswald, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Espinosa-Pereiro J, Ghimire S, Sturkenboom MGG, Alffenaar JWC, Tavares M, Aguirre S, Battaglia A, Molinas G, Tórtola T, Akkerman OW, Sanchez-Montalva A, Magis-Escurra C. Safety of Rifampicin at High Dose for Difficult-to-Treat Tuberculosis: Protocol for RIAlta Phase 2b/c Trial. Pharmaceutics 2022; 15:9. [PMID: 36678638 PMCID: PMC9864493 DOI: 10.3390/pharmaceutics15010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Previous clinical trials for drug-susceptible tuberculosis (DS-TB) have shown that first-line treatment with doses of rifampicin up to 40 mg/kg are safe and increase the early treatment response for young adults with pulmonary tuberculosis. This may lead to a shorter treatment duration for those persons with TB and a good baseline prognosis, or increased treatment success for vulnerable subgroups (age > 60, diabetes, malnutrition, HIV, hepatitis B or hepatitis C coinfection, TB meningitis, stable chronic liver diseases). Here, we describe the design of a phase 2b/c clinical study under the hypothesis that rifampicin at 35 mg/kg is as safe for these vulnerable groups as for the participants included in previous clinical trials. RIAlta is an interventional, open-label, multicenter, prospective clinical study with matched historical controls comparing the standard DS-TB treatment (isoniazid, pyrazinamide, and ethambutol) with rifampicin at 35 mg/kg (HR35ZE group) vs. rifampicin at 10 mg/kg (historical HR10ZE group). The primary outcome is the incidence of grade ≥ 3 Adverse Events or Severe Adverse Events. A total of 134 participants will be prospectively included, and compared with historical matched controls with at least a 1:1 proportion. This will provide a power of 80% to detect non-inferiority with a margin of 8%. This study will provide important information for subgroups of patients that are more vulnerable to TB bad outcomes and/or treatment toxicity. Despite limitations such as non-randomized design and the use of historical controls, the results of this trial may inform the design of future more inclusive clinical trials, and improve the management of tuberculosis in subgroups of patients for whom scientific evidence is still scarce. Trial registration: EudraCT 2020-003146-36, NCT04768231.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- International Health Unit Vall d’Hebron-Drassanes, Infectious Diseases Department, Vall d’Hebron University Hospital, Department of Medicine Universitat Autónoma de Barcelona, Programa de Salut Internacional del Institut Catalá de Salut (PROSICS), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Samiksha Ghimire
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (S.G.); (M.G.G.S.); (J.-W.C.A.)
| | - Marieke G. G. Sturkenboom
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (S.G.); (M.G.G.S.); (J.-W.C.A.)
| | - Jan-Willem C. Alffenaar
- Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (S.G.); (M.G.G.S.); (J.-W.C.A.)
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Margarida Tavares
- Infectious Diseases Service, Centro Hospitalar de São João, 4200-319 Porto, Portugal;
| | - Sarita Aguirre
- National Program for Tuberculosis, Ministry of Health, Asunción 1430, Paraguay;
| | - Arturo Battaglia
- Instituto Nacional de Enfermedades Respiratorias y Ambientales, Asunción 1430, Paraguay; (A.B.); (G.M.)
| | - Gladys Molinas
- Instituto Nacional de Enfermedades Respiratorias y Ambientales, Asunción 1430, Paraguay; (A.B.); (G.M.)
| | - Teresa Tórtola
- Microbiology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Onno W. Akkerman
- TB Center Beatrixoord, Haren, University Medical Center Groningen, University of Groningen, 9751 ND Groningen, The Netherlands;
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Adrian Sanchez-Montalva
- International Health Unit Vall d’Hebron-Drassanes, Infectious Diseases Department, Vall d’Hebron University Hospital, Department of Medicine Universitat Autónoma de Barcelona, Programa de Salut Internacional del Institut Catalá de Salut (PROSICS), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Estudio de Infecciones por Micobacterias, Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIM-SEIMC), 28003 Madrid, Spain
| | - Cecile Magis-Escurra
- Radboud University Medical Centre, Department of Respiratory Diseases-TB Expert Center Dekkerswald, 6561 KE Nijmegen, The Netherlands;
| |
Collapse
|
9
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Keutzer L, You H, Farnoud A, Nyberg J, Wicha SG, Maher-Edwards G, Vlasakakis G, Moghaddam GK, Svensson EM, Menden MP, Simonsson USH. Machine Learning and Pharmacometrics for Prediction of Pharmacokinetic Data: Differences, Similarities and Challenges Illustrated with Rifampicin. Pharmaceutics 2022; 14:pharmaceutics14081530. [PMID: 35893785 PMCID: PMC9330804 DOI: 10.3390/pharmaceutics14081530] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Pharmacometrics (PM) and machine learning (ML) are both valuable for drug development to characterize pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic/pharmacodynamic (PKPD) analysis using PM provides mechanistic insight into biological processes but is time- and labor-intensive. In contrast, ML models are much quicker trained, but offer less mechanistic insights. The opportunity of using ML predictions of drug PK as input for a PKPD model could strongly accelerate analysis efforts. Here exemplified by rifampicin, a widely used antibiotic, we explore the ability of different ML algorithms to predict drug PK. Based on simulated data, we trained linear regressions (LASSO), Gradient Boosting Machines, XGBoost and Random Forest to predict the plasma concentration-time series and rifampicin area under the concentration-versus-time curve from 0–24 h (AUC0–24h) after repeated dosing. XGBoost performed best for prediction of the entire PK series (R2: 0.84, root mean square error (RMSE): 6.9 mg/L, mean absolute error (MAE): 4.0 mg/L) for the scenario with the largest data size. For AUC0–24h prediction, LASSO showed the highest performance (R2: 0.97, RMSE: 29.1 h·mg/L, MAE: 18.8 h·mg/L). Increasing the number of plasma concentrations per patient (0, 2 or 6 concentrations per occasion) improved model performance. For example, for AUC0–24h prediction using LASSO, the R2 was 0.41, 0.69 and 0.97 when using predictors only (no plasma concentrations), 2 or 6 plasma concentrations per occasion as input, respectively. Run times for the ML models ranged from 1.0 s to 8 min, while the run time for the PM model was more than 3 h. Furthermore, building a PM model is more time- and labor-intensive compared with ML. ML predictions of drug PK could thus be used as input into a PKPD model, enabling time-efficient analysis.
Collapse
Affiliation(s)
- Lina Keutzer
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
| | - Huifang You
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
| | - Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany; (A.F.); (M.P.M.)
| | - Joakim Nyberg
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (J.N.); (E.M.S.)
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Gareth Maher-Edwards
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
| | - Georgios Vlasakakis
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
| | - Gita Khalili Moghaddam
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (J.N.); (E.M.S.)
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Michael P. Menden
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany; (A.F.); (M.P.M.)
- Department of Biology, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Ulrika S. H. Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
- Correspondence:
| | | |
Collapse
|
11
|
Population Pharmacokinetic Modelling and Limited Sampling Strategies for Therapeutic Drug Monitoring of Pyrazinamide in Patients with Tuberculosis. Antimicrob Agents Chemother 2022; 66:e0000322. [PMID: 35727060 DOI: 10.1128/aac.00003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide is one of the first-line antituberculosis drugs. The efficacy of pyrazinamide is associated with the ratio of 24-h area under the concentration-time curve (AUC24) to MIC. The objective of this study was to develop and validate a limited sampling strategy (LSS) based on a population pharmacokinetic (popPK) model to predict AUC24. A popPK model was developed using an iterative two-stage Bayesian procedure and was externally validated. Using data from 20 treatment-naive adult tuberculosis (TB) patients, a one compartment model with transit absorption and first-order elimination best described pyrazinamide pharmacokinetics and fed state was the only significant covariate for absorption rate constant (ka). External validation, using data from 26 TB patients, showed that the popPK model predicted AUC24 with a slight underestimation of 2.1%. LSS were calculated using Monte Carlo simulation (n = 10,000). External validation showed LSS with time points 0 h, 2 h, and 6 h performed best with RMSE of 9.90% and bias of 0.06%. Food slowed absorption of pyrazinamide, but did not affect bioavailability, which may be advantageous in case of nausea or vomiting in which food can be used to diminish these effects. In this study, we successfully developed and validated a popPK model and LSS, using 0 h, 2 h, and 6 h postdose samples, that could be used to perform therapeutic drug monitoring (TDM) of pyrazinamide in TB patients.
Collapse
|
12
|
Lopez-Varela E, Abulfathi AA, Strydom N, Goussard P, van Wyk AC, Demers AM, Deventer AV, Garcia-Prats AJ, van der Merwe J, Zimmerman M, Carter CL, Janson J, Morrison J, Reuter H, Decloedt EH, Seddon JA, Svensson EM, Warren R, Savic RM, Dartois V, Hesseling AC. Drug concentration at the site of disease in children with pulmonary tuberculosis. J Antimicrob Chemother 2022; 77:1710-1719. [PMID: 35468189 PMCID: PMC9155609 DOI: 10.1093/jac/dkac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB. OBJECTIVES To determine the concentrations of first-line antituberculosis drugs at the site of disease in children with intrathoracic TB. METHODS We quantified drug concentrations in tissue samples from 13 children, median age 8.6 months, with complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompression in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug penetration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph nodes, and cellular and necrotic lymph node lesions. RESULTS Isoniazid, rifampicin and pyrazinamide showed lower penetration in most lymph node areas compared with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target concentration in necrotic lesions. CONCLUSIONS Despite similar penetration characteristics compared with adults, low plasma exposures in children led to low site of disease exposures for all drugs except for isoniazid.
Collapse
Affiliation(s)
- Elisa Lopez-Varela
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universidad de Barcelona, Barcelona, Spain
| | - Ahmed A. Abulfathi
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, USA
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Pierre Goussard
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abraham C. van Wyk
- Division of Anatomical Pathology, Tygerberg Hospital, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anne Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Service de microbiologie, Département clinique de médecine de laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Anneen Van Deventer
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Johannes van der Merwe
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
- Department of Pathology, Hackensack School of Medicine, Nutley, New Jersey 07110, USA
| | - Jacques Janson
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Julie Morrison
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric H. Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - James A. Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Radojka M. Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Anneke C. Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
13
|
Tersigni C, Boiardi G, Tofani L, Venturini E, Montagnani C, Bortone B, Bianchi L, Chiappini E, Cassetta MI, Fallani S, Novelli A, Galli L. Real-life isoniazid and rifampicin plasma concentrations in children: a tool for therapeutic drug monitoring of tuberculosis. BMC Infect Dis 2021; 21:1087. [PMID: 34674665 PMCID: PMC8529739 DOI: 10.1186/s12879-021-06764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Low plasma levels of first-line antitubercular drugs can be counted among the main causes of poor response to antitubercular therapy, and therapeutic drug monitoring has been proposed as a method to promote tailored treatments for both child and adult patients. The main aim of the study was to evaluate serum concentrations of isoniazid (INH) and rifampicin (RIF) and to investigate reasons for sub-therapeutic plasma concentrations in order to fix dosages. Methods Children with TB were prospectively enrolled from January to August 2019. Two venous blood samples were collected (the first at least 15 days after the beginning of antitubercular treatment, and the second between 1 and 8 weeks later). Plasma concentrations were determined by a validated high-performance liquid chromatography method. Results In all, 45 children were included. Seventy blood samples for INH plasma concentration were collected between 120 and 240 min after drug intake. Adjusting for dose (mg/kg/day) and time of INH administration, when considering three different age groups (≤ 2 years, 2–12 years, > 12 years), a statistically significant lower INH plasma concentration was observed in younger children compared to the older age groups in the multivariate analysis (p < 0.001 and p < 0.001). A total of 68 blood samples were evaluated for RIF concentrations. Both for INH and RIF a statistically significant lower plasma concentration was also observed in adolescents (p < 0.001). Fifteen children (15/45, 33%) presented drug concentrations under the referral therapeutic range. Conclusions Based on our findings, monitoring patients’ drug plasma concentrations in children under 2 years of age and in adolescents can make treatment more patient-tailored.
Collapse
Affiliation(s)
- Chiara Tersigni
- Post Graduate School of Pediatrics, University of Florence, Florence, Italy
| | | | - Lorenzo Tofani
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | | | - Carlotta Montagnani
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy
| | - Barbara Bortone
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy
| | - Leila Bianchi
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy
| | - Elena Chiappini
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | - Maria Iris Cassetta
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Stefania Fallani
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Luisa Galli
- Infectious Diseases Unit, Meyer Children's University Hospital, Florence, Italy. .,Department of Health Sciences, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
14
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Otalvaro JD, Hernandez AM, Rodriguez CA, Zuluaga AF. Population Pharmacokinetic Models of Antituberculosis Drugs in Patients: A Systematic Critical Review. Ther Drug Monit 2021; 43:108-115. [PMID: 32956238 DOI: 10.1097/ftd.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains one of the most important infectious diseases. Population pharmacokinetic (pop-PK) models are widely used to individualize dosing regimens of several antibiotics, but their application in anti-TB drug studies is scant. The aim of this study was to provide an insight regarding the status of pop-PK for these drugs and to compare results obtained through both parametric and nonparametric approaches to design precise dosage regimens. METHODS First, a systematic approach was implemented, searching in PubMed and Google Scholar. Articles that did not include human patients, that lacked an explicit structural model, that analyzed drugs inactive against M. tuberculosis, or were without full-text access, were excluded. Second, the PK parameters were summarized and categorized as parametric versus nonparametric results. Third, a Monte Carlo simulation was performed in Pmetrics using the results of both groups, and an error term was built to describe the imprecision of each PK modeling approach. RESULTS Thirty-three articles reporting at least 1 pop-PK model of 19 anti-TB drug were found; 46 different models including PK parameter estimates and their relevant covariates were also reported. Only 9 models were based on nonparametric approaches. Rifampin was the drug most studied, but only using parametric approaches. The simulations showed that nonparametric approaches improve the error term compared with parametric approaches. CONCLUSIONS More and better models, ideally using nonparametric approaches linked with clear pharmacodynamic goals, are required to optimize anti-TB drug dosing, as recommended in the WHO End TB strategy.
Collapse
Affiliation(s)
- Julian D Otalvaro
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
- Bioinstrumentation and Clinical Engineering Research Group-GIBIC, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellin, Colombia
| | - Alher M Hernandez
- Bioinstrumentation and Clinical Engineering Research Group-GIBIC, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellin, Colombia
| | - Carlos A Rodriguez
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
| | - Andres F Zuluaga
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
| |
Collapse
|
16
|
Hernández-González O, Zarazúa S, Veytia-Bucheli JI, González-Chávez MM, Rodríguez-Pinal CJ, Medellín-Garibay SE, Uresti-Rivera EE, Pérez-Vázquez FJ, Portales-Pérez DP, Romano-Moreno S, Milán-Segovia RDC. Quantification of pyrazinamide, isoniazid, acetyl-isoniazid, and rifampicin by a high-performance liquid chromatography method in human plasma from patients with tuberculosis. J Sep Sci 2020; 44:521-529. [PMID: 33200497 DOI: 10.1002/jssc.202000672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
The aim of this study was to establish and validate an alternative high-performance liquid chromatography method for simultaneous quantification of pyrazinamide, isoniazid, acetyl-isoniazid and rifampicin in plasma of patients under treatment for tuberculosis. The performed method was lineal (r2 > 0.99) in the range of 2.00-50.00 μg/mL for pyrazinamide, 0.50-20.00 μg/mL for both acetyl-isoniazid and isoniazid, and 1.20-25.00 μg/mL for rifampicin. Precision and trueness were demonstrated with coefficient of variation < 15% and deviations < 15%, respectively, for quality controls samples. The lower limits of quantification were 2.00, 0.50, 0.50, and 1.20 μg/mL for pyrazinamide, isoniazid, acetyl-isoniazid and rifampicin, respectively. The method was applied for the analysis of plasma from patients with tuberculosis. This method allowed ensuring reliable quantification of the target compounds and their pharmacokinetics parameters. In general, the mean values of maximum concentration of each antituberculosis drug were located within their respective reference therapeutic ranges. However, patients with sub-therapeutic plasma concentrations of isoniazid and rifampicin were detected. This is the first analytical technique that simultaneously quantifies isoniazid, acetyl-isoniazid, rifampicin, and pyrazinamide concentrations from plasma samples by high-performance liquid chromatography with ultraviolet/visible. The proposed method could be applied for therapeutic drug monitoring and pharmacokinetics studies of the four compounds throughout the treatment of tuberculosis patients.
Collapse
Affiliation(s)
| | - Sergio Zarazúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | | | | | | | | - Edith Elena Uresti-Rivera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | | | | - Silvia Romano-Moreno
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | |
Collapse
|
17
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
18
|
Zheng X, Bao Z, Forsman LD, Hu Y, Ren W, Gao Y, Li X, Hoffner S, Bruchfeld J, Alffenaar JW. Drug exposure and minimum inhibitory concentration predict pulmonary tuberculosis treatment response. Clin Infect Dis 2020; 73:e3520-e3528. [PMID: 33070176 DOI: 10.1093/cid/ciaa1569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prospective studies correlating pharmacokinetic/pharmacodynamic (PK/PD) indices to clinical responses are urgently needed. This study aimed to find clinically relevant PK/PD thresholds that can be used for treatment optimization. METHODS Pharmacokinetic sampling and minimum inhibitory concentration (MIC) measurements were performed for culture-confirmed tuberculosis patients. Classification and regression tree (CART) analysis was applied to obtain PK and/or PD thresholds for first-line drugs predictive of two-week/month culture conversion, treatment outcome determined at 6-8 months, acute kidney injury (AKI) and drug-induced liver injury (DILI). Least absolute shrinkage and selection operator (LASSO) logistic regression was used for model development and validation. RESULTS Finally, 168 and 52 patients with tuberculosis were included in development and validation cohort for analysis, respectively. Area under concentration-time curve (AUC)/MIC below CART-derived thresholds for pyrazinamide of 8.42, pyrazinamide of 2.79 or rifampicin of 435.45 were the predominant predictors of two-week culture conversion, two-month culture conversion or treatment success, respectively. Isoniazid AUC above 21.78 mg·h/L or rifampicin AUC above 82.01 mg·h/L were predictive of DILI or AKI during TB treatment. The predictive performance of trained LASSO models in validation cohort was evaluated by receiver operating characteristic curves and ranged from 0.625 to 0.978. CONCLUSIONS PK/PD indices and drug exposure of anti-TB drugs were associated with clinical outcome and adverse events. The effect of CART-derived thresholds for individualized dosing on treatment outcome should be studied in a randomized controlled trial.
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Weihua Ren
- Central Laboratory, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Yazhou Gao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xuliang Li
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Optimal Sampling Strategies for Therapeutic Drug Monitoring of First-Line Tuberculosis Drugs in Patients with Tuberculosis. Clin Pharmacokinet 2020; 58:1445-1454. [PMID: 30997650 PMCID: PMC6856034 DOI: 10.1007/s40262-019-00763-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background The 24-h area under the concentration–time curve (AUC24)/minimal inhibitory concentration ratio is the best predictive pharmacokinetic/pharmacodynamic (PK/PD) parameter of the efficacy of first-line anti-tuberculosis (TB) drugs. An optimal sampling strategy (OSS) is useful for accurately estimating AUC24; however, OSS has not been developed in the fed state or in the early phase of treatment for first-line anti-TB drugs. Methods An OSS for the prediction of AUC24 of isoniazid, rifampicin, ethambutol and pyrazinamide was developed for TB patients starting treatment. A prospective, randomized, crossover trial was performed during the first 3 days of treatment in which first-line anti-TB drugs were administered either intravenously or in fasting or fed conditions. The PK data were used to develop OSS with best subset selection multiple linear regression. The OSS was internally validated using a jackknife analysis and externally validated with other patients from different ethnicities and in a steady state of treatment. Results OSS using time points of 2, 4 and 8 h post-dose performed best. Bias was < 5% and imprecision was < 15% for all drugs except ethambutol in the fed condition. External validation showed that OSS2-4-8 cannot be used for rifampicin in steady state conditions. Conclusion OSS at 2, 4 and 8 h post-dose enabled an accurate and precise prediction of AUC24 values of first-line anti-TB drugs in this population. Trial Registration ClinicalTrials.gov (NCT02121314).
Collapse
|
20
|
Abulfathi AA, Decloedt EH, Svensson EM, Diacon AH, Donald P, Reuter H. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clin Pharmacokinet 2020; 58:1103-1129. [PMID: 31049868 DOI: 10.1007/s40262-019-00764-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6 months when combined with pyrazinamide in the first 2 months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600 mg (8-12 mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of ≥ 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600 mg. Rifampicin maximum (peak) concentration (Cmax) > 8.2 μg/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6 h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of ≥ 8 µg/mL. A higher rifampicin Cmax is required for severe forms TB such as TB meningitis, with Cmax ≥ 22 μg/mL and area under the concentration-time curve (AUC) from time zero to 6 h (AUC6) ≥ 70 μg·h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35 mg/kg were found to be safe and well-tolerated over a period of 12 weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as Cmax/MIC (minimum inhibitory concentration) and AUC/MIC.
Collapse
Affiliation(s)
- Ahmed Aliyu Abulfathi
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - Eric H Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Andreas H Diacon
- Task Applied Science, Bellville, South Africa.,Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter Donald
- Paediatrics and Child Health and Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| |
Collapse
|
21
|
A Systematic Review on the Effect of HIV Infection on the Pharmacokinetics of First-Line Tuberculosis Drugs. Clin Pharmacokinet 2020; 58:747-766. [PMID: 30406475 PMCID: PMC7019645 DOI: 10.1007/s40262-018-0716-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction Contrasting findings have been published regarding the effect of human immunodeficiency virus (HIV) on tuberculosis (TB) drug pharmacokinetics (PK). Objectives The aim of this systematic review was to investigate the effect of HIV infection on the PK of the first-line TB drugs (FLDs) rifampicin, isoniazid, pyrazinamide and ethambutol by assessing all published literature. Methods Searches were performed in MEDLINE (through PubMed) and EMBASE to find original studies evaluating the effect of HIV infection on the PK of FLDs. The included studies were assessed for bias and clinical relevance. PK data were extracted to provide insight into the difference of FLD PK between HIV-positive and HIV-negative TB patients. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and its protocol was registered at PROSPERO (registration number CRD42017067250). Results Overall, 27 studies were eligible for inclusion. The available studies provide a heterogeneous dataset from which consistent results could not be obtained. In both HIV-positive and HIV-negative TB groups, rifampicin (13 of 15) and ethambutol (4 of 8) peak concentration (Cmax) often did not achieve the minimum reference values. More than half of the studies (11 of 20) that included both HIV-positive and HIV-negative TB groups showed statistically significantly altered FLD area under the concentration–time curve and/or Cmax for at least one FLD. Conclusions HIV infection may be one of several factors that reduce FLD exposure. We could not make general recommendations with respect to the role of dosing. There is a need for consistent and homogeneous studies to be conducted.
Collapse
|
22
|
van Beek SW, Ter Heine R, Keizer RJ, Magis-Escurra C, Aarnoutse RE, Svensson EM. Personalized Tuberculosis Treatment Through Model-Informed Dosing of Rifampicin. Clin Pharmacokinet 2020; 58:815-826. [PMID: 30671890 DOI: 10.1007/s40262-018-00732-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE This study proposes a model-informed approach for therapeutic drug monitoring (TDM) of rifampicin to improve tuberculosis (TB) treatment. METHODS Two datasets from pulmonary TB patients were used: a pharmacokinetic study (34 patients, 373 samples), and TDM data (96 patients, 391 samples) collected at Radboud University Medical Center, The Netherlands. Nine suitable population pharmacokinetic models of rifampicin were identified in the literature and evaluated on the datasets. A model developed by Svensson et al. was found to be the most suitable based on graphical goodness of fit, residual diagnostics, and predictive performance. Prediction of individual area under the concentration-time curve from time zero to 24 h (AUC24) and maximum concentration (Cmax) employing various sampling strategies was compared with a previously established linear regression TDM strategy, using sampling at 2, 4, and 6 h, in terms of bias and precision (mean error [ME] and root mean square error [RMSE]). RESULTS A sampling strategy using 2- and 4-h blood collection was selected to be the most suitable. The bias and precision of the two strategies were comparable, except that the linear regression strategy was more biased in prediction of the AUC24 than the model-informed approach (ME of 9.9% and 1.5%, respectively). A comparison of resulting dose advice, using predictions on a simulated dataset, showed no significant difference in sensitivity or specificity between the two methods. The model was successfully implemented in the InsightRX precision dosing platform. CONCLUSION Blood sampling at 2 and 4 h, combined with model-based prediction, can be used instead of the currently used linear regression strategy, shortening the sampling by 2 h and one sampling point without performance loss while simultaneously offering flexibility in sampling times.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Cecile Magis-Escurra
- Department of Respiratory Diseases, Radboud University Medical Center-Dekkerswald, Groesbeek, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Liang J, Zhang X, Wang N, Chang T, Cui HL. Vibrational spectra of pyrazinamide and isoniazid studied by terahertz spectroscopy and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117591. [PMID: 31761544 DOI: 10.1016/j.saa.2019.117591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Pyrazinamide and isoniazid, as two first-line anti-tuberculosis drugs, are investigated by terahertz time-domain spectroscopy (THz-TDS). Both pyrazinamide and isoniazid have three absorption peaks, at 0.50, 0.71, 1.42 THz and 1.16, 1.46, 1.56 THz, respectively, which can be used as the basis for qualitative identification of these two drugs. In order to gain insight into the origin of the characteristic absorption peaks, density functional theory (DFT) based on single molecular, dimer, and crystalline structures of pyrazinamide and isoniazid are performed. The purpose of the calculation based on the single molecular structure is to understand the intramolecular interaction, while those based on the dimer and crystalline structures are to investigate the intermolecular interactions in PNZ and INZ. Comparing the theoretical results of the dimer and crystalline based structures reveals that the crystalline structure leads to vibrational spectra that are closer to the experimental values in terms of the number of absorption peaks and the positions of the absorption peaks. Vibrational mode assignments can be summarized as that the characteristic absorption peaks of pyrazinamide mainly come from intermolecular interaction, and the characteristic absorption peaks of isoniazid originate from both the intramolecular and intermolecular interactions. Our experimental and theoretical results indicate that the combination of THz-TDS with DFT is an effective approach for identification of molecules with pharmaceutical significance.
Collapse
Affiliation(s)
- Jie Liang
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
| | - Xiaoxuan Zhang
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
| | - Nan Wang
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
| | - Tianying Chang
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China; Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China.
| | - Hong-Liang Cui
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| |
Collapse
|
24
|
Lei Q, Wang H, Zhao Y, Dang L, Zhu C, Lv X, Wang H, Zhou J. Determinants of serum concentration of first-line anti-tuberculosis drugs from China. Medicine (Baltimore) 2019; 98:e17523. [PMID: 31593125 PMCID: PMC6799623 DOI: 10.1097/md.0000000000017523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 11/26/2022] Open
Abstract
Therapeutic drug monitoring has been employed in anti-tuberculosis (TB) drugs to assess optimal dose for maximum therapeutic effects and minimal toxicity. But the determinants of serum concentration need further evidences.In a retrospective case-control study, clinical and laboratory data were collected from 717 in-patients with TB at Xi'an Chest Hospital, China. Two hours serum concentrations of isoniazid, rifampicin, pyrazinamide as well as ethambutol were obtained and analyzed by liquid chromatography-tandem mass spectrometry.The month 2 culture conversion group had lower concentration of isoniazid, pyrazinamide, and ethambutol than month 1 group. Statistical analysis showed that serum concentrations of isoniazid, rifampicin, pyrazinamide, and ethambutol revealed a positive relationship with dose (mg/kg) (P < .001, P < .001, P < .001, and P = .003, respectively). Furthermore, isoniazid concentration was related to smoking (P = .009) and prior TB (P = .011), while rifampicin and pyrazinamide concentrations were correlated to sex (P = .004 and 0.025, respectively). Ethambutol concentration was associated with creatinine clearance (Ccr, P = .002).It is necessary to optimize drug doses using therapeutic drug monitoring while considering the following determinants: weight, smoking status, prior TB, sex, and Ccr. Furthermore, low 2 hours serum concentrations can be associated with longer culture conversion.
Collapse
Affiliation(s)
| | | | | | - Liyun Dang
- Department of Medical, Xi’an Chest Hospital, Xi’an, Shaanxi, China
| | - Changsheng Zhu
- Department of Medical, Xi’an Chest Hospital, Xi’an, Shaanxi, China
| | | | - Hui Wang
- Department of Medical, Xi’an Chest Hospital, Xi’an, Shaanxi, China
| | | |
Collapse
|
25
|
Svensson RJ, Niward K, Davies Forsman L, Bruchfeld J, Paues J, Eliasson E, Schön T, Simonsson USH. Individualised dosing algorithm and personalised treatment of high-dose rifampicin for tuberculosis. Br J Clin Pharmacol 2019; 85:2341-2350. [PMID: 31269277 DOI: 10.1111/bcp.14048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022] Open
Abstract
AIMS To propose new exposure targets for Bayesian dose optimisation suited for high-dose rifampicin and to apply them using measured plasma concentrations coupled with a Bayesian forecasting algorithm allowing predictions of future doses, considering rifampicin's auto-induction, saturable pharmacokinetics and high interoccasion variability. METHODS Rifampicin exposure targets for Bayesian dose optimisation were defined based on literature data on safety and anti-mycobacterial activity in relation to rifampicin's pharmacokinetics i.e. highest plasma concentration up to 24 hours and area under the plasma concentration-time curve up to 24 hours (AUC0-24h ). Targets were suggested with and without considering minimum inhibitory concentration (MIC) information. Individual optimal doses were predicted for patients treated with rifampicin (10 mg/kg) using the targets with Bayesian forecasting together with sparse measurements of rifampicin plasma concentrations and baseline rifampicin MIC. RESULTS The suggested exposure target for Bayesian dose optimisation was a steady state AUC0-24h of 181-214 h × mg/L. The observed MICs ranged from 0.016-0.125 mg/L (mode: 0.064 mg/L). The predicted optimal dose in patients using the suggested target ranged from 1200-3000 mg (20-50 mg/kg) with a mode of 1800 mg (30 mg/kg, n = 24). The predicted optimal doses when taking MIC into account were highly dependent on the known technical variability of measured individual MIC and the dose was substantially lower compared to when using the AUC0-24h -only target. CONCLUSIONS A new up-to-date exposure target for Bayesian dose optimisation suited for high-dose rifampicin was derived. Using measured plasma concentrations coupled with Bayesian forecasting allowed prediction of the future dose whilst accounting for the auto-induction, saturable pharmacokinetics and high between-occasion variability of rifampicin.
Collapse
Affiliation(s)
- Robin J Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Katarina Niward
- Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Department of Infectious Diseases, Linköping University Hospital, Sweden
| | - Lina Davies Forsman
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Judith Bruchfeld
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Sweden.,Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jakob Paues
- Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Department of Infectious Diseases, Linköping University Hospital, Sweden
| | - Erik Eliasson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Schön
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Sweden.,Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | |
Collapse
|
26
|
Uchoa BKB, Albério CAA, Pinto ACG, de Medeiros Araujo Lucena S, Vieira JLF. Concentrations of rifampicin in pre-dose samples in patients with pulmonary tuberculosis. Braz J Infect Dis 2019; 23:130-133. [PMID: 31128081 PMCID: PMC9425676 DOI: 10.1016/j.bjid.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/21/2019] [Accepted: 05/02/2019] [Indexed: 12/03/2022] Open
Abstract
Rifampicin is used in both phases of treatment for tuberculosis. In chronic use, the short half-life and the self-induction of metabolism can decrease the levels of the drug below the minimal inhibitory concentration. The aim of the study was to investigate whether plasma concentrations of rifampicin are sustained above 0.5μg/mL in patients with tuberculosis using 600mg/day. Rifampicin was measured in plasma by high-performance liquid chromatography and a sputum smear microscopy was performed in all days of the study. A total of 44 male patients completed the study. On days 31, 61 and 91, the mean plasma concentrations of rifampicin were 0.6 (0.5)μg/mL, 0.55 (0.5)μg/mL and 0.46 (0.4)μg/mL. There was a high variation of rifampicin levels leading to a high percentage of samples with concentrations below 0.5μg/mL. There was no significant association between the frequency of samples with drug levels below 0.5μg/mL with the conversion of the sputum microscopy. These data suggest that pre-doses samples offer limited information on the exposure of M. tuberculosis to rifampicin.
Collapse
Affiliation(s)
| | | | - Ana Carla Godinho Pinto
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Toxicologia, Belém, PA, Brazil
| | | | | |
Collapse
|
27
|
van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, Skrahina A, van der Werf TS, Heysell SK, Mpagama S, Migliori GB, Peloquin CA, Touw DJ, Alffenaar JWC. Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018; 62:e01092-18. [PMID: 30373800 PMCID: PMC6256746 DOI: 10.1128/aac.01092-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Levofloxacin is an antituberculosis drug with substantial interindividual pharmacokinetic variability; therapeutic drug monitoring (TDM) could therefore be helpful to improve treatment results. TDM would be more feasible with limited sampling strategies (LSSs), a method to estimate the area under the concentration curve for the 24-h dosing interval (AUC0-24) by using a limited number of samples. This study aimed to develop a population pharmacokinetic (popPK) model of levofloxacin in tuberculosis patients, along with LSSs using a Bayesian and multiple linear regression approach. The popPK model and Bayesian LSS were developed using data from 30 patients and externally validated with 20 patients. The LSS based on multiple linear regression was internally validated using jackknife analysis. Only clinically suitable LSSs (maximum time span, 8 h; minimum interval, 1 h; 1 to 3 samples) were tested. Performance criteria were root-mean-square error (RMSE) of <15%, mean prediction error (MPE) of <5%, and r2 value of >0.95. A one-compartment model with lag time best described the data while only slightly underestimating the AUC0-24 (mean, -7.9%; standard error [SE], 1.7%). The Bayesian LSS using 0- and 5-h postdose samples (RMSE, 8.8%; MPE, 0.42%; r2 = 0.957) adequately estimated the AUC0-24, with a mean underestimation of -4.4% (SE, 2.7%). The multiple linear regression LSS using 0- and 4-h postdose samples (RMSE, 7.0%; MPE, 5.5%; r2 = 0.977) was internally validated, with a mean underestimation of -0.46% (SE, 2.0%). In this study, we successfully developed a popPK model and two LSSs that could be implemented in clinical practice to assist TDM of levofloxacin. (This study has been registered at ClinicalTrials.gov under identifier NCT01918397.).
Collapse
Affiliation(s)
- Simone H J van den Elsen
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Marieke G G Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Natasha Van't Boveneind-Vrubleuskaya
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Department of Public Health TB Control, Metropolitan Public Health Service Haaglanden, The Hague, The Netherlands
| | - Alena Skrahina
- The Republic Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Tjip S van der Werf
- University of Groningen, University Medical Center Groningen, Department of Internal Diseases, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stellah Mpagama
- Kibong'oto National Tuberculosis Hospital, Sanya Juu, Tanzania
| | | | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
28
|
Alffenaar JWC, Akkerman OW, Bothamley G. Monitoring during and after tuberculosis treatment. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10022217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Sekaggya-Wiltshire C, von Braun A, Lamorde M, Ledergerber B, Buzibye A, Henning L, Musaazi J, Gutteck U, Denti P, de Kock M, Jetter A, Byakika-Kibwika P, Eberhard N, Matovu J, Joloba M, Muller D, Manabe YC, Kamya MR, Corti N, Kambugu A, Castelnuovo B, Fehr JS. Delayed Sputum Culture Conversion in Tuberculosis-Human Immunodeficiency Virus-Coinfected Patients With Low Isoniazid and Rifampicin Concentrations. Clin Infect Dis 2018; 67:708-716. [PMID: 29514175 PMCID: PMC6094003 DOI: 10.1093/cid/ciy179] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 03/01/2018] [Indexed: 01/23/2023] Open
Abstract
Background The relationship between concentrations of antituberculosis drugs, sputum culture conversion, and treatment outcome remains unclear. We sought to determine the association between antituberculosis drug concentrations and sputum conversion among patients coinfected with tuberculosis and human immunodeficiency virus (HIV) and receiving first-line antituberculosis drugs. Methods We enrolled HIV-infected Ugandans with pulmonary tuberculosis. Estimation of first-line antituberculosis drug concentrations was performed 1, 2, and 4 hours after drug intake at 2, 8, and 24 weeks of tuberculosis treatment. Serial sputum cultures were performed at each visit. Time-to-event analysis was used to determine factors associated with sputum culture conversion. Results We enrolled 268 HIV-infected patients. Patients with low isoniazid and rifampicin concentrations were less likely to have sputum culture conversion before the end of tuberculosis treatment (hazard ratio, 0.54; 95% confidence interval, .37-.77; P = .001) or by the end of follow-up (0.61; .44-.85; P = .003). Patients in the highest quartile for area under the rifampicin and isoniazid concentration-time curves for were twice as likely to experience sputum conversion than those in the lowest quartile. Rifampicin and isoniazid concentrations below the thresholds and weight <55 kg were both risk factors for unfavorable tuberculosis treatment outcomes. Only 4.4% of the participants had treatment failure. Conclusion Although low antituberculosis drug concentrations did not translate to a high proportion of patients with treatment failure, the association between low concentrations of rifampicin and isoniazid and delayed culture conversion may have implications for tuberculosis transmission. Clinical Trials Registration: NCT01782950.
Collapse
Affiliation(s)
| | - Amrei von Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Allan Buzibye
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lars Henning
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Joseph Musaazi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ursula Gutteck
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Miné de Kock
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland
| | - Pauline Byakika-Kibwika
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- School of Medicine, Makerere University, Kampala, Uganda
| | - Nadia Eberhard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Joshua Matovu
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Joloba
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Daniel Muller
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Moses R Kamya
- School of Medicine, Makerere University, Kampala, Uganda
| | - Natascia Corti
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrew Kambugu
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jan S Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
- Department of Public Health at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| |
Collapse
|
30
|
Motta I, Calcagno A, Bonora S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization? Expert Opin Drug Metab Toxicol 2017; 14:59-82. [PMID: 29226732 DOI: 10.1080/17425255.2018.1416093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION WHO global strategy is to end tuberculosis epidemic by 2035. Pharmacokinetic and pharmacogenetic studies are increasingly performed and might confirm their potential role in optimizing treatment outcome in specific settings and populations. Insufficient drug exposure seems to be a relevant factor in tuberculosis outcome and for the risk of phenotypic resistance. Areas covered: This review discusses available pharmacokinetic and pharmacogenetic data of first and second-line antitubercular agents in relation to efficacy and toxicity. Pharmacodynamic implications of optimized drugs and new options regimens are reviewed. Moreover a specific session describes innovative investigations on drug penetration. Expert opinion: The optimal use of available antitubercular drugs is paramount for tuberculosis control and eradication. Whilst trials are still on-going, higher rifampicin doses should be reserved to treatment for tubercular meningitis. Therapeutic Drug Monitoring with limiting sampling strategies is advised in patients at risk of failure or with slow treatment response. Further studies are needed in order to provide definitive recommendations of pharmacogenetic-based individualization: however lower isoniazid doses in NAT2 slow acetylators and higher rifampicin doses in individuals with SLCO1B1 loss of function genes are promising strategies. Finally in order to inform tailored strategies we need more data on tissue drug penetration and pharmacological modelling.
Collapse
Affiliation(s)
- Ilaria Motta
- a Unit of Infectious Diseases, Department of Medical Sciences , University of Torino , Torino , Italy
| | - Andrea Calcagno
- a Unit of Infectious Diseases, Department of Medical Sciences , University of Torino , Torino , Italy
| | - Stefano Bonora
- a Unit of Infectious Diseases, Department of Medical Sciences , University of Torino , Torino , Italy
| |
Collapse
|
31
|
The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugs. Tuberculosis (Edinb) 2017. [PMID: 29523331 DOI: 10.1016/j.tube.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a major public health problem. Many countries still fall below the minimum World Health Organization (WHO) TB treatment target success rate. There is conflicting evidence about whether concentrations of anti-tuberculosis drugs given at standard doses have an effect on treatment outcomes. The current data correlating anti-TB drug concentrations and treatment outcome is limited. This article summarized the existing literature and their utility in evaluating the association between each anti-TB drug's concentrations using current target concentrations and treatment outcomes in patients with pulmonary tuberculosis receiving standard WHO-recommended dosing.
Collapse
|
32
|
The importance of clinical pharmacokinetic-pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes. ACTA ACUST UNITED AC 2017; 2:195-212. [PMID: 30283633 PMCID: PMC6161803 DOI: 10.4155/ipk-2017-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Tuberculosis remains a major infectious cause of morbidity and mortality worldwide. Current antibiotic regimens, constructed prior to the development of modern pharmacokinetic-pharmacodynamic (PK–PD) tools, are based on incomplete understanding of exposure–response relationships in drug susceptible and multidrug resistant tuberculosis. Preclinical and population PK data suggest that clinical PK–PD studies may enable therapeutic drug monitoring for some agents and revised dosing for others. Future clinical PK–PD challenges include: incorporation of PK methods to assay free concentrations for all active metabolites; selection of appropriate early outcome measures which reflect therapeutic response; elucidation of genetic contributors to interindividual PK variability; conduct of targeted studies on special populations (including children); and measurement of PK–PD parameters at the site of disease.
Collapse
|
33
|
McBryde ES, Meehan MT, Doan TN, Ragonnet R, Marais BJ, Guernier V, Trauer JM. The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains. Int J Infect Dis 2017; 56:14-20. [PMID: 28163165 DOI: 10.1016/j.ijid.2017.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Multidrug-resistant tuberculosis (MDR-TB) is a threat to tuberculosis (TB) control. To guide TB control, it is essential to understand the extent to which and the circumstances in which MDR-TB will replace drug-susceptible TB (DS-TB) as the dominant phenotype. The issue was examined by assessing evidence from genomics, pharmacokinetics, and epidemiology studies. This evidence was then synthesized into a mathematical model. METHODS This model considers two TB strains, one with and one without an MDR phenotype. It was considered that intrinsic transmissibility may be different between the two strains, as may the control response including the detection, treatment failure, and default rates. The outcomes were explored in terms of the incidence of MDR-TB and time until MDR-TB surpasses DS-TB as the dominant strain. RESULTS AND CONCLUSIONS The ability of MDR-TB to dominate DS-TB was highly sensitive to the relative transmissibility of the resistant strain; however, MDR-TB could dominate even when its transmissibility was modestly reduced (to between 50% and 100% as transmissible as the DS-TB strain). This model suggests that it may take decades or more for strain replacement to occur. It was also found that while the amplification of resistance is the early cause of MDR-TB, this will rapidly give way to person-to-person transmission.
Collapse
Affiliation(s)
- Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - Tan N Doan
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Romain Ragonnet
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia; Centre for Population Health, the Burnet Institute, Melbourne, Victoria, Australia
| | - Ben J Marais
- The Children's Hospital at Westmead and the Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), University of Sydney, Sydney, New South Wales, Australia
| | - Vanina Guernier
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Victorian Tuberculosis Program at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Verbeeck RK, Günther G, Kibuule D, Hunter C, Rennie TW. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol 2016; 72:905-16. [PMID: 27305904 DOI: 10.1007/s00228-016-2083-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains one of the world's deadliest communicable diseases. Although cure rates of the standard four-drug (rifampicin, isoniazid, pyrazinamide, ethambutol) treatment schedule can be as high as 95-98 % under clinical trial conditions, success rates may be much lower in less well resourced countries. Unsuccessful treatment with these first-line anti-TB drugs may lead to the development of multidrug resistant and extensively drug resistant TB. The intrinsic interindividual variability in the pharmacokinetics (PK) of the first-line anti-TB drugs is further exacerbated by co-morbidities such as HIV infection and diabetes. METHODS Therapeutic drug monitoring has been proposed in an attempt to optimize treatment outcome and reduce the development of drug resistance. Several studies have shown that maximum plasma concentrations (C max), especially of rifampicin and isoniazid, are well below the proposed target C max concentrations in a substantial fraction of patients being treated with the standard four-drug treatment schedule, even though treatment's success rate in these studies was typically at least 85 %. DISCUSSION The proposed target C max concentrations are based on the concentrations of these agents achieved in healthy volunteers and patients receiving the standard doses. Estimation of C max based on one or two sampling times may not have the necessary accuracy since absorption rate, especially for rifampicin, may be highly variable. In addition, minimum inhibitory concentration (MIC) variability should be taken into account to set clinically meaningful susceptibility breakpoints. Clearly, there is a need to better define the key target PK and pharmacodynamic (PD) parameters for therapeutic drug monitoring (TDM) of the first-line anti-TB drugs to be efficacious, C max (or area under the curve (AUC)) and C max/MIC (or AUC/MIC). CONCLUSION Although TDM of first-line anti-TB drugs has been successfully used in a limited number of specialized centers to improve treatment outcome in slow responders, a better characterization of the target PK and/or PK/PD parameters is in our opinion necessary to make it cost-effective.
Collapse
Affiliation(s)
- Roger K Verbeeck
- Faculty of Health Sciences, University of Namibia, Windhoek, Namibia.
| | - Gunar Günther
- Katutura State Hospital, Windhoek, Namibia.,Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Dan Kibuule
- Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Christian Hunter
- Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Tim W Rennie
- Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| |
Collapse
|
35
|
Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JWC. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 2016; 12:509-21. [DOI: 10.1517/17425255.2016.1162785] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marlanka A. Zuur
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathieu S. Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard Anthony
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Alice den Hertog
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Tridia van der Laan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bob Wilffert
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pharmacy, section Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Wiel de Lange
- University of Groningen, University Medical Center Groningen, Tuberculosis Centre Beatrixoord, Haren, The Netherlands
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan-Willem C. Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Saktiawati AMI, Sturkenboom MGG, Stienstra Y, Subronto YW, Sumardi, Kosterink JGW, van der Werf TS, Alffenaar JWC. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother 2015; 71:703-10. [PMID: 26661397 DOI: 10.1093/jac/dkv394] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/22/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Concomitant food intake influences pharmacokinetics of first-line anti-TB drugs in healthy volunteers. However, in treatment-naive TB patients who are starting with drug treatment, data on the influence of food intake on the pharmacokinetics are absent. This study aimed to quantify the influence of food on the pharmacokinetics of isoniazid, rifampicin, ethambutol and pyrazinamide in TB patients starting anti-TB treatment. METHODS A prospective randomized cross-over pharmacokinetic study was conducted in treatment-naive adults with drug-susceptible TB. They received isoniazid, rifampicin and ethambutol intravenously and oral pyrazinamide on day 1, followed by oral administration of these drugs under fasted and fed conditions on two consecutive days. Primary outcome was the bioavailability while fasting and with concomitant food intake. This study was registered with clinicaltrials.gov identifier NCT02121314. RESULTS Twenty subjects completed the study protocol. Absolute bioavailability in the fasted state and the fed state was 93% and 78% for isoniazid, 87% and 71% for rifampicin and 87% and 82% for ethambutol. Food decreased absolute bioavailability of isoniazid and rifampicin by 15% and 16%, respectively. Pyrazinamide AUC0-24 was comparable for the fasted state (481 mg·h/L) and the fed state (468 mg·h/L). Food lowered the maximum concentrations of isoniazid, rifampicin and pyrazinamide by 42%, 22% and 10%, respectively. Time to maximum concentration was delayed for isoniazid, rifampicin and pyrazinamide. The pharmacokinetics of ethambutol were unaffected by food. CONCLUSIONS Food decreased absolute bioavailability and maximum concentration of isoniazid and rifampicin, but not of ethambutol or pyrazinamide, in treatment-naive TB patients. In patients prone to low drug exposure, this may further compromise treatment efficacy and increase the risk of acquired drug resistance.
Collapse
Affiliation(s)
- Antonia M I Saktiawati
- Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ymkje Stienstra
- Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yanri W Subronto
- Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sumardi
- Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Section of Pharmacotherapy and Pharmaceutical Care, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Internal Medicine/Infectious Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|