1
|
Gu J, Agarwal PK, Bonomo RA, Haider S. Evolutionary Dynamics and Functional Differences in Clinically Relevant Pen β-Lactamases from Burkholderia spp. J Chem Inf Model 2025; 65:5086-5098. [PMID: 40314617 PMCID: PMC12117567 DOI: 10.1021/acs.jcim.5c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Antimicrobial resistance (AMR) is a global threat, with Burkholderia species contributing significantly to difficult-to-treat infections. The Pen family of β-lactamases are produced by all Burkholderia spp., and their mutation or overproduction leads to the resistance of β-lactam antibiotics. Here we investigate the dynamic differences among four Pen β-lactamases (PenA, PenI, PenL and PenP) using machine learning driven enhanced sampling molecular dynamics simulations, Markov State Models (MSMs), convolutional variational autoencoder-based deep learning (CVAE) and the BindSiteS-CNN model. In spite of sharing the same catalytic mechanisms, these enzymes exhibit distinct dynamic features due to low sequence identity, resulting in different substrate profiles and catalytic turnover. The BindSiteS-CNN model further reveals local active site dynamics, offering insights into the Pen β-lactamase evolutionary adaptation. Our findings reported here identify critical mutations and propose new hot spots affecting Pen β-lactamase flexibility and function, which can be used to fight emerging resistance in these enzymes.
Collapse
Affiliation(s)
- Jing Gu
- UCL
School of Pharmacy, University College London, LondonWC1N 1AX, U.K.
| | - Pratul K. Agarwal
- High-Performance
Computing Center, Oklahoma State University, Stillwater, Oklahoma74078-1010, United
States
| | - Robert A. Bonomo
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio44106, United States
- Department
of Molecular Biology and Microbiology, Case
Western Reserve University School of Medicine, Cleveland, Ohio44106, United States
- Department
of Medicine, Case Western Reserve University
School of Medicine, Cleveland, Ohio44106, United States
- Clinician
Scientist Investigator, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio44106, United States
- Departments
of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, CaseWestern Reserve University School of Medicine,Cleveland, Ohio44106, United States
- CWRU-Cleveland
VAMC Centerfor Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio44106, United States
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, LondonWC1N 1AX, U.K.
- University
of Tabuk (PFSCBR), Tabuk47512, Saudi Arabia
- UCL
Center for Advanced Research Computing, University College London, LondonWC1H 9RL, U.K.
| |
Collapse
|
2
|
Mojica MF, Nukaga M, Becka SA, Zeiser ET, Hoshino T, LiPuma JJ, Papp-Wallace KM. Frameshift Mutations in Genes Encoding PBP3 and PBP4 Trigger an Unusual, Extreme β-Lactam Resistance Phenotype in Burkholderia multivorans. ACS Infect Dis 2024; 10:3810-3820. [PMID: 39440926 DOI: 10.1021/acsinfecdis.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In our curated panel of Burkholderia cepacia complex isolates, Burkholderia multivorans strain AU28442 was unusually highly β-lactam resistant. To explore the molecular mechanisms leading to this phenotype, we performed whole genome sequencing (WGS) and microbiological and biochemical assays. WGS analysis revealed that strain AU28442 produced two β-lactamases, AmpC22 and a novel PenA-like β-lactamase denominated PenA39. Additionally, the strain presented frame-shift mutations in the genes encoding penicillin binding proteins 3 (PBP3) and 4 (PBP4). The antibiotic susceptibilities of the parent AU28442 strain carrying blaPenA39 vs the isogenic E. colistrain producing blaPenA39 were discrepant with ceftazidime MICs of >512 and 1 μg/mL, respectively. Accordingly, PenA39 was found to poorly hydrolyze β-lactams with kcat values of ≤8.8 s-1. An overlay of the crystal structure of PenA39 with PenA1 revealed a shift in the SDN loop in the variant, which may affect the catalytic efficiency of PenA39 toward substrates and inhibitors. Moreover, microscopic examination of AU28442 revealed shortened rod-shaped cells compared to B. multivoransATCC 17616, which carries a full complement of intact PBPs. Further complementation assays confirmed that the loss of PBP3 and PBP4 was the main factor contributing to the high-level β-lactam resistance observed in B. multivoransAU28442. This information allowed us to revert susceptibility by pairing a potent β-lactamase inhibitor with a β-lactam with promiscuous PBP binding. This detailed characterization of B. multivoransprovides an illustration of the myriad ways in which bacteria under antibiotic selection can develop resistance and demonstrates a mechanism to overcome it.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
| | - Michiyoshi Nukaga
- Pharmaceutical Sciences, Josai International University, Togane City, Chiba 283-8555, Japan
| | - Scott A Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
| | - Elise T Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 263-8522, Japan
| | - John J LiPuma
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Krisztina M Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio 44106, United States
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Saeed M, Rasheed F, Rasool MH, Hayat S, Khurshid M. Carbapenem-Resistant Burkholderia cepacia Complex Isolates Carrying bla NDM-1 and bla NDM-5 in Ventilator-Associated Pneumonia Patients and Contaminated Ventilator Tubing. Transbound Emerg Dis 2024; 2024:3352135. [PMID: 40303040 PMCID: PMC12016991 DOI: 10.1155/2024/3352135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 08/08/2024] [Indexed: 05/02/2025]
Abstract
Ventilator-associated pneumonia (VAP) represents an important nosocomial infection, frequently encountered in intensive care unit (ICU) settings which results in prolonged hospitals stays. The nosocomial infections caused by Burkholderia cepacia complex (BCC) bacteria pose a significant challenge in healthcare settings owing to their intrinsic resistance to many antibiotics. This study investigates the antimicrobial susceptibility patterns and mechanisms of carbapenem resistance among BCC bacteria from VAP patients and the ventilator tubing. The blood and respiratory specimens from patients diagnosed with VAP were collected. In addition, the ventilators were also screened for the presence of BCC bacteria. The susceptibility profiling of BCC isolates was performed against the various antimicrobial agents, and screening for acquired beta-lactamase enzymes was conducted by polymerase chain reaction. Out of the total 134 patients with BCC-associated VAP, B. cepacia, Burkholderia multivorans, and Burkholderia cenocepacia was 68.7% (n = 92), 18.7% (n = 25), and 12.7% (n = 17). Overall, the BCC isolates showed varying susceptibility to different antibiotics: 76.9% were susceptible to chloramphenicol, 76.1% to minocycline, 69.4% to meropenem, 60.4% to ceftazidime, 51.5% to trimethoprim-sulfamethoxazole, and 50% to levofloxacin. Resistance to ceftazidime (51/92, 55.4%) and meropenem (36/92, 39.1%) was exclusively observed in B. cepacia isolates, and all isolates of B. multivorans and B. cenocepacia were found to be susceptible to both beta-lactam drugs. Among the 134 clinical isolates, 15 were found to harbor the bla NDM variants, that is, bla NDM-1 and bla NDM-5. All carbapenem-resistant isolates from the ventilator tubing were identified as B. cepacia and were found to harbor either the bla NDM-1 or the bla NDM-5 variants. The observed increase in resistance and the emergence of acquired beta-lactamases among BCC isolates highlight a concerning trend that could potentially lead to serious outbreaks.
Collapse
Affiliation(s)
- Muhammad Saeed
- Institute of MicrobiologyGovernment College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Rasheed
- Allama Iqbal Medical College and Jinnah Hospital, Lahore, Pakistan
| | | | - Sumreen Hayat
- Institute of MicrobiologyGovernment College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of MicrobiologyGovernment College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Mojica MF, Zeiser ET, Becka SA, LiPuma JJ, Six DA, Moeck G, Papp-Wallace KM. Examining the activity of cefepime-taniborbactam against Burkholderia cepacia complex and Burkholderia gladioli isolated from cystic fibrosis patients in the United States. Antimicrob Agents Chemother 2023; 67:e0049823. [PMID: 37768313 PMCID: PMC10648927 DOI: 10.1128/aac.00498-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
The novel clinical-stage β-lactam-β-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D β-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| | - Elise T. Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Scott A. Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Beca FA, Sengillo JD, Robles-Holmes HK, Iyer PG, Miller D, Yannuzzi NA, Flynn HW. Endophthalmitis caused by Burkholderia cepacia complex (BCC): clinical characteristics, antibiotic susceptibilities, and treatment outcomes. J Ophthalmic Inflamm Infect 2023; 13:48. [PMID: 37922028 PMCID: PMC10624773 DOI: 10.1186/s12348-023-00370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2023] Open
Abstract
PURPOSE To report the clinical characteristics, antibiotic susceptibilities, and review the literature of Burkholderia cepacia complex (BCC) associated endophthalmitis. STUDY DESIGN Retrospective, observational case series. METHODS Clinical and microbiology records were reviewed for patients evaluated at the Bascom Palmer Eye Institute and diagnosed wisth culture-confirmed endophthalmitis due to BCC. Antibiotic susceptibility profiles were generated using standard microbiologic protocols via an automated VITEK system. RESULTS Endophthalmitis associated with BCC was diagnosed in three patients. Infection occurred in the setting of post-penetrating keratoplasty (PKP), glaucoma filtering surgery, and suspected trauma. All isolates demonstrated in vitro susceptibility to ceftazidime and meropenem. Presenting visual acuity (VA) ranged from hand motion to light perception. Initial treatment strategies included intravitreal ceftazidime (2.25 mg/0.1 mL) and vancomycin (1.0 mg/0.1 mL) injections with fortified topical antibiotics in 2 patients, and surgical debridement of a corneoscleral melt with patch graft along with both topical fortified antibiotics oral antibiotics in the third patient. In all 3 patients, there was no VA improvement at last follow-up, as 2 eyes ultimately underwent enucleation and 1 eye exhibited phthisis bulbi at last follow-up. BCC related endophthalmitis was reviewed among 13 reports. Treatment outcomes were generally poor and antibiotic resistance was common. These BCC isolates cases demonstrated broad resistance patterns, with susceptibilities to ceftazidime (58%), ciprofloxacin (53%), and gentamicin (33%). CONCLUSIONS Endophthalmitis caused by B. cepacia is a rare clinical entity with generally poor visual outcomes despite prompt treatment with appropriate antibiotics.
Collapse
Affiliation(s)
- Flavius A Beca
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jesse D Sengillo
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hailey K Robles-Holmes
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Prashanth G Iyer
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Darlene Miller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Liao YC, Huang YT, Tseng CH, Liu CW, Liu PY. Comparative Genomics Identified PenR E151V Substitution Associated with Carbapenem-Resistance Burkholderia cepacia Complex and a Novel Burkholderia cepacia Complex Specific OXA-1043 Subgroup. Infect Drug Resist 2023; 16:5627-5635. [PMID: 37662974 PMCID: PMC10473398 DOI: 10.2147/idr.s418969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Burkholderia cepacia complex (Bcc) is a known significant opportunistic pathogen causing morbidity and mortality, particularly in those with cystic fibrosis, chronic granulomatous disease, or immunocompromising host. Mortality of Bcc bloodstream infections among non-cystic fibrosis patients remained high. The antibiotic treatment for Bcc infection is quite challenging due to its intrinsic resistance to most antibiotics, and the resistance to carbapenems was the biggest concern among them. We aimed to realize the mechanism of carbapenem resistance in Bcc. Patients and Methods Ten strains of Bcc were identified by the MALDI-TOF MS, and the drug susceptibility test was using VITEK 2 system. The Burkholderia cepacia complex genomes were sequenced via Nanopore GridIon. We also downloaded another ninety-five strains of Bcc from the National Center for Biotechnology Information database to evaluate the divergence between carbapenem-resistance and carbapenem-sensitive strains. Results The genetic organization between carbapenem-sensitive and carbapenem-resistant strains of Bcc showed no difference. However, in the carbapenem-sensitive strain, E151V substitution in PenR was detected. In addition, a novel specific OXA family subgroup, blaOXA-1043 in Burkholderia cenocepacia was discovered. Conclusion The E151V substitution in PenR may be associated with carbapenem-sensitive in Bcc. Moreover, the V151E mutation in PenR may be related to the activation of PenB, leading to Bcc resistance to carbapenems. Besides, a novel OXA family subgroup, blaOXA-1043, was found in Burkholderia cenocepacia, which differs from the previous OXA family.
Collapse
Affiliation(s)
- Ya-Chun Liao
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Genome Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Hogan AM, Rahman ASMZ, Motnenko A, Natarajan A, Maydaniuk DT, León B, Batun Z, Palacios A, Bosch A, Cardona ST. Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium. Nat Commun 2023; 14:4815. [PMID: 37558695 PMCID: PMC10412643 DOI: 10.1038/s41467-023-40494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The cell envelope of Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals. Here, we present the results of a genome-wide screen for cell envelope-associated resistance and susceptibility determinants in a Burkholderia cenocepacia clinical isolate. For this purpose, we construct a high-density, randomly-barcoded transposon mutant library and expose it to 19 cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profile over a hundred functional associations and identify mediators of antibiotic susceptibility in the Bcc cell envelope. We reveal connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism. The synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. In comparison with ceftazidime, avibactam more strongly potentiates the activity of aztreonam and meropenem in a panel of Bcc clinical isolates. Finally, we characterize in Bcc the iron and receptor-dependent activity of the siderophore-cephalosporin antibiotic, cefiderocol. Our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of current antibacterial therapies.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aakash Natarajan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin T Maydaniuk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beltina León
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Zayra Batun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Armando Palacios
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
8
|
Beca FA, Sengillo JD, Robles-Holmes HK, Iyer PG, Miller D, Yannuzzi NA, Flynn HW. Endophthalmitis caused by Burkholderia cepacia complex (BCC): Clinical characteristics, antibiotic susceptibilities, and treatment outcomes. RESEARCH SQUARE 2023:rs.3.rs-3181158. [PMID: 37503162 PMCID: PMC10371171 DOI: 10.21203/rs.3.rs-3181158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Purpose To report the clinical characteristics, antibiotic susceptibilities, and review the literature of Burkholderia cepacia complex (BCC) associated endophthalmitis. Study design Retrospective, observational case series. Methods Clinical and microbiology records were reviewed for patients evaluated at the Bascom Palmer Eye Institute and diagnosed with culture-confirmed endophthalmitis due to BCC. Antibiotic susceptibility profiles were generated using standard microbiologic protocols via an automated VITEK system. Results Endophthalmitis associated with BCC was diagnosed in three patients. Infection occurred in the setting of post-penetrating keratoplasty (PKP), glaucoma filtering surgery, and suspected trauma. All isolates demonstrated in vitro susceptibility to ceftazidime and meropenem. Presenting visual acuity (VA) ranged from hand motion to light perception. Initial treatment strategies included intravitreal ceftazidime (2.25 mg/0.1 mL) and vancomycin (1.0 mg/0.1mL) injections with fortified topical antibiotics in 2 patients, and surgical debridement of a corneoscleral melt with patch graft along with both topical fortified antibiotics oral antibiotics in the third patient. In all 3 patients, there was no VA improvement at last follow-up, as 2 eyes ultimately underwent enucleation and 1 eye exhibited phthisis bulbi at last follow-up. BCC related endophthalmitis was reviewed among 13 reports. Treatment outcomes were generally poor and antibiotic resistance was common. These BCC isolates cases demonstrated broad resistance patterns, with susceptibilities to ceftazidime (58%), ciprofloxacin (53%), and gentamicin (33%). Conclusions Endophthalmitis caused by B. cepacia is a rare clinical entity with generally poor visual outcomes despite prompt treatment with appropriate antibiotics.
Collapse
|
9
|
Di DYW, Cao G, Zhong C, Yan T. Diversity of bla POM in carbapenem-resistant opportunistic pathogenic Pseudomonas otitidis in municipal wastewater. JOURNAL OF WATER AND HEALTH 2023; 21:560-570. [PMID: 37254905 PMCID: wh_2023_255 DOI: 10.2166/wh.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metallo-β-lactamases (MBLs) encoding carbapenem resistance in wastewater are a well-known serious threat to human health. Twelve Pseudomonas otitidis isolates obtained from a municipal wastewater treatment plant (WWTP) in Hawaii were found to possess a subclass B3 MBL - POM (P. otitidis MBL), with a minimum inhibition concentration (MIC) range of 8-16 mg/L. The unrooted neighbor-joining phylogenetic tree showed that these blaPOM genes isolated in wastewater samples (n = 12) were distinctly different from other reference genes isolated from clinical, freshwater, animal, and soil samples except for isolates MR7, MR8, and MR11. MR7, MR8, and MR11 were found to have 4, 3, and 3 amino acid substitutions when compared to the type strain MC10330T and were closely clustered to the clinical reference genes. The meropenem hydrolysis experiment showed that isolates with multiple amino acid substitutions completely hydrolyzed 64 mg/L of meropenem in 7 h. The emergence of the opportunistic pathogen P. otitidis chromosomally encoding blaPOM in the treated municipal wastewater is an alarming call for the spread of this MBL in the environment. Further studies are required to understand the mechanism and regulation of this carbapenem-resistant β-lactamase in order to fill in the knowledge gap.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Guangxiang Cao
- School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
The Class A β-Lactamase Produced by Burkholderia Species Compromises the Potency of Tebipenem against a Panel of Isolates from the United States. Antibiotics (Basel) 2022; 11:antibiotics11050674. [PMID: 35625319 PMCID: PMC9137479 DOI: 10.3390/antibiotics11050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tebipenem-pivoxil hydrobromide, an orally bioavailable carbapenem, is currently in clinical development for the treatment of extended-spectrum β-lactamase- and AmpC-producing Enterobacterales. Previously, tebipenem was found to possess antimicrobial activity against the biothreat pathogens, Burkholderia pseudomallei and Burkholderia mallei. Thus, herein, tebipenem was evaluated against a panel of 150 curated strains of Burkholderia cepacia complex (Bcc) and Burkholderia gladioli, pathogens that infect people who are immunocompromised or have cystic fibrosis. Using the provisional susceptibility breakpoint of 0.12 mg/L for tebipenem, 100% of the Bcc and B. gladioli tested as being provisionally resistant to tebipenem. Bcc and B. gladioli possess two inducible chromosomal β-lactamases, PenA and AmpC. Using purified PenA1 and AmpC1, model β-lactamases expressed in Burkholderia multivorans ATCC 17616, PenA1 was found to slowly hydrolyze tebipenem, while AmpC1 was inhibited by tebipenem with a k2/K value of 1.9 ± 0.1 × 103 M−1s−1. In addition, tebipenem was found to be a weak inducer of blaPenA1 expression. The combination of the slow hydrolysis by PenA1 and weak induction of blaPenA1 likely compromises the potency of tebipenem against Bcc and B. gladioli.
Collapse
|
11
|
Kozlov AV, Lyamin AV, Zhestkov A, Gusyakova O, Khaliulin A. Iron metabolism in bacterial cells: from physiological significance to a new class of antimicrobial agents. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.2.165-170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Infectious complications in the respiratory tract caused by microorganisms from the Burkholderia cepacia complex are the main cause of death among patients with cystic fibrosis. Natural and acquired resistance mechanisms allow Burkholderia cepacia complex pathogens to adapt to the conditions of regular antibiotic therapy, which necessitates the use of antibacterial drugs with an alternative mechanism of action. Studies on the importance of iron as an essential factor in the metabolism of bacteria and methods of its acquisition from the environment contributed to the development of a new antibiotic from a number of cephalosporins – cefiderocol. In the structure of cefiderocol, a fragment is formed that imitates siderophores – chelating molecules that ensure the transport of iron ions into the internal environment of the microorganism. A unique mechanism, described in the scientific literature as a “Trojan horse”, allows antibiotic molecules conjugated with siderophores to effectively penetrate into the bacterial cell, exerting a bactericidal effect. Thus, cefiderocol can be used to treat infectious complications in the lungs of patients with cystic fibrosis caused by bacteria from the Burkholderia cepacia complex, including multidrug-resistant strains. In addition, the spectrum of activity of cefiderocol allows the use of this antibiotic in the treatment of infections caused by nosocomial gram-negative bacteria such as Enterobacterales, Acinetobacter, Pseudomonas and Stenotrophomonas.
Collapse
|
12
|
Evaluation of Antimicrobial Susceptibility Testing Methods for Burkholderia cenocepacia and Burkholderia multivorans Isolates from Cystic Fibrosis Patients. J Clin Microbiol 2021; 59:e0144721. [PMID: 34524889 DOI: 10.1128/jcm.01447-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cepacia complex (BCC) is known for causing serious lung infections in people with cystic fibrosis (CF). These infections can require lung transplantation, eligibility for which may be guided by antimicrobial susceptibility testing (AST). While the Clinical and Laboratory Standards Institute recommends AST for BCC, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) does not, due to poor method performance and correlation with clinical outcomes. Furthermore, limited data exist on the performance of automated AST methods for BCC. To address these issues, reproducibility and accuracy were evaluated for disk diffusion (DD), broth microdilution (BMD), and MicroScan WalkAway using 50 B. cenocepacia and 50 B. multivorans isolates collected from people with CF. The following drugs were evaluated in triplicate: chloramphenicol (CAM), ceftazidime (CAZ), meropenem (MEM), trimethoprim-sulfamethoxazole (TMP-SMX), minocycline (MIN), levofloxacin (LVX), ciprofloxacin (CIP), and piperacillin-tazobactam (PIP-TAZ). BMD reproducibility was ≥ 95% for MEM and MIN only, and MicroScan WalkAway reproducibility was similar to BMD. DD reproducibility was < 90% for all drugs tested when a 3 mm cut-off was applied. When comparing the accuracy of DD to BMD, only MEM met all acceptance criteria. TMP-SMX and LVX had high minor errors, CAZ had unacceptable very major errors (VME), and MIN, PIP-TAZ, and CIP had both unacceptable minor errors and VMEs. For MicroScan WalkAway, no drugs met acceptance criteria. Analyses also showed that errors were not attributed to one species. In general, our data agree with EUCAST recommendations.
Collapse
|
13
|
Activity of imipenem-relebactam against multi-drug and extensively-drug resistant Burkholderia cepacia complex and Burkholderia gladioli. Antimicrob Agents Chemother 2021; 65:e0133221. [PMID: 34370574 DOI: 10.1128/aac.01332-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic pathogens that most commonly infect persons with cystic fibrosis or compromised immune systems. Members of the Burkholderia genus are intrinsically multidrug resistant (MDR), possessing both a PenA carbapenemase and an AmpC β-lactamase, which renders treatment of infection due to these species problematic. Here, we tested the β-lactam-β-lactamase inhibitor combination, imipenem-relebactam, against a panel of MDR Bcc and B. gladioli. The addition of relebactam to imipenem dramatically lowered the MICs for Bcc and B. gladioli with only 16% of isolates testing susceptible to imipenem vs. 71.3% being susceptible to the imipenem-relebactam combination. While ceftazidime-avibactam remained the most potent combination drug against this panel of Bcc and B. gladioli, imipenem-relebactam was active against 71.4% of the ceftazidime-avibactam-resistant isolates. Relebactam demonstrated potent inactivation of the Burkholderia multivorans PenA1 with a Ki app value of 3.2 μM. Timed mass spectrometry revealed that PenA1 formed a very stable adduct with relebactam, without any detectable desulfation up to 24 hours. Based on our results, imipenem-relebactam may represent an alternative salvage therapy for Bcc and B. gladioli infection, especially in cases where the isolates are resistant to ceftazidime-avibactam.
Collapse
|
14
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
15
|
Lind C, Olsen K, Angelsen NK, Krefting EA, Fossen K, Gravningen K, Depoorter E, Vandamme P, Bertelsen G. Clinical course, treatment and visual outcome of an outbreak of Burkholderia contaminans endophthalmitis following cataract surgery. J Ophthalmic Inflamm Infect 2021; 11:12. [PMID: 33870459 PMCID: PMC8053629 DOI: 10.1186/s12348-021-00242-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background Postoperative endophthalmitis is a rare but dreaded complication of intraocular surgery and often results in severe visual impairment or blindness. The present study describes the clinical course, treatment and visual outcome of an outbreak of Burkholderia contaminans endophthalmitis following cataract surgery. Methods Among 290 patients who underwent uneventful phacoemulsification cataract surgery at one outpatient clinic between January 4th and 28th 2019, 6 cases developed Burkholderia contaminans endophthalmitis. Clinical data were collected by retrospective review of patient records. Microbiological samples from vitreous aspirates, intraocular lenses (IOL) and lens capsules were cultured, and recA and draft whole genome sequences analysed. Results The recA sequences of all Burkholderia contaminans isolates and the allelic profile of the isolates were identical. All cases had a similar clinical presentation with rapid development of endophthalmitis symptoms with variable time to onset. The mean time to admission was 34 days (12–112 days). All cases had a seemingly favourable response to intravitreal antibiotics. However, acute recurrences occurred after long time periods (12–71 days). The cases experienced between 0 and 3 recurrences. Due to persistent infection, the cases received between 5 and 15 treatments (mean 7.8) including IOL and lens capsule explantation in 5 of 6 cases. Burkholderia contaminans was detected in all explanted lens capsules. The final corrected distance visual acuity (CDVA, Snellen chart) was between 0.8 and 1.2 and all cases had final CDVA ≥0.8. Conclusions A persistent and intensive treatment approach including total lens capsule and IOL explantation is recommended for Burkholderia contaminans endophthalmitis following cataract surgery and may lead to a favourable visual result.
Collapse
Affiliation(s)
- Caroline Lind
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Karina Olsen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Nina K Angelsen
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Einar A Krefting
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Fossen
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Kirsten Gravningen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.,Department of Infection Prevention and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Geir Bertelsen
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway. .,Department of Community Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
16
|
In Vitro Antibacterial Activity and In Vivo Efficacy of Sulbactam-Durlobactam against Pathogenic Burkholderia Species. Antimicrob Agents Chemother 2021; 65:AAC.01930-20. [PMID: 33318017 DOI: 10.1128/aac.01930-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterial genus Burkholderia includes several hard-to-treat human pathogens: two biothreat species, Burkholderia mallei (causing glanders) and B. pseudomallei (causing melioidosis), and the B. cepacia complex (BCC) and B. gladioli, which cause chronic lung infections in persons with cystic fibrosis. All Burkholderia spp. possess an Ambler class A Pen β-lactamase, which confers resistance to β-lactams. The β-lactam-β-lactamase inhibitor combination sulbactam-durlobactam (SUL-DUR) is in clinical development for the treatment of Acinetobacter infections. In this study, we evaluated SUL-DUR for in vitro and in vivo activity against Burkholderia clinical isolates. We measured MICs of SUL-DUR against BCC and B. gladioli (n = 150), B. mallei (n = 30), and B. pseudomallei (n = 28), studied the kinetics of inhibition of the PenA1 β-lactamase from B. multivorans and the PenI β-lactamase from B. pseudomallei by durlobactam, tested for bla PenA1 induction by SUL-DUR, and evaluated in vivo efficacy in a mouse model of melioidosis. SUL-DUR inhibited growth of 87.3% of the BCC and B. gladioli strains and 100% of the B. mallei and B. pseudomallei strains at 4/4 μg/ml. Durlobactam potently inhibited PenA1 and PenI with second-order rate constant for inactivation (k 2 /K) values of 3.9 × 106 M-1 s-1 and 2.6 × 103 M-1 s-1 and apparent Ki (Ki app) of 15 nM and 241 nM, respectively, by forming highly stable covalent complexes. Neither sulbactam, durlobactam, nor SUL-DUR increased production of PenA1. SUL-DUR demonstrated activity in vivo in a murine melioidosis model. Taken together, these data suggest that SUL-DUR may be useful as a treatment for Burkholderia infections.
Collapse
|
17
|
Ling L, Yang C, Ma W, Zhao Y, Feng S, Tu Y, Wang N, Li Z, Lu L. Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijun Ling
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
- Northwest Normal University Lanzhou City China
| | - Caiyun Yang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Wenxia Ma
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yunhua Zhao
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Shenglai Feng
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yixin Tu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Nan Wang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Zibin Li
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Lu Lu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| |
Collapse
|
18
|
Wootton M, Davies L, Pitman K, Howe RA. Evaluation of susceptibility testing methods for Burkholderia cepacia complex: a comparison of broth microdilution, agar dilution, gradient strip and EUCAST disc diffusion. Clin Microbiol Infect 2020; 27:S1198-743X(20)30708-4. [PMID: 33253940 DOI: 10.1016/j.cmi.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To evaluate the accuracy and reproducibility of antimicrobial susceptibility testing methods in Burkholderia cepacia complex (BCC). METHODS Minocycline, ciprofloxacin, trimethoprim/sulphamethoxazole, meropenem, ceftazidime and chloramphenicol were tested against 155 BCC strains using broth microdilution at 35 ± 1°C (BMD35) in triplicate, then BMD at 30 ± 1°C (BMD30), agar dilution at 30°C and 35°C (AD30 and AD35), gradient strip (GS) and EUCAST standardized disc diffusion (DD) testing methods once. RESULTS BMD35 reproducibility ranged from 70% to 84.5% for all agents. Correlations of MICs from BMD35 with BMD30 ranged from 63% to 85%, with AD35 from 32.9% to 87% and with GS methods from 36% to 83.9%. Essential agreement (EA) of MICs by GS with BMD35 ranged from 62.6% (trimethoprim-sulphamethoxazole) to 83.9% (minocycline). EA of EUCAST DD zone diameters using CLSI breakpoint criteria was between 85.8% and 97.4%, however Very Major Errors (VME) for trimethoprim/sulphamethoxazole were 31%. CONCLUSIONS BMD at 35 ± 1°C was poorly reproducible for most agents and no method showed acceptable performance. Of particular concern were the GS results. Although this is the most commonly used method for determining MICs in laboratories, there was poor correlation with BMD35 for meropenem and trimethoprim/sulphamethoxazole. EUCAST DD correlated poorly with BMD35 MICs. This study confirms that no susceptibility method is capable of providing reproducible and accurate MICs when testing BCC.
Collapse
Affiliation(s)
- Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit (SACU), Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom.
| | - Leanne Davies
- Specialist Antimicrobial Chemotherapy Unit (SACU), Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Katherine Pitman
- Specialist Antimicrobial Chemotherapy Unit (SACU), Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Robin A Howe
- Specialist Antimicrobial Chemotherapy Unit (SACU), Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
19
|
Somprasong N, Hall CM, Webb JR, Sahl JW, Wagner DM, Keim P, Currie BJ, Schweizer HP. Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A β-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria. mBio 2020; 11:e00592-20. [PMID: 32291300 PMCID: PMC7157819 DOI: 10.1128/mbio.00592-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.IMPORTANCEBurkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures.
Collapse
Affiliation(s)
- Nawarat Somprasong
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Carina M Hall
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jessica R Webb
- Global and Tropical Heath Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J Currie
- Global and Tropical Heath Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
"Switching Partners": Piperacillin-Avibactam Is a Highly Potent Combination against Multidrug-Resistant Burkholderia cepacia Complex and Burkholderia gladioli Cystic Fibrosis Isolates. J Clin Microbiol 2019; 57:JCM.00181-19. [PMID: 31167848 DOI: 10.1128/jcm.00181-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023] Open
Abstract
In persons with cystic fibrosis (CF), airway infection with Burkholderia cepacia complex (Bcc) species or Burkholderia gladioli presents a significant challenge due to inherent resistance to multiple antibiotics. Two chromosomally encoded inducible β-lactamases, a Pen-like class A and AmpC are produced in Bcc and B. gladioli Previously, ceftazidime-avibactam demonstrated significant potency against Bcc and B. gladioli isolated from the sputum of individuals with CF; however, 10% of the isolates tested resistant to ceftazidime-avibactam. Here, we describe an alternative antibiotic combination to overcome ceftazidime-avibactam resistance. Antimicrobial susceptibility testing was performed on Bcc and B. gladioli clinical and control isolates. Biochemical analysis was conducted on purified PenA1 and AmpC1 β-lactamases from Burkholderia multivorans ATCC 17616. Analytic isoelectric focusing and immunoblotting were conducted on cellular extracts of B. multivorans induced by various β-lactams or β-lactam-β-lactamase inhibitor combinations. Combinations of piperacillin-avibactam, as well as piperacillin-tazobactam plus ceftazidime-avibactam (the clinically available counterpart), were tested against a panel of ceftazidime-avibactam nonsusceptible Bcc and B. gladioli The piperacillin-avibactam and piperacillin-tazobactam-ceftazidime-avibactam combinations restored susceptibility to 99% of the isolates tested. Avibactam is a potent inhibitor of PenA1 (apparent inhibitory constant [Ki app] = 0.5 μM), while piperacillin was found to inhibit AmpC1 (Ki app = 2.6 μM). Moreover, piperacillin, tazobactam, ceftazidime, and avibactam, as well as combinations thereof, did not induce expression of bla penA1 and bla ampC1 in the B. multivorans ATCC 17616 background. When ceftazidime-avibactam is combined with piperacillin-tazobactam, the susceptibility of Bcc and B. gladioli to ceftazidime and piperacillin is restored in vitro Both the lack of bla penA1 induction and potent inactivation of PenA1 by avibactam likely provide the major contributions toward susceptibility. With in vivo validation, piperacillin-tazobactam-ceftazidime-avibactam may represent salvage therapy for individuals with CF and highly drug-resistant Bcc and B. gladioli infections.
Collapse
|
21
|
Resurrecting Old β-Lactams: Potent Inhibitory Activity of Temocillin against Multidrug-Resistant Burkholderia Species Isolates from the United States. Antimicrob Agents Chemother 2019; 63:AAC.02315-18. [PMID: 30718248 DOI: 10.1128/aac.02315-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia spp. are opportunistic human pathogens that infect persons with cystic fibrosis and the immunocompromised. Burkholderia spp. express class A and C β-lactamases, which are transcriptionally regulated by PenRA through linkage to cell wall metabolism and β-lactam exposure. The potency of temocillin, a 6-methoxy-β-lactam, was tested against a panel of multidrug-resistant (MDR) Burkholderia spp. In addition, the mechanistic basis of temocillin activity was assessed and compared to that of ticarcillin. Susceptibility testing with temocillin and ticarcillin was conducted, as was biochemical analysis of the PenA1 class A β-lactamase and AmpC1 class C β-lactamase. Molecular dynamics simulations (MDS) were performed using PenA1 with temocillin and ticarcillin. The majority (86.7%) of 150 MDR Burkholderia strains were susceptible to temocillin, while only 4% of the strains were susceptible to ticarcillin. Neither temocillin nor ticarcillin induced bla expression. Ticarcillin was hydrolyzed by PenA1 (k cat/Km = 1.7 ± 0.2 μM-1 s-1), while temocillin was slow to form a favorable complex (apparent Ki [Ki app] = ∼2 mM). Ticarcillin and temocillin were both potent inhibitors of AmpC1, with Ki app values of 4.9 ± 1.0 μM and 4.3 ± 0.4 μM, respectively. MDS of PenA revealed that ticarcillin is in an advantageous position for acylation and deacylation. Conversely, with temocillin, active-site residues K73 and S130 are rotated and the catalytic water molecule is displaced, thereby slowing acylation and allowing the 6-methoxy of temocillin to block deacylation. Temocillin is a β-lactam with potent activity against Burkholderia spp., as it does not induce bla expression and is poorly hydrolyzed by endogenous β-lactamases.
Collapse
|
22
|
Yi H, Lee H, Cho KH, Kim HS. Mutations in MetG (methionyl-tRNA synthetase) and TrmD [tRNA (guanine-N1)-methyltransferase] conferring meropenem tolerance in Burkholderia thailandensis. J Antimicrob Chemother 2019; 73:332-338. [PMID: 29136176 DOI: 10.1093/jac/dkx378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Objectives Although meropenem is widely used to treat Burkholderia infections, the response of Burkholderia pathogens to this antibiotic is largely unexplored. Methods Burkholderia thailandensis, a model for Burkholderia spp., particularly Burkholderia mallei and Burkholderia pseudomallei, was challenged with a lethal level of meropenem and survivors were isolated. The genomes of two of the isolates were analysed to identify mutated genes and these genes were then specifically examined in more isolates to profile mutation diversity. Mutants were characterized to investigate the biological basis underlying survival against meropenem. Results One of two genes associated with tRNA metabolism [metG or trmD, encoding methionyl-tRNA synthetase or tRNA (guanine-N1)-methyltransferase, respectively] was found to be mutated in the two survivors. A single nucleotide substitution and a frameshift mutation were found in metG and trmD, respectively. Five different substitution mutations affecting methionine- or tRNA-binding sites were found in metG during further screening. The mutants exhibited slowed growth and increased tolerance not only to meropenem but also various other antibiotics. This tolerance required intact RelA, a key stringent response. Conclusions Specific mutations affecting the tRNA pool, particularly those in metG, play a pivotal role in the B. thailandensis response to meropenem challenge. This mechanism of antibiotic tolerance is important because it can reduce the effectiveness of meropenem and thereby facilitate chronic infection by Burkholderia pathogens. In addition, specific mutations found in MetG will prove useful in the effort to develop new drugs to completely inhibit this essential enzyme, while preventing stringent-response-mediated antibiotic tolerance in pathogens.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Hyeri Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul 156-743, Korea
| | - Heenam Stanley Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| |
Collapse
|
23
|
Degrossi JJ, Merino C, Isasmendi AM, Ibarra LM, Collins C, Bo NE, Papalia M, Fernandez JS, Hernandez CM, Papp-Wallace KM, Bonomo RA, Vazquez MS, Power P, Ramirez MS. Whole Genome Sequence Analysis of Burkholderia contaminans FFH2055 Strain Reveals the Presence of Putative β-Lactamases. Curr Microbiol 2019; 76:485-494. [PMID: 30783798 DOI: 10.1007/s00284-019-01653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Burkholderia contaminans is a member of the Burkholderia cepacia complex (Bcc), a pathogen with increasing prevalence among cystic fibrosis (CF) patients and the cause of numerous outbreaks due to the use of contaminated commercial products. The antibiotic resistance determinants, particularly β-lactamases, have been poorly studied in this species. In this work, we explored the whole genome sequence (WGS) of a B. contaminans isolate (FFH 2055) and detected four putative β-lactamase-encoding genes. In general, these genes have more than 93% identity with β-lactamase genes found in other Bcc species. Two β-lactamases, a class A (Pen-like, suggested name PenO) and a class D (OXA-like), were further analyzed and characterized. Amino acid sequence comparison showed that Pen-like has 82% and 67% identity with B. multivorans PenA and B. pseudomallei PenI, respectively, while OXA-like displayed strong homology with class D enzymes within the Bcc, but only 22-44% identity with available structures from the OXA family. PCR reactions designed to study the presence of these two genes revealed a heterogeneous distribution among clinical and industrial B. contaminans isolates. Lastly, blaPenO gene was cloned and expressed into E. coli to investigate the antibiotic resistance profile and confers an extended-spectrum β-lactamase (ESBL) phenotype. These results provide insight into the presence of β-lactamases in B. contaminans, suggesting they play a role in antibiotic resistance of these bacteria.
Collapse
Affiliation(s)
- José J Degrossi
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cindy Merino
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Adela M Isasmendi
- Servicio de Bacteriología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lorena M Ibarra
- Servicio de Bacteriología, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Chelsea Collins
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Nicolás E Bo
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Papalia
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
- Cátedra de Microbiología, Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jennifer S Fernandez
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Claudia M Hernandez
- Servicio de Bacteriología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, OH, 44106, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, OH, 44106, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Microbiology and Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Miryam S Vazquez
- Servicio de Bacteriología, Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | - Pablo Power
- Cátedra de Microbiología, Laboratorio de Resistencia Bacteriana, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Ramirez
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
24
|
Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob 2019; 18:7. [PMID: 30717798 PMCID: PMC6360774 DOI: 10.1186/s12941-019-0306-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identification. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimination to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
25
|
Characterization of the AmpC β-Lactamase from Burkholderia multivorans. Antimicrob Agents Chemother 2018; 62:AAC.01140-18. [PMID: 30012762 DOI: 10.1128/aac.01140-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022] Open
Abstract
Burkholderia multivorans is a member of the Burkholderia cepacia complex, a group of >20 related species of nosocomial pathogens that commonly infect individuals suffering from cystic fibrosis. β-Lactam antibiotics are recommended as therapy for infections due to Bmultivorans, which possesses two β-lactamase genes, blapenA and blaAmpC PenA is a carbapenemase with a substrate profile similar to that of the Klebsiella pneumoniae carbapenemase (KPC); in addition, expression of PenA is inducible by β-lactams in Bmultivorans Here, we characterize AmpC from Bmultivorans ATCC 17616. AmpC possesses only 38 to 46% protein identity with non-Burkholderia AmpC proteins (e.g., PDC-1 and CMY-2). Among 49 clinical isolates of Bmultivorans, we identified 27 different AmpC variants. Some variants possessed single amino acid substitutions within critical active-site motifs (Ω loop and R2 loop). Purified AmpC1 demonstrated minimal measurable catalytic activity toward β-lactams (i.e., nitrocefin and cephalothin). Moreover, avibactam was a poor inhibitor of AmpC1 (Kiapp > 600 μM), and acyl-enzyme complex formation with AmpC1 was slow, likely due to lack of productive interactions with active-site residues. Interestingly, immunoblotting using a polyclonal anti-AmpC antibody revealed that protein expression of AmpC1 was inducible in Bmultivorans ATCC 17616 after growth in subinhibitory concentrations of imipenem (1 μg/ml). AmpC is a unique inducible class C cephalosporinase that may play an ancillary role in Bmultivorans compared to PenA, which is the dominant β-lactamase in Bmultivorans ATCC 17616.
Collapse
|
26
|
In Vitro Susceptibility of Burkholderia cepacia Complex Isolated from Cystic Fibrosis Patients to Ceftazidime-Avibactam and Ceftolozane-Tazobactam. Antimicrob Agents Chemother 2018; 62:AAC.00590-18. [PMID: 29914964 DOI: 10.1128/aac.00590-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 01/05/2023] Open
Abstract
We tested the in vitro susceptibility of ceftazidime-avibactam and ceftolozane-tazobactam and 13 other antibiotics against 91 Burkholderia cepacia complex (BCC) strains isolated from cystic fibrosis patients since 2012. The highest susceptibility (82%) was found for trimethoprim-sulfamethoxazole. Eighty-one and 63% of all BCC strains were susceptible to ceftazidime-avibactam and ceftolozane-tazobactam, respectively. For temocillin, ceftazidime, piperacillin-tazobactam, and meropenem, at least 50% of the strains were susceptible. B. stabilis seems to be more resistant than other BCC species.
Collapse
|
27
|
Sequence heterogeneity of the PenA carbapenemase in clinical isolates of Burkholderia multivorans. Diagn Microbiol Infect Dis 2018; 92:253-258. [PMID: 29983287 PMCID: PMC6173980 DOI: 10.1016/j.diagmicrobio.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant gram-negative pathogens are a significant health threat. Burkholderia spp. encompass a complex subset of gram-negative bacteria with a wide range of biological functions that include human, animal, and plant pathogens. The treatment of infections caused by Burkholderia spp. is problematic due to their inherent resistance to multiple antibiotics. The major β-lactam resistance determinant expressed in Burkholderia spp. is a class A β-lactamase of the PenA family. In this study, significant amino acid sequence heterogeneity was discovered in PenA (37 novel variants) within a panel of 48 different strains of Burkholderia multivorans isolated from individuals with cystic fibrosis. Phylogenetic analysis distributed the 37 variants into 5 groups based on their primary amino acid sequences. Amino acid substitutions were present throughout the entire β-lactamase and did not congregate to specific regions of the protein. The PenA variants possessed 5 to 17 single amino acid changes. The N189S and S286I substitutions were most prevalent and found in all variants. Due to the sequence heterogeneity in PenA, a highly conserved peptide (18 amino acids) within PenA was chosen as the antigen for polyclonal antibody production in order to measure expression of PenA within the 48 clinical isolates of B. multivorans. Characterization of the anti-PenA peptide antibody, using immunoblotting approaches, exposed several unique features of this antibody (i.e., detected <500 pg of purified PenA, all 37 PenA variants in B. multivorans, and Pen-like β-lactamases from other species within the Burkholderia cepacia complex). The significant sequence heterogeneity found in PenA may have occurred due to selective pressure (e.g., exposure to antimicrobial therapy) within the host. The contribution of these changes warrants further investigation.
Collapse
|
28
|
Furlan JPR, Sanchez DG, Fachin AL, Stehling EG. Presence of β-Lactamase Encoding Genes inBurkholderia cepaciaComplex Isolated from Soil. Microb Drug Resist 2018; 24:347-352. [DOI: 10.1089/mdr.2017.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Danilo Garcia Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
30
|
Successful Treatment of Persistent Burkholderia cepacia Complex Bacteremia with Ceftazidime-Avibactam. Antimicrob Agents Chemother 2018; 62:62/4/e02213-17. [PMID: 29588357 DOI: 10.1128/aac.02213-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report our clinical experience treating a 2-month-old infant with congenital diaphragmatic hernia who experienced prolonged bacteremia with Burkholderia cepacia complex (Bcc) despite conventional antibiotic therapy and appropriate source control measures. The infection resolved after initiation of ceftazidime-avibactam. Whole-genome sequencing revealed that the isolate most closely resembled B. contaminans and identified the mechanism of resistance that likely contributed to clinical cure with this agent. Ceftazidime-avibactam should be considered salvage therapy for Bcc infections if other treatment options have been exhausted.
Collapse
|
31
|
El Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F, Bonomo RA. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted' therapy. Expert Rev Anti Infect Ther 2018; 16:89-110. [PMID: 29310479 PMCID: PMC6093184 DOI: 10.1080/14787210.2018.1425139] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.
Collapse
Affiliation(s)
- Nadim G. El Chakhtoura
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elie Saade
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mohamad Yasmin
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brigid Wilson
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Federico Perez
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Bonomo
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
32
|
Zhuang W, Liu H, Li J, Chen L, Wang G. Regulation of Class A β-Lactamase CzoA by CzoR and IscR in Comamonas testosteroni S44. Front Microbiol 2017; 8:2573. [PMID: 29312251 PMCID: PMC5744064 DOI: 10.3389/fmicb.2017.02573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
A genomic analysis of Comamonas testosteroni S44 revealed a gene that encodes a LysR family transcriptional regulator (here named czoR, czo for cefazolin) located upstream of a putative class A β-lactamase encoding gene (here named czoA). A putative DNA-binding motif of the Fe-S cluster assembly regulator IscR was identified in the czoR-czoA intergenic region. Real-time RT-PCR and lacZ fusion expression assays indicated that transcription of czoA and czoR were induced by multiple β-lactams. CzoA expressed in Escherichia coli was shown to contribute to susceptibility to a wide range of β-lactams judged from minimum inhibitory concentrations. In vitro enzymatic assays showed that CzoA hydrolyzed seven β-lactams, including benzylpenicillin, ampicillin, cefalexin, cefazolin, cefuroxime, ceftriaxone, and cefepime. Deletion of either iscR or czoR increased susceptibility to cefalexin and cefazolin, while complemented strains restored their wild-type susceptibility levels. Electrophoretic mobility shift assays (EMSA) demonstrated that CzoR and IscR bind to different sites of the czoR-czoA intergenic region. Precise CzoR- and IscR-binding sites were confirmed via DNase I footprinting or short fragment EMSA. When cefalexin or cefazolin was added to cultures, czoR deletion completely inhibited czoA expression but did not affect iscR transcription, while iscR deletion decreased the expressions of both czoR and czoA. These results reveal that CzoR positively affects the expression of czoA with its own expression upregulated by IscR.
Collapse
Affiliation(s)
- Weiping Zhuang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongliang Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front Microbiol 2017; 8:1592. [PMID: 28878751 PMCID: PMC5572248 DOI: 10.3389/fmicb.2017.01592] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen particularly dangerous for cystic fibrosis (CF) patients. It can cause a severe decline in CF lung function possibly developing into a life-threatening systemic infection known as cepacia syndrome. Antibiotic resistance and presence of numerous virulence determinants in the genome make B. cenocepacia extremely difficult to treat. Better understanding of its resistance profiles and mechanisms is crucial to improve management of these infections. Here, we present the clinical distribution of B. cenocepacia described in the last 6 years and methods for identification and classification of epidemic strains. We also detail new antibiotics, clinical trials, and alternative approaches reported in the literature in the last 5 years to tackle B. cenocepacia resistance issue. All together these findings point out the urgent need of new and alternative therapies to improve CF patients’ life expectancy.
Collapse
Affiliation(s)
- Viola C Scoffone
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | | | - Gabriele Trespidi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health EnglandLondon, United Kingdom.,Department of Microbiology, Royal Cornwall HospitalTruro, United Kingdom
| | - Giovanna Riccardi
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of PaviaPavia, Italy
| |
Collapse
|
34
|
Exploring the Role of the Ω-Loop in the Evolution of Ceftazidime Resistance in the PenA β-Lactamase from Burkholderia multivorans, an Important Cystic Fibrosis Pathogen. Antimicrob Agents Chemother 2017; 61:AAC.01941-16. [PMID: 27872073 DOI: 10.1128/aac.01941-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022] Open
Abstract
The unwelcome evolution of resistance to the advanced generation cephalosporin antibiotic, ceftazidime is hindering the effective therapy of Burkholderia cepacia complex (BCC) infections. Regrettably, BCC organisms are highly resistant to most antibiotics, including polymyxins; ceftazidime and trimethoprim-sulfamethoxazole are the most effective treatment options. Unfortunately, resistance to ceftazidime is increasing and posing a health threat to populations susceptible to BCC infection. We found that up to 36% of 146 tested BCC clinical isolates were nonsusceptible to ceftazidime (MICs ≥ 8 μg/ml). To date, the biochemical basis for ceftazidime resistance in BCC is largely undefined. In this study, we investigated the role of the Ω-loop in mediating ceftazidime resistance in the PenA β-lactamase from Burkholderia multivorans, a species within the BCC. Single amino acid substitutions were engineered at selected positions (R164, T167, L169, and D179) in the PenA β-lactamase. Cell-based susceptibility testing revealed that 21 of 75 PenA variants engineered in this study were resistant to ceftazidime, with MICs of >8 μg/ml. Under steady-state conditions, each of the selected variants (R164S, T167G, L169A, and D179N) demonstrated a substrate preference for ceftazidime compared to wild-type PenA (32- to 320-fold difference). Notably, the L169A variant hydrolyzed ceftazidime significantly faster than PenA and possessed an ∼65-fold-lower apparent Ki (Kiapp) than that of PenA. To understand why these amino acid substitutions result in enhanced ceftazidime binding and/or turnover, we employed molecular dynamics simulation (MDS). The MDS suggested that the L169A variant starts with the most energetically favorable conformation (-28.1 kcal/mol), whereas PenA possessed the most unfavorable initial conformation (136.07 kcal/mol). In addition, we observed that the spatial arrangement of E166, N170, and the hydrolytic water molecules may be critical for enhanced ceftazidime hydrolysis by the L169A variant. Importantly, we found that two clinical isolates of B. multivorans possessed L169 amino acid substitutions (L169F and L169P) in PenA and were highly resistant to ceftazidime (MICs ≥ 512 μg/ml). In conclusion, substitutions in the Ω-loop alter the positioning of the hydrolytic machinery as well as allow for a larger opening of the active site to accommodate the bulky R1 and R2 side chains of ceftazidime, resulting in resistance. This analysis provides insights into the emerging phenotype of ceftazidime-resistant BCC and explains the evolution of amino acid substitutions in the Ω-loop of PenA of this significant clinical pathogen.
Collapse
|
35
|
High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Sci Rep 2016; 6:36527. [PMID: 27827433 PMCID: PMC5101513 DOI: 10.1038/srep36527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023] Open
Abstract
The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.
Collapse
|
36
|
A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clin Microbiol Rev 2016; 29:29-57. [PMID: 26511485 DOI: 10.1128/cmr.00019-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For medical biologists, sequencing has become a commonplace technique to support diagnosis. Rapid changes in this field have led to the generation of large amounts of data, which are not always correctly listed in databases. This is particularly true for data concerning class A β-lactamases, a group of key antibiotic resistance enzymes produced by bacteria. Many genomes have been reported to contain putative β-lactamase genes, which can be compared with representative types. We analyzed several hundred amino acid sequences of class A β-lactamase enzymes for phylogenic relationships, the presence of specific residues, and cluster patterns. A clear distinction was first made between dd-peptidases and class A enzymes based on a small number of residues (S70, K73, P107, 130SDN132, G144, E166, 234K/R, 235T/S, and 236G [Ambler numbering]). Other residues clearly separated two main branches, which we named subclasses A1 and A2. Various clusters were identified on the major branch (subclass A1) on the basis of signature residues associated with catalytic properties (e.g., limited-spectrum β-lactamases, extended-spectrum β-lactamases, and carbapenemases). For subclass A2 enzymes (e.g., CfxA, CIA-1, CME-1, PER-1, and VEB-1), 43 conserved residues were characterized, and several significant insertions were detected. This diversity in the amino acid sequences of β-lactamases must be taken into account to ensure that new enzymes are accurately identified. However, with the exception of PER types, this diversity is poorly represented in existing X-ray crystallographic data.
Collapse
|
37
|
Abstract
The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Katherine A Rhodes
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA; Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute and Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
38
|
Exposing a β-Lactamase "Twist": the Mechanistic Basis for the High Level of Ceftazidime Resistance in the C69F Variant of the Burkholderia pseudomallei PenI β-Lactamase. Antimicrob Agents Chemother 2015; 60:777-88. [PMID: 26596949 DOI: 10.1128/aac.02073-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022] Open
Abstract
Around the world, Burkholderia spp. are emerging as pathogens highly resistant to β-lactam antibiotics, especially ceftazidime. Clinical variants of Burkholderia pseudomallei possessing the class A β-lactamase PenI with substitutions at positions C69 and P167 are known to demonstrate ceftazidime resistance. However, the biochemical basis for ceftazidime resistance in class A β-lactamases in B. pseudomallei is largely undefined. Here, we performed site saturation mutagenesis of the C69 position and investigated the kinetic properties of the C69F variant of PenI from B. pseudomallei that results in a high level of ceftazidime resistance (2 to 64 mg/liter) when expressed in Escherichia coli. Surprisingly, quantitative immunoblotting showed that the steady-state protein levels of the C69F variant β-lactamase were ∼4-fold lower than those of wild-type PenI (0.76 fg of protein/cell versus 4.1 fg of protein/cell, respectively). However, growth in the presence of ceftazidime increases the relative amount of the C69F variant to greater than wild-type PenI levels. The C69F variant exhibits a branched kinetic mechanism for ceftazidime hydrolysis, suggesting there are two different conformations of the enzyme. When incubated with an anti-PenI antibody, one conformation of the C69F variant rapidly hydrolyzes ceftazidime and most likely contributes to the higher levels of ceftazidime resistance observed in cell-based assays. Molecular dynamics simulations suggest that the electrostatic characteristics of the oxyanion hole are altered in the C69F variant. When ceftazidime was positioned in the active site, the C69F variant is predicted to form a greater number of hydrogen-bonding interactions than PenI with ceftazidime. In conclusion, we propose "a new twist" for enhanced ceftazidime resistance mediated by the C69F variant of the PenI β-lactamase based on conformational changes in the C69F variant. Our findings explain the biochemical basis of ceftazidime resistance in B. pseudomallei, a pathogen of considerable importance, and suggest that the full repertoire of conformational states of a β-lactamase profoundly affects β-lactam resistance.
Collapse
|
39
|
Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia. Antimicrob Agents Chemother 2015; 59:7602-10. [PMID: 26416862 DOI: 10.1128/aac.01068-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/21/2015] [Indexed: 01/07/2023] Open
Abstract
In many Gram-negative pathogens, mutations in the key cell wall-recycling enzyme AmpD (N-acetyl-anhydromuramyl-L-alanine amidase) affect the activity of the regulator AmpR, which leads to the expression of AmpC β-lactamase, conferring resistance to expanded-spectrum cephalosporin antibiotics. Burkholderia cepacia complex (Bcc) species also have these Amp homologs; however, the regulatory circuitry and the nature of causal ampD mutations remain to be explored. A total of 92 ampD mutants were obtained, representing four types of mutations: single nucleotide substitution (causing an amino acid substitution or antitermination of the enzyme), duplication, deletion, and IS element insertion. Duplication, which can go through reversion, was the most frequent type. Intriguingly, mutations in ampD led to the induction of two β-lactamases, AmpC and PenB. Coregulation of AmpC and PenB in B. cenocepacia, and likely also in many Bcc species with the same gene organization, poses a serious threat to human health. This resistance mechanism is of evolutionary optimization in that ampD is highly prone to mutations allowing rapid response to antibiotic challenge, and many of the mutations are reversible in order to resume cell wall recycling when the antibiotic challenge is relieved.
Collapse
|
40
|
Yi H, Song H, Hwang J, Kim K, Nierman WC, Kim HS. The tandem repeats enabling reversible switching between the two phases of β-lactamase substrate spectrum. PLoS Genet 2014; 10:e1004640. [PMID: 25233343 PMCID: PMC4169377 DOI: 10.1371/journal.pgen.1004640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022] Open
Abstract
Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements—that we named SCSs (same-strand complementary sequences)—were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution. β-lactamases can adapt to new antibiotics by mutations in their genes. The original and the extended substrate spectrums of β-lactamases define two phases of catalytic activity, and the conversion by point mutations is unidirectional from the initial to the new spectrum. We describe duplication mutations that enable reversible switching between the substrate spectrums, increasing the adaptability of the bacterium. We provide evidence supporting that two distinct groups of short sequences mediated the formation of DNA duplications in β-lactamases: direct repeats and novel elements that we named, SCSs (same-strand complementary sequences). Our study suggests that DNA duplication processes mediated by both direct repeats and SCSs are not just limited to the β-lactamase genes but comprise a fundamental mechanism in bacterial genome evolution.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Han Song
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Junghyun Hwang
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - Karan Kim
- Department of Biomedical Sciences, Korea University, Seoul, Korea
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Heenam Stanley Kim
- Department of Biosystems and Biotechnology, Korea University, Seoul, Korea
- Department of Biomedical Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
41
|
Papp-Wallace KM, Taracila MA, Gatta JA, Ohuchi N, Bonomo RA, Nukaga M. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J Biol Chem 2013; 288:19090-102. [PMID: 23658015 DOI: 10.1074/jbc.m113.458315] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Burkholderia cepacia complex and Burkholderia pseudomallei are opportunistic human pathogens. Resistance to β-lactams among Burkholderia spp. is attributable to expression of β-lactamases (e.g. PenA in B. cepacia complex and PenI in B. pseudomallei). Phylogenetic comparisons reveal that PenA and PenI are highly related. However, the analyses presented here reveal that PenA is an inhibitor-resistant carbapenemase, most similar to KPC-2 (the most clinically significant serine carbapenemase), whereas PenI is an extended spectrum β-lactamase. PenA hydrolyzes β-lactams with k(cat) values ranging from 0.38 ± 0.04 to 460 ± 46 s(-1) and possesses high k(cat)/k(inact) values of 2000, 1500, and 75 for β-lactamase inhibitors. PenI demonstrates the highest kcat value for cefotaxime of 9.0 ± 0.9 s(-1). Crystal structure determination of PenA and PenI reveals important differences that aid in understanding their contrasting phenotypes. Changes in the positioning of conserved catalytic residues (e.g. Lys-73, Ser-130, and Tyr-105) as well as altered anchoring and decreased occupancy of the deacylation water explain the lower k(cat) values of PenI. The crystal structure of PenA with imipenem docked into the active site suggests why this carbapenem is hydrolyzed and the important role of Arg-220, which was functionally confirmed by mutagenesis and biochemical characterization. Conversely, the conformation of Tyr-105 hindered docking of imipenem into the active site of PenI. The structural and biochemical analyses of PenA and PenI provide key insights into the hydrolytic mechanisms of β-lactamases, which can lead to the rational design of novel agents against these pathogens.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yi H, Cho KH, Cho YS, Kim K, Nierman WC, Kim HS. Twelve positions in a β-lactamase that can expand its substrate spectrum with a single amino acid substitution. PLoS One 2012; 7:e37585. [PMID: 22629423 PMCID: PMC3358254 DOI: 10.1371/journal.pone.0037585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/22/2012] [Indexed: 11/18/2022] Open
Abstract
The continuous evolution of β-lactamases resulting in bacterial resistance to β-lactam antibiotics is a major concern in public health, and yet the underlying molecular basis or the pattern of such evolution is largely unknown. We investigated the mechanics of the substrate fspectrum expansion of the class A β-lactamase using PenA of Burkholderia thailandensis as a model. By analyzing 516 mutated enzymes that acquired the ceftazidime-hydrolyzing activity, we found twelve positions with single amino acid substitutions (altogether twenty-nine different substitutions), co-localized at the active-site pocket area. The ceftazidime MIC (minimum inhibitory concentration) levels and the relative frequency in the occurrence of substitutions did not correlate well with each other, and the latter appeared be largely influenced by the intrinsic mutational biases present in bacteria. Simulation studies suggested that all substitutions caused a congruent effect, expanding the space in a conserved structure called the omega loop, which in turn increased flexibility at the active site. A second phase of selection, in which the mutants were placed under increased antibiotic pressure, did not result in a second mutation in the coding region, but a mutation that increased gene expression arose in the promoter. This result suggests that the twelve amino acid positions and their specific substitutions in PenA may represent a comprehensive repertoire of the enzyme's adaptability to a new substrate. These mapped substitutions represent a comprehensive set of general mechanical paths to substrate spectrum expansion in class A β-lactamases that all share a functional evolutionary mechanism using common conserved residues.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul, Korea
| | - Yun Sung Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul, Korea
| | - Karan Kim
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Heenam Stanley Kim
- Department of Medicine, College of Medicine, Korea University, Seoul, Korea
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
43
|
Substrate spectrum extension of PenA in Burkholderia thailandensis with a single amino acid deletion, Glu168del. Antimicrob Agents Chemother 2012; 56:4005-8. [PMID: 22564834 DOI: 10.1128/aac.00598-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a deletion mutation in a class A β-lactamase, PenA, of Burkholderia thailandensis that extended the substrate spectrum of the enzyme to include ceftazidime. Glu168del was located in a functional domain called the omega loop causing expansion of the space in the loop, which in turn increased flexibility at the active site. This deletion mutation represents a rare but significant alternative mechanical path to substrate spectrum extension in PenA besides more common substitution mutations.
Collapse
|
44
|
Maravić A, Skočibušić M, Sprung M, Samanić I, Puizina J, Pavela-Vrančić M. Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2012; 22:531-542. [PMID: 22428949 DOI: 10.1080/09603123.2012.667797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During an environmental study of bacterial resistance to antibiotics in coastal waters of the Kaštela Bay, Adriatic Sea, Croatia, 47 Burkholderia cepacia complex (Bcc) isolates were recovered from seawater and mussel (Mytilus galloprovincialis) samples. All isolates showed multiple antibiotic resistance. Among the isolates, two Burkholderia cenocepacia isolates produced chromosomally encoded TEM-116 extended-spectrum β-lactamase (ESBL). Analysis of outer membrane proteins revealed that decreased expression of a 36-kDa protein could be associated with a high level of β-lactam resistance in both isolates. Phenotypic study of efflux system also indicated an over-expression of Resistance-Nodulation-Cell Division (RND) efflux-mediated mechanism in one of the isolates. This study demonstrated the presence of Bcc in seawater and M. galloprovincialis, which gives evidence that coastal marine environment, including mussels, could be considered as a reservoir for Bcc species. Detection of ESBL-encoding genes indicates the potential role of these bacteria in the maintenance and dispersion of antibiotic resistance genes.
Collapse
Affiliation(s)
- Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia.
| | | | | | | | | | | |
Collapse
|
45
|
Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BMC Genomics 2011; 12:373. [PMID: 21781329 PMCID: PMC3155924 DOI: 10.1186/1471-2164-12-373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 07/22/2011] [Indexed: 11/29/2022] Open
Abstract
Background Burkholderia cenocepacia is a member of the Burkholderia cepacia complex group of bacteria that cause infections in individuals with cystic fibrosis. B. cenocepacia isolate J2315 has been genome sequenced and is representative of a virulent, epidemic CF strain (ET12). Its genome encodes multiple antimicrobial resistance pathways and it is not known which of these is important for intrinsic or spontaneous resistance. To map these pathways, transcriptomic analysis was performed on: (i) strain J2315 exposed to sub-inhibitory concentrations of antibiotics and the antibiotic potentiator chlorpromazine, and (ii) on spontaneous mutants derived from J2315 and with increased resistance to the antibiotics amikacin, meropenem and trimethoprim-sulfamethoxazole. Two pan-resistant ET12 outbreak isolates recovered two decades after J2315 were also compared to identify naturally evolved gene expression changes. Results Spontaneous resistance in B. cenocepacia involved more gene expression changes and different subsets of genes than those provoked by exposure to sub inhibitory concentrations of each antibiotic. The phenotype and altered gene expression in the resistant mutants was also stable irrespective of the presence of the priming antibiotic. Both known and novel genes involved in efflux, antibiotic degradation/modification, membrane function, regulation and unknown functions were mapped. A novel role for the phenylacetic acid (PA) degradation pathway genes was identified in relation to spontaneous resistance to meropenem and glucose was found to repress their expression. Subsequently, 20 mM glucose was found to produce greater that 2-fold reductions in the MIC of multiple antibiotics against B. cenocepacia J2315. Mutation of an RND multidrug efflux pump locus (BCAM0925-27) and squalene-hopene cyclase gene (BCAS0167), both upregulated after chlorpromazine exposure, confirmed their role in resistance. The recently isolated outbreak isolates had altered the expression of multiple genes which mirrored changes seen in the antibiotic resistant mutants, corroborating the strategy used to model resistance. Mutation of an ABC transporter gene (BCAS0081) upregulated in both outbreak strains, confirmed its role in B. cenocepacia resistance. Conclusions Global mapping of the genetic pathways which mediate antibiotic resistance in B. cenocepacia has revealed that they are multifactorial, identified potential therapeutic targets and also demonstrated that putative catabolite repression of genes by glucose can improve antibiotic efficacy.
Collapse
|
46
|
Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C. Evolution of an endofungal lifestyle: Deductions from the Burkholderia rhizoxinica genome. BMC Genomics 2011; 12:210. [PMID: 21539752 PMCID: PMC3102044 DOI: 10.1186/1471-2164-12-210] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic zygomycete Rhizopus microsporus, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of B. rhizoxinica HKI 0454 - a type strain of endofungal Burkholderia species. RESULTS The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living Burkholderia species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, B. rhizoxinica lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors. CONCLUSIONS B. rhizoxinica is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that B. rhizoxinica is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. In silico analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.
Collapse
Affiliation(s)
- Gerald Lackner
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nadine Moebius
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Laila P Partida-Martinez
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, CP 36821 Irapuato, Guanajuato, México
| | - Sebastian Boland
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Department of Biomolecular Chemistry, Beutenbergstr. 11a, 07745 Jena, Germany
- Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
47
|
Molecular and biochemical characterization of the natural chromosome-encoded class A beta-lactamase from Pseudomonas luteola. Antimicrob Agents Chemother 2009; 54:45-51. [PMID: 19884377 DOI: 10.1128/aac.00427-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas luteola (formerly classified as CDC group Ve-1 and named Chryseomonas luteola) is an unusual pathogen implicated in rare but serious infections in humans. A novel beta-lactamase gene, bla(LUT-1), was cloned from the whole-cell DNA of the P. luteola clinical isolate LAM, which had a weak narrow-spectrum beta-lactam-resistant phenotype, and expressed in Escherichia coli. This gene encoded LUT-1, a 296-amino-acid Ambler class A beta-lactamase with a pI of 6 and a theoretical molecular mass of 28.9 kDa. The catalytic efficiency of this enzyme was higher for cephalothin, cefuroxime, and cefotaxime than for penicillins. It was found to be 49% to 59% identical to other Ambler class A beta-lactamases from Burkholderia sp. (PenA to PenL), Ralstonia eutropha (REUT), Citrobacter sedlakii (SED-1), Serratia fonticola (FONA and SFC-1), Klebsiella sp. (KPC and OXY), and CTX-M extended-spectrum beta-lactamases. No gene homologous to the regulatory ampR genes of class A beta-lactamases was found in the vicinity of the bla(LUT-1) gene. The entire bla(LUT-1) coding region was amplified by PCR and sequenced in five other genetically unrelated P. luteola strains (including the P. luteola type strain). A new variant of bla(LUT-1) was found for each strain. These genes (named bla(LUT-2) to bla(LUT-6)) had nucleotide sequences 98.1 to 99.5% identical to that of bla(LUT-1) and differing from this gene by two to four nonsynonymous single nucleotide polymorphisms. The bla(LUT) gene was located on a 700- to 800-kb chromosomal I-CeuI fragment, the precise size of this fragment depending on the P. luteola strain.
Collapse
|