1
|
Cirino ME, Teixeira TR, Silva AMH, Borges ACC, Fukui-Silva L, Wagner LG, Fernandes C, McCann M, Santos ALS, de Moraes J. Anthelmintic activity of 1,10-phenanthroline-5,6-dione-based metallodrugs. Sci Rep 2025; 15:4699. [PMID: 39922838 PMCID: PMC11807182 DOI: 10.1038/s41598-025-88484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Parasitic worm infections impose a significant public health burden, affecting over 2 billion people, particularly in low-income regions. The limited efficacy of current treatments highlights the urgent need for new anthelmintic agents. This study investigates the potential antiparasitic activity of 1,10-phenanthroline-5,6-dione (phendione) and its metal complexes, [Cu(phendione)3](ClO4)2.8H2O and [Ag(phendione)2](ClO4), against Schistosoma mansoni, the causative agent of intestinal schistosomiasis, and Angiostrongylus cantonensis, responsible for eosinophilic meningitis in humans. Additionally, the compounds were tested on Caenorhabditis elegans, a model organism for drug discovery. All compounds exhibited strong antiparasitic activity, with Cu-phendione showing the greatest potency (EC50 = 2.3 µM for S. mansoni and 6.4 µM for A. cantonensis). Ag-phendione also demonstrated significant activity, achieving EC₅₀ values of 6.5 µM against S. mansoni and 12.7 µM against A. cantonensis. The lethal dose (LD50) values in C. elegans were over 40 times higher, indicating selective antiparasitic effects. Cytotoxicity assays using Vero cells revealed a low toxicity profile and a high selectivity index. Given the promising biological properties of phendione and its metal complexes, these findings contribute to the growing body of research seeking to address the urgent need for new anthelmintic therapies.
Collapse
Affiliation(s)
- Maria E Cirino
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Thainá R Teixeira
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Alessandro M H Silva
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil
| | - Ana C C Borges
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Lucas Fukui-Silva
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Luis G Wagner
- Departamento de Química, Universidade Federal de Santa Catarina, Santa Catarina, SC, 88040- 900, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Santa Catarina, SC, 88040- 900, Brazil
| | - Malachy McCann
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, W23 F2H6, Ireland
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil.
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
2
|
Umehara E, Cajas RA, Conceição GB, Antar GM, Andricopulo AD, de Moraes J, Lago JHG. In Vitro and In Vivo Evaluation of the Antischistosomal Activity of Polygodial and 9-Deoxymuzigadial Isolated from Drimys brasiliensis Branches. Molecules 2025; 30:267. [PMID: 39860137 PMCID: PMC11767830 DOI: 10.3390/molecules30020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the present study, the hexane extract from branches of Drimys brasiliensis (Winteraceae) displayed potent activity against Schistosoma mansoni parasites (100% mortality of the worms at 200 μg/mL). Bioactivity-guided fractionation afforded, in addition to the previously reported bioactive sesquiterpene 3,6-epidioxy-bisabola-1,10-diene, two chemically related drimane sesquiterpenes-polygodial (1) and 9-deoxymuzigadial (2). The anti-S. mansoni effects for compounds 1 and 2 were determined in vitro, with compound 1 demonstrating significant potency (EC50 value of 10 μM for both male and female worms), while 2 was inactive. Cytotoxicity assays against Vero cells revealed no toxicity for either compound (CC50 > 200 μM). Additionally, an in silico analysis was conducted using the SwissADME platform for 1, revealing that this natural sesquiterpene exhibited adherence to several ADME parameters and no PAINS violations. Finally, in vivo studies with S. mansoni-infected mice treated with compound 1 demonstrated a 44.0% reduction in worm burden, accompanied by decreases in egg production of 71.8% in feces and 69.5% in intestines. These findings highlight the potential of polygodial (1) as a promising prototype for schistosomiasis treatment.
Collapse
Affiliation(s)
- Eric Umehara
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
| | - Rayssa A. Cajas
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Gabriel B. Conceição
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Guilherme M. Antar
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus 29932-540, ES, Brazil;
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo 08230-030, SP, Brazil
| | - João Henrique G. Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
3
|
Albuquerque MMS, Luz RLSA, Rodrigues VC, Roquini DB, Umehara E, de Moraes J, Branco A, Lago JHG. Oral Administration of Kaempferol Isolated from Baccharis Mattogrosensis Enables In Vivo Activity Against Schistosoma Mansoni. Chem Biodivers 2024; 21:e202401452. [PMID: 39136606 DOI: 10.1002/cbdv.202401452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024]
Abstract
Baccharis mattogrosensis is a species from Asteraceae which has been used in Brazilian folk medicine to treatment of several illnesses, including those caused by parasites. In the present work, the MeOH extract of aerial parts of B. mattogrosensis was subjected to chromatographic fractionation to afford three flavonoids: apigenin (1), quercetin (2), and kaempferol (3) as well as a mixture three chlorogenic acids: 3,4-O-dicaffeoylquinic (4), 3,5-O-dicaffeoylquinic (5), and 4,5-O-dicaffeoylquinic (6) acids. When tested in vitro, kaempferol (3) exhibited activity against Schistosoma mansoni with EC50=81.86 μM, whereas compounds 1, 2, 4-6 showed to be inactives. Considering this result, the effects of kaempferol (3) against S. mansoni infection using an experimental approach (in vivo assay) was tested at first time. Using a single oral dose (400 mg/kg) of kaempferol (3) to S. mansoni-infected mice reduced the worm burden by 25.5 %. Similarly, the number of eggs, which are responsible for a variety of pathologies and transmission of schistosomiasis, was decreased by 28.8 % in treated mice. Collectively, although kaempferol (3) is partially active when administered orally in a mouse model of schistosomiasis, our results suggest that this compound could be, in future studies, administered in different forms, such as nanoformulation.
Collapse
Affiliation(s)
- Mara Marcia S Albuquerque
- Phytochemistry Laboratory, Department of Health, State University of Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - Rebecca Lustosa S A Luz
- Phytochemistry Laboratory, Department of Health, State University of Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - Vinícius C Rodrigues
- Research Center for Neglected Diseases, Guarulhos University, 07023-070, Guarulhos, SP, Brazil
| | - Daniel B Roquini
- Research Center for Neglected Diseases, Guarulhos University, 07023-070, Guarulhos, SP, Brazil
| | - Eric Umehara
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, 07023-070, Guarulhos, SP, Brazil
| | - Alexsandro Branco
- Phytochemistry Laboratory, Department of Health, State University of Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| |
Collapse
|
4
|
Dantas AMC, Teixeira FS, Oblitas RL, Araújo WWR, Amaro MC, Cajas RA, de Moraes J, Salvadori MC. Atomic force microscopy reveals morphological and mechanical properties of schistosoma mansoni tegument. Sci Rep 2024; 14:23055. [PMID: 39367249 PMCID: PMC11452522 DOI: 10.1038/s41598-024-74056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Schistosoma mansoni, an intravascular parasitic worm and the causative agent of schistosomiasis, relies on its tegument (outer layer) for survival and host interaction. This study explored the morphology and mechanical properties of S. mansoni tegument using Atomic Force Microscopy (AFM). Notably, we employed the PeakForce Quantitative Nanomechanical Mapping (PF-QNM) mode in air, enabling simultaneous acquisition of 3D topography and mechanical property contrasts (adhesion, elastic modulus). Additionally, nanoindentation (AFM contact mode) was performed on female worm tegument for elastic modulus measurement. Both techniques revealed an elastic modulus range of fractions or units of GPa for the tegument. Interestingly, mechanical property maps, particularly adhesion contrast, displayed a recurring pattern of light and dark bands. We also measured the depth of annular furrows on the female tegument, finding an average of 128 ± 10 nm. These findings establish AFM, particularly PF-QNM, as a valuable tool to characterize S. mansoni tegument properties, offering insights for future investigations into parasite biology and its response to immunological or pharmacological challenges.
Collapse
Affiliation(s)
- Adriane M C Dantas
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Fernanda S Teixeira
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Raissa L Oblitas
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Wagner W R Araújo
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Monique C Amaro
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil
| | - Rayssa A Cajas
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil.
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, 08230-030, SP, Brazil.
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil.
| |
Collapse
|
5
|
Dobrachinski L, Ferreira LLG, Cirino ME, Andrade-de-Siqueira AI, Mafud AC, Mascarenhas YP, Andricopulo AD, de Moraes J. The 3D pharmacophore modeling to explore new antischistosomal agents among US FDA approved drugs. Future Med Chem 2024; 16:1791-1799. [PMID: 39072451 PMCID: PMC11457623 DOI: 10.1080/17568919.2024.2379231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To identify potential antischistosomal agents through 3D pharmacophore-based virtual screening of US FDA approved drugs.Materials & methods: A comprehensive virtual screening was conducted on a dataset of 10,000 FDA approved drugs, employing praziquantel as a template. Promising candidates were selected and assessed for their impact on Schistosoma mansoni viability in vitro and in vivo using S. mansoni infected mice.Results & conclusion: Among the selected drugs, betamethasone and doxazosin demonstrated in vitro efficacy, with effective concentration 50% (EC50) values ranging from 35 to 60 μM. In vivo studies revealed significant (>50%) reductions in worm burden for both drugs. These findings suggest that betamethasone and doxazosin hold promise for repurposing in treating schistosomiasis. Additionally, the study showcases a useful approach for identifying new antischistosomal drugs.
Collapse
Affiliation(s)
- Leandro Dobrachinski
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Leonardo LG Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | - Ana C Mafud
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Yvonne P Mascarenhas
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Brasil, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Roquini D, Lemes BL, Kreutz ALB, Spoladore SC, Amaro MC, Lopes FB, Fernandes JP, de Moraes J. Antihistamines H 1 as Potential Anthelmintic Agents against the Zoonotic Parasite Angiostrongylus cantonensis. ACS OMEGA 2024; 9:31159-31165. [PMID: 39035884 PMCID: PMC11256074 DOI: 10.1021/acsomega.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Infections caused by parasitic helminths pose significant health concerns for both humans and animals. The limited efficacy of existing drugs underscores the urgent need for novel anthelmintic agents. Given the reported potential of antihistamines against various parasites, including worms, this study conducted a screening of clinically available antihistamines against Angiostrongylus cantonensis-a nematode with widespread implications for vertebrate hosts, including humans. Twenty-one anti-H1 antihistamines were screened against first-stage larvae (L1) of A. cantonensis obtained from the feces of infected rats. Standard anthelmintic drugs ivermectin and albendazole were employed for comparative analysis. The findings revealed four active compounds (promethazine, cinnarizine, desloratadine, and rupatadine), with promethazine demonstrating the highest potency (EC50 = 31.6 μM). Additionally, morphological analysis showed that antihistamines induced significant changes in larvae. To understand the mechanism of action, antimuscarinic activities were reported based on average pK i values for human muscarinic receptor (mAChR) subtypes of the evaluated compounds. Furthermore, an analysis of the physicochemical and pharmacodynamic properties of antihistamines revealed that their anthelmintic activity does not correlate with their activity at H1 receptors. This study marks the first documentation of antihistamines' activity against A. cantonensis, offering a valuable contribution to the quest for novel agents effective against zoonotic helminths.
Collapse
Affiliation(s)
- Daniel
B. Roquini
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Bruna L. Lemes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Amanda L. B. Kreutz
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Sophia C. Spoladore
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Monique C. Amaro
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Flavia B. Lopes
- Departamento
de Medicina, Universidade Federal de São
Paulo, 04023-062 São Paulo, SP, Brazil
- Departamento
de Ciências Farmacêuticas, Universidade Federal de São Paulo, 09913-030 Diadema, SP, Brazil
| | - João Paulo
S. Fernandes
- Departamento
de Ciências Farmacêuticas, Universidade Federal de São Paulo, 09913-030 Diadema, SP, Brazil
| | - Josué de Moraes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
- Núcleo
de Pesquisa em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 São
Paulo, SP, Brazil
| |
Collapse
|
7
|
Cajas RA, Santos SSB, Espírito-Santo MCC, Garedaghi Y, de Moraes J. In vitro and in vivo efficacy of the amiodarone and praziquantel combination against the blood fluke Schistosoma mansoni. Antimicrob Agents Chemother 2024; 68:e0011424. [PMID: 38780260 PMCID: PMC11232383 DOI: 10.1128/aac.00114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Schistosomiasis, a widespread parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, primarily in developing countries. Praziquantel, the sole drug currently approved for schistosomiasis treatment, demonstrates effectiveness against patent infections. A recent study highlighted the antiparasitic properties of amiodarone, an anti-arrhythmic drug, exhibiting higher efficacy than praziquantel against prepatent infections. This study assessed the efficacy of amiodarone and praziquantel, both individually and in combination, against Schistosoma mansoni through comprehensive in vitro and in vivo experiments. In vitro experiments demonstrated synergistic activity (fractional inhibitory concentration index ≤0.5) for combinations of amiodarone with praziquantel. In a murine model of schistosomiasis featuring prepatent infections, treatments involving amiodarone (200 or 400 mg/kg) followed by praziquantel (200 or 400 mg/kg) yielded a substantial reduction in worm burden (60%-70%). Given the low efficacy of praziquantel in prepatent infections, combinations of amiodarone with praziquantel may offer clinical utility in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Rayssa A. Cajas
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
| | - Silvia S. B. Santos
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
| | - Maria Cristina C. Espírito-Santo
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, Laboratory of Immunopathology of Schistosomiasis (LIM-06), University of São Paulo, São Paulo, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Yagoob Garedaghi
- Department of Parasitology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
- Research Center on Neglected Diseases, Scientific and Technological Institute, Brazil University, São Paulo, Brazil
| |
Collapse
|
8
|
Cogo RM, Pavani TFA, Mengarda ACA, Cajas RA, Teixeira TR, Fukui-Silva L, Sun YU, Liu LJ, Amarasinghe DK, Yoon MC, Santos-Filho OA, de Moraes J, Caffrey CR, G G Rando D. Pharmacophore Virtual Screening Identifies Riboflavin as an Inhibitor of the Schistosome Cathepsin B1 Protease with Antiparasitic Activity. ACS OMEGA 2024; 9:25356-25369. [PMID: 38882094 PMCID: PMC11170711 DOI: 10.1021/acsomega.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Schistosomiasis is a neglected disease of poverty that affects over 200 million people worldwide and relies on a single drug for therapy. The cathepsin B1 cysteine protease (SmCB1) of Schistosoma mansoni has been investigated as a potential target. Here, a structure-based pharmacophore virtual screening (VS) approach was used on a data set of approved drugs to identify potential antischistosomal agents targeting SmCB1. Pharmacophore (PHP) models underwent validation through receiver operating characteristics curves achieving values >0.8. The data highlighted riboflavin (RBF) as a compound of particular interest. A 1 μs molecular dynamics simulation demonstrated that RBF altered the conformation of SmCB1, causing the protease's binding site to close around RBF while maintaining the protease's overall integrity. RBF inhibited the activity of SmCB1 at low micromolar values and killed the parasite in vitro. Finally, in a murine model of S. mansoni infection, oral administration of 100 mg/kg RBF for 7 days significantly decreased worm burdens by ∼20% and had a major impact on intestinal and fecal egg burdens, which were decreased by ∼80%.
Collapse
Affiliation(s)
- Ramon M Cogo
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Thaís F A Pavani
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Ana C A Mengarda
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Rayssa A Cajas
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Thainá R Teixeira
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Lucas Fukui-Silva
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Yujie Uli Sun
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Michael C Yoon
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Osvaldo A Santos-Filho
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Rio de Janeiro 21941-853, Brazil
| | - Josué de Moraes
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas da Unifesp, Department of Pharmaceutical Sciences Rua São Nicolau, Universidade Federal de São Paulo-Campus Diadema, 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| |
Collapse
|
9
|
Villamizar-Monsalve MA, López-Abán J, Vicente B, Peláez R, Muro A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin Pharmacother 2024; 25:409-420. [PMID: 38511392 DOI: 10.1080/14656566.2024.2333372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Schistosomiasis, one of the current Neglected Tropical Diseases (NTDs) affects over 230 million people globally, with nearly 700 million at risk in more than 74 countries. Praziquantel (PZQ) has served as the primary treatment for the past four decades; however, its effectiveness is limited as it solely eliminates adult worms. In regions where infections are frequent, PZQ exhibits only temporary efficacy and has restricted potential to disrupt the prolonged transmission of the disease. AREAS COVERED A comprehensive exploration using the PubMed database was conducted to review current pharmacotherapy approaches for schistosomiasis. This review also encompasses recent research findings related to potential novel therapeutics and the repurposing of existing drugs. EXPERT OPINION Current schistosoma treatment strategies, primarily relying on PZQ, face challenges like temporary effectiveness and limited impact on disease transmission. Drug repurposing, due to economic constraints, is decisive for NTDs. Despite PZQ's efficacy, its failure to prevent reinfection highlights the need for complementary strategies, especially in regions with persistent environmental foci. Integrating therapies against diverse schistosome stages boosts efficacy and impedes resistance. Uncovering novel agents is essential to address resistance concerns in tackling this neglected tropical disease. Integrated strategies present a comprehensive approach to navigate the complex challenges.
Collapse
Affiliation(s)
- María Alejandra Villamizar-Monsalve
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Rafael Peláez
- Organic and Pharmaceutical Chemistry Department, Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| |
Collapse
|
10
|
Pavani TFA, Cirino ME, Teixeira TR, de Moraes J, Rando DGG. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci Rep 2023; 13:19735. [PMID: 37957227 PMCID: PMC10643403 DOI: 10.1038/s41598-023-46959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
The chemical classes of semicarbazones, thiosemicarbazones, and hydrazones are present in various compounds, each demonstrating diverse biological activities. Extensive studies have revealed their potential as schistosomicidal agents. Thiosemicarbazones, in particular, have shown inhibitory effects on Schistosoma mansoni's cathepsin B1 enzyme (SmCB1), which plays a crucial role in hemoglobin degradation within the worm's gut and its nutrition processes. Consequently, SmCB1 has emerged as a promising target for novel schistosomiasis therapies. Moreover, chloroquinoline exhibits characteristics in its aromatic structure that hold promise for developing SmCB1 inhibitors, along with its interaction with hemoglobin's heme group, potentially synergizing against the parasite's gut. In this context, we report the synthesis of 22 hybrid analogs combining hydrazones and quinolines, evaluated against S. mansoni. Five of these hybrids demonstrated schistosomicidal activity in vitro, with GPQF-8Q10 being the most effective, causing worm mortality within 24 h at a concentration of 25 µM. GPQF-8Q8 proved to be the most promising in vivo, significantly reducing egg presence in feces (by 52.8%) and immature eggs in intestines (by 45.8%). These compounds exhibited low cytotoxicity in Vero cells and an in in vivo animal model (Caenorhabditis elegans), indicating a favorable selectivity index. This suggests their potential for the development of new schistosomiasis therapies. Further studies are needed to uncover specific target mechanisms, but these findings offer a promising starting point.
Collapse
Affiliation(s)
- Thaís F A Pavani
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Curso de Pós-Graduação em Biologia Química da Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Thainá R Teixeira
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, NPDN, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas, GPQFfesp, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau, 210, 2° Andar, Centro, Diadema, São Paulo, 09913-030, Brazil.
| |
Collapse
|
11
|
Rocha V, Cajas RA, Andrade-de-Siqueira AI, Almeida RBP, Godoy-Silva J, Gonçalves MM, Lago JHG, de Moraes J. Evaluating the Antischistosomal Activity of Dehydrodieugenol B and Its Methyl Ether Isolated from Nectandra leucantha-A Preclinical Study against Schistosoma mansoni Infection. ACS OMEGA 2023; 8:40890-40897. [PMID: 37929107 PMCID: PMC10620922 DOI: 10.1021/acsomega.3c06111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Schistosomiasis, a parasitic disease affecting nearly 250 million individuals globally, poses a significant health challenge. With praziquantel being the sole available treatment and its limited efficacy in early stage infections, the identification of novel bioactive compounds becomes imperative. This study examines the potential of dehydrodieugenol B (1) and its methyl ether (2), derived from the leaves of the Brazilian Nectandra leucantha plant (Lauraceae), in combatting Schistosoma mansoni infections through a preclinical approach. Initially, compound 1 displayed noteworthy in vitro antiparasitic activity with an EC50 of 31.9 μM, showcasing low toxicity in mammalian cells and an in vivo animal model (Caenorhabditis elegans). Conversely, compound 2 exhibited no activity. In silico predictions pointed to favorable oral bioavailability and the absence of PAINS similarities. Subsequently, a single oral dose of 400 mg/kg of compound 1 or praziquantel was administered to mice infected with adult (patent infection) or immature parasites (prepatent infection). Remarkably, in prepatent infections, 1 resulted in a significant reduction (approximately 50%) in both worm and egg burden, while praziquantel reduced worm and egg numbers by 30%. The superior efficacy of dehydrodieugenol B (1) compared to praziquantel in premature infections holds the potential to advance the development of new molecular prototypes for schistosomiasis treatment.
Collapse
Affiliation(s)
- Vinicius
C. Rocha
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Rayssa A. Cajas
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | | | - Roberto B. P. Almeida
- Departamento
de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Julia Godoy-Silva
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | - Marina M. Gonçalves
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo
André, São Paulo 09210-180, Brazil
| | - João Henrique G. Lago
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo
André, São Paulo 09210-180, Brazil
| | - Josué de Moraes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| |
Collapse
|
12
|
Guedes GMDM, Freitas AS, Pinheiro RM, Pereira VC, Melgarejo CMA, de Araujo ES, Ribeiro KVC, Bandeira SP, Cordeiro RDA, Rocha MFG, Sidrim JJC, Castelo-Branco DDSCM. Antibiofilm activity of promethazine, deferiprone, and Manuka honey in an ex vivo wound model. Lett Appl Microbiol 2023; 76:ovad119. [PMID: 37791895 DOI: 10.1093/lambio/ovad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rodrigo Machado Pinheiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Emanuela Silva de Araujo
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Késia Veras Costa Ribeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Avenida Dr. Silas Munguba, 1700 - Itaperi - CEP 60714-903, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
13
|
Roquini V, Mengarda AC, Cajas RA, Martins-da-Silva MF, Godoy-Silva J, Santos GA, Espírito-Santo MCC, Pavani TFA, Melo VA, Salvadori MC, Teixeira FS, Rando DGG, de Moraes J. The Existing Drug Nifuroxazide as an Antischistosomal Agent: In Vitro, In Vivo, and In Silico Studies of Macromolecular Targets. Microbiol Spectr 2023; 11:e0139323. [PMID: 37409934 PMCID: PMC10434008 DOI: 10.1128/spectrum.01393-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 μM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Vinícius Roquini
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Ana C. Mengarda
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Rayssa A. Cajas
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | | | - Julia Godoy-Silva
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Gustavo A. Santos
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Maria Cristina C. Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thais F. A. Pavani
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Vanusa A. Melo
- Biological Chemistry Post-Graduate Course, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Daniela G. G. Rando
- Chemico-Pharmaceutical Research Group, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
14
|
de Souza RL, Mengarda AC, Roquini DB, Melo CO, de Morais MC, C Espírito-Santo MC, de Sousa DP, Moraes JD, Oliveira EE. Enhancing the antischistosomal activity of carvacryl acetate using nanoemulsion. Nanomedicine (Lond) 2023; 18:331-342. [PMID: 37140262 DOI: 10.2217/nnm-2022-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: To formulate a carvacryl acetate nanoemulsion (CANE) and test its antischistosomal activity. Materials & methods: CANE was prepared and tested in vitro on Schistosoma mansoni adult worms and both human and animal cell lines. Next, CANE was administered orally to mice infected with either a prepatent infection or a patent infection of S. mansoni. Results: CANE was stable during 90 days of analysis. CANE showed in vitro anthelmintic activity, and no cytotoxic effects were observed. In vivo, CANE was more effective than the free compounds in reducing worm burden and egg production. Treatment with CANE was more effective for prepatent infections than praziquantel. Conclusion: CANE improves antiparasitic properties and may be a promising delivery system for schistosomiasis treatment.
Collapse
Affiliation(s)
- Rafael L de Souza
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| | - Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Daniel B Roquini
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Camila O Melo
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| | - Mayara C de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious & Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, 01246903, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, 05403-000, Brazil
| | - Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07023-070, Brazil
| | - Elquio E Oliveira
- Laboratory of Synthesis & Drug Delivery, State University of Paraíba, João Pessoa, 58071-160, Brazil
| |
Collapse
|
15
|
Padalino G, Celatka CA, Rienhoff Jr. HY, Kalin JH, Cole PA, Lassalle D, Forde-Thomas J, Chalmers IW, Brancale A, Grunau C, Hoffmann KF. Chemical modulation of Schistosoma mansoni lysine specific demethylase 1 (SmLSD1) induces wide-scale biological and epigenomic changes. Wellcome Open Res 2023; 8:146. [PMID: 37520936 PMCID: PMC10375057 DOI: 10.12688/wellcomeopenres.18826.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods: In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | | | - Jay H. Kalin
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Josephine Forde-Thomas
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Iain W. Chalmers
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, CF10 3NB, UK
| | | | - Karl F. Hoffmann
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| |
Collapse
|
16
|
Abd El Hady WE, El-Emam GA, Saleh NE, Hamouda MM, Motawea A. The Idiosyncratic Efficacy of Spironolactone-Loaded PLGA Nanoparticles Against Murine Intestinal Schistosomiasis. Int J Nanomedicine 2023; 18:987-1005. [PMID: 36860210 PMCID: PMC9968784 DOI: 10.2147/ijn.s389449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Background Schistosomiasis is a chronic debilitating parasitic disease accompanied with severe mortality rates. Although praziquantel (PZQ) acts as the sole drug for the management of this disease, it has many limitations that restrict the use of this treatment approach. Repurposing of spironolactone (SPL) and nanomedicine represents a promising approach to improve anti-schistosomal therapy. We have developed SPL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance the solubility, efficacy, and drug delivery and hence decrease the frequency of administration, which is of great clinical value. Methods The physico-chemical assessment was performed starting with particle size analysis and confirmed using TEM, FT-IR, DSC, and XRD. The antischistosomal effect of the SPL-loaded PLGA NPs against Schistosoma mansoni (S. mansoni)-induced infection in mice was also estimated. Results Our results manifested that the optimized prepared NPs had particle size of 238.00 ± 7.21 nm, and the zeta potential was -19.66 ± 0.98 nm, effective encapsulation 90.43±8.81%. Other physico-chemical features emphasized that nanoparticles were completely encapsulated inside the polymer matrix. The in vitro dissolution studies revealed that SPL-loaded PLGA NPs showed sustained biphasic release pattern and followed Korsmeyer-Peppas kinetics corresponding to Fickian diffusion (n<0.45). The used regimen was efficient against S. mansoni infection and induced significant reduction in spleen, liver indices, and total worm count (ρ<0.05). Besides, when targeting the adult stages, it induced decline in the hepatic egg load and the small intestinal egg load by 57.75% and 54.17%, respectively, when compared to the control group. SPL-loaded PLGA NPs caused extensive damage to adult worms on tegument and suckers, leading to the death of the parasites in less time, plus marked improvement in liver pathology. Conclusion Collectively, these findings provided proof-of-evidence that the developed SPL-loaded PLGA NPs could be potentially used as a promising candidate for new antischistosomal drug development.
Collapse
Affiliation(s)
| | - Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nora E Saleh
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa M Hamouda
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Correspondence: Amira Motawea, Email
| |
Collapse
|
17
|
Aguiar ALR, Silva BND, Fiallos NDM, Pereira LMG, Silva ML, Souza PFSMD, Portela FVM, Sidrim JJC, Rocha MFG, Castelo-Branco DSCM, Cordeiro RDA. Promethazine inhibits efflux, enhances antifungal susceptibility and disrupts biofilm structure and functioning in Trichosporon. BIOFOULING 2023; 39:218-230. [PMID: 37122169 DOI: 10.1080/08927014.2023.2202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 μg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.
Collapse
Affiliation(s)
| | | | | | | | - Maria Laína Silva
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Brito JR, Wilairatana P, Roquini DB, Parra BC, Gonçalves MM, Souza DCS, Ferreira EA, Salvadori MC, Teixeira FS, Lago JHG, de Moraes J. Neolignans isolated from Saururus cernuus L. (Saururaceae) exhibit efficacy against Schistosoma mansoni. Sci Rep 2022; 12:19320. [PMID: 36369516 PMCID: PMC9652300 DOI: 10.1038/s41598-022-23110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis, a parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, especially in developing countries. Despite the significant economic and public health consequences, only one drug is currently available for treatment of schistosomiasis, praziquantel. Thus, there is an urgent demand for new anthelmintic agents. Based on our continuous studies involving the chemical prospection of floristic biodiversity aiming to discover new bioactive compounds, this work reports the in vitro antiparasitic activity against Schistosoma mansoni adult worms of neolignans threo-austrobailignan-6 and verrucosin, both isolated from Saururus cernuus L. (Saururaceae). These neolignans showed a significant in vitro schistosomicidal activity, with EC50 values of 12.6-28.1 µM. Further analysis revealed a pronounced reduction in the number of S. mansoni eggs. Scanning electron microscopy analysis revealed morphological alterations when schistosomes were exposed to either threo-austrobailignan-6 or verrucosin. These relevant antischistosomal properties were accompanied by low cytotoxicity potential against the animal (Vero) and human (HaCaT) cell lines, resulting in a high selectivity index. Considering the promising chemical and biological properties of threo-austrobailignan-6 and verrucosin, this research should be of interest to those in the area of neglected diseases and in particular antischistosomal drug discovery.
Collapse
Affiliation(s)
- Juliana R Brito
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, 09972-270, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Daniel B Roquini
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil
| | - Beatriz C Parra
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil
| | - Marina M Gonçalves
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil
| | - Dalete Christine S Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil
| | - Edgard A Ferreira
- School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Maria C Salvadori
- Institute of Physics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Fernanda S Teixeira
- Institute of Physics, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, 09210-180, Brazil.
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
19
|
Ju T, Vander Does A, Ingrasci G, Norton SA, Yosipovitch G. Tropical parasitic itch in returned travellers and immigrants from endemic areas. J Eur Acad Dermatol Venereol 2022; 36:2279-2290. [PMID: 35793476 DOI: 10.1111/jdv.18408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Itch is the most common skin symptom among tropical parasitic diseases (TPD), but there are limited data about its characteristics in these conditions. In dermatology practices and travellers' health clinics in the developed world, itch is a common complaint among travellers returning from endemic areas, as well among migrants arriving from endemic areas, where they may have been exposed to TPD. Studying aspects of pruritus among TPD may lead to improvements in prompt, accurate diagnosis and management of these conditions. This review examines the major itch-inducing TPDs, including schistosomiasis, echinococcosis, onchocerciasis, scabies, cutaneous larva migrans, larva currens, African trypanosomiasis, dracunculiasis and other causes of travel associated pruritus. We focus on the link between pruritus and other symptoms, aetiology, clinical staging and therapeutic options for these parasitic illnesses. Because some tropical parasitic diseases can present with significant pruritus, we attempt to identify aspects of the pruritus that are characteristic of-or unique to-specific conditions. These diagnostic insights may help clinicians create a rational and focused differential diagnosis and help determine optimal disease management pathways. In this sense, management involves treating the individual, seeking epidemiologically linked cases, preventing recurrences or relapses, and reducing spread of the disease.
Collapse
Affiliation(s)
- T Ju
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - A Vander Does
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - G Ingrasci
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| | - S A Norton
- Department of Dermatology and Pediatrics, George Washington University, Washington, DC, USA
| | - G Yosipovitch
- Dr Phillip Frost Department of Dermatology and Miami Itch Center, University of Miami, Miami, FL, USA
| |
Collapse
|
20
|
Travi BL. Current status of antihistamine drugs repurposing for infectious diseases. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Roquini DB, Silva GL, Ferreira LLG, Andricopulo AD, Wilairatana P, De Moraes J. Susceptibility of Angiostrongylus cantonensis Larvae to Anthelmintic Drugs. Front Pharmacol 2022; 13:901459. [PMID: 35800438 PMCID: PMC9255552 DOI: 10.3389/fphar.2022.901459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Human helminthiasis affects approximately one in five people in the world and disproportionally affects the poorest and most deprived communities. Human angiostrongyliasis, caused by nematode Angiostrongylus cantonensis, is a neglected emerging disease with escalating importance worldwide. Chemotherapy is the main control method for helminthiasis, but the therapeutic arsenal is limited. This study aimed to evaluate the antiparasitic and molecular properties of the major available anthelmintic drugs against A. cantonensis in vitro. The first-stage larvae (L1), isolated from feces of an A. cantonensis-infected rat, were exposed to a set of 12 anthelmintic drugs in vitro. The larvae were monitored, and the concentration- and time-dependent viability alterations were determined. From 12 anthelmintic drugs, six (ivermectin, salamectin, moxidectin, pyrantel pamoate, albendazole and levamisole) were identified to affect the viability of A. cantonensis. The macrocyclic lactones (ivermectin, salamectin, moxidectin) and the imidazothiazole levamisole, were the most effective drugs, with IC50 ranging from 2.2 to 2.9 µM and a rapid onset of action. Albendazole, the most widely used anthelmintic in humans, had a slower onset of action, but an IC50 of 11.3 µM was achieved within 24 h. Molecular properties studies suggest that a less lipophilic character and low molecular weight could be favorable for the biological activity of the non-macrocyclic molecules. Collectively, our study revealed that macrocyclic lactones, levamisole, pyrantel pamoate, and albendazole are important anthelmintic agents against A. cantonensis. The results of this in vitro study also suggest that A. cantonensis L1 may be a particularly sensitive and useful model for anthelmintic studies.
Collapse
Affiliation(s)
- Daniel B. Roquini
- Center for Neglected Diseases Research, Guarulhos University, Guarulhos, Brazil
| | - Gabriel L. Silva
- Center for Neglected Diseases Research, Guarulhos University, Guarulhos, Brazil
| | - Leonardo L. G. Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of São Paulo, São Carlos, Brazil
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of São Paulo, São Carlos, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Polrat Wilairatana, ; Josué De Moraes,
| | - Josué De Moraes
- Center for Neglected Diseases Research, Guarulhos University, Guarulhos, Brazil
- *Correspondence: Polrat Wilairatana, ; Josué De Moraes,
| |
Collapse
|
22
|
Xavier ES, de Souza RL, Rodrigues VC, Melo CO, Roquini DB, Lemes BL, Wilairatana P, Oliveira EE, de Moraes J. Therapeutic Efficacy of Carvacrol-Loaded Nanoemulsion in a Mouse Model of Schistosomiasis. Front Pharmacol 2022; 13:917363. [PMID: 35784725 PMCID: PMC9247328 DOI: 10.3389/fphar.2022.917363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Since praziquantel is the only drug available to treat schistosomiasis, a neglected parasitic disease that affects more than 240 million people worldwide, there is an urgent demand for new antischistosomal agents. Natural compound-loaded nanoparticles have recently emerged as a promising alternative for the treatment of schistosomiasis. Carvacrol is an antimicrobial monoterpene present in the essential oil extracted from several plants, especially oregano (Origanum vulgare). In this study, a carvacrol nanoemulsion (CVNE) was prepared, characterized, and administered orally (200 mg/kg) in a mouse infected with either immature (prepatent infection) or adult (patent infection) Schistosoma mansoni. For comparison, data obtained with an unloaded nanoemulsion (blank formulation), free carvacrol, and the drug of reference praziquantel are also presented. CVNE was more effective than free carvacrol in reducing the worm burden and egg production in both patent and prepatent infections. Favorably, CVNE had a high effect in terms of reducing the number of worms and eggs (85%–90%) compared with praziquantel (∼30%) in prepatent infection. In tandem, carvacrol-loaded nanoemulsion markedly improved antischistosomal activity, showing efficiency in reducing worm and egg burden, and thus it may be a promising delivery system for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Edilaine S. Xavier
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Rafael L. de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | | | - Camila O. Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | - Daniel B. Roquini
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Bruna L. Lemes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Polrat Wilairatana, ; Josué de Moraes,
| | - Elquio E. Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, Brazil
- *Correspondence: Polrat Wilairatana, ; Josué de Moraes,
| |
Collapse
|
23
|
Dziduch K, Greniuk D, Wujec M. The Current Directions of Searching for Antiparasitic Drugs. Molecules 2022; 27:1534. [PMID: 35268635 PMCID: PMC8912034 DOI: 10.3390/molecules27051534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic diseases are still a huge problem for mankind. They are becoming the main cause of chronic diseases in the world. Migration of the population, pollution of the natural environment, and climate changes cause the rapid spread of diseases. Additionally, a growing resistance of parasites to drugs is observed. Many research groups are looking for effective antiparasitic drugs with low side effects. In this work, we present the current trends in the search for antiparasitic drugs. We report known drugs used in other disease entities with proven antiparasitic activity and research on new chemical structures that may be potential drugs in parasitic diseases. The described investigations of antiparasitic compounds can be helpful for further drug development.
Collapse
Affiliation(s)
| | | | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (K.D.); (D.G.)
| |
Collapse
|
24
|
Morais CS, Mengarda AC, Miguel FB, Enes KB, Rodrigues VC, Espírito-Santo MCC, Siyadatpanah A, Wilairatana P, Couri MRC, de Moraes J. Pyrazoline derivatives as promising novel antischistosomal agents. Sci Rep 2021; 11:23437. [PMID: 34873205 PMCID: PMC8648852 DOI: 10.1038/s41598-021-02792-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Praziquantel is the only available drug to treat schistosomiasis, a parasitic disease that currently infects more than 240 million people globally. Due to increasing concerns about resistance and inadequate efficacy there is a need for new therapeutics. In this study, a series of 17 pyrazolines (15–31) and three pyrazoles (32–34) were synthesized and evaluated for their antiparasitic properties against ex vivo adult Schistosoma mansoni worms. Of the 20 compounds tested, six had a 50% effective concentration (EC50) below 30 μM. Our best hit, pyrazoline 22, showed promising activity against adult schistosomes, with an EC50 < 10 µM. Additionally, compound 22 had low cytotoxicity, with selectivity index of 21.6 and 32.2 for monkey and human cell lines, respectively. All active pyrazolines demonstrated a negative effect on schistosome fecundity, with a marked reduction in the number of eggs. Structure–activity relationship analysis showed that the presence of the non-aromatic heterocycle and N-substitution are fundamental to the antischistosomal properties. Pharmacokinetics, drug-likeness and medicinal chemistry friendliness studies were performed, and predicted values demonstrated an excellent drug-likeness profile for pyrazolines as well as an adherence to major pharmaceutical companies’ filters. Collectively, this study demonstrates that pyrazoline derivatives are promising scaffolds in the discovery of novel antischistosomal agents.
Collapse
Affiliation(s)
- Cristiane S Morais
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Fábio B Miguel
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Karine B Enes
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Vinícius C Rodrigues
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratory of Immunopathology of Schistosomiasis (LIM-06), Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.,Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, 9717853577, Birjand, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Mara R C Couri
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina, 229, Centro, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
25
|
Silva BC, Mengarda AC, Rodrigues VC, Cajas RA, Carnaúba PU, Espírito-Santo MCC, Bezerra-Filho CSM, de Sousa DP, de Moraes J. Efficacy of carvacryl acetate in vitro and following oral administration to mice harboring either prepatent or patent Schistosoma mansoni infections. Parasitol Res 2021; 120:3837-3844. [PMID: 34604934 DOI: 10.1007/s00436-021-07333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Schistosomiasis is a major public health problem that afflicts more than 240 million individuals globally, particularly in poor communities. Treatment of schistosomiasis relies heavily on a single oral drug, praziquantel, and there is interest in the search for new antischistosomal drugs. This study reports the anthelmintic evaluation of carvacryl acetate, a derivative of the terpene carvacrol, against Schistosoma mansoni ex vivo and in a schistosomiasis animal model harboring either adult (patent infection) or juvenile (prepatent infection) parasites. For comparison, data obtained with gold standard antischistosomal drug praziquantel are also presented. Initially in vitro effective concentrations of 50% (EC50) and 90% (EC90) were determined against larval and adult stages of S. mansoni. In an animal with patent infection, a single oral dose of carvacryl acetate (100, 200, or 400 mg/kg) caused a significant reduction in worm burden (30-40%). S. mansoni egg production, a process responsible for both life cycle and pathogenesis, was also markedly reduced (70-80%). Similar to praziquantel, carvacryl acetate 400 mg/kg had low efficacy in pre-patent infection. In tandem, although carvacryl acetate had interesting in vitro schistosomicidal activity, the compound exhibited low efficacy in terms of reduction of worm load in S. mansoni-infected mice.
Collapse
Affiliation(s)
- Bianca C Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Vinícius C Rodrigues
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Rayssa A Cajas
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Paulo U Carnaúba
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil
| | - Maria Cristina C Espírito-Santo
- Laboratório de Imunopatologia da Esquistossomose (LIM-06), Departamento de Moléstias Infecciosas E Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Helmintologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, SP, São Paulo, Brazil
| | - Carlos S M Bezerra-Filho
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Damião P de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, R. Eng. Prestes Maia, 88, Centro, Guarulhos, SP, 07023-070, Brazil.
| |
Collapse
|
26
|
Carnaúba PU, Mengarda AC, Rodrigues VC, Morais TR, de Oliveira A, Lago JHG, de Moraes J. Evaluation of Gibbilimbol B, Isolated from Piper malacophyllum (Piperaceae), as an Antischistosomal Agent. Chem Biodivers 2021; 18:e2100503. [PMID: 34418297 DOI: 10.1002/cbdv.202100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022]
Abstract
Infections caused by parasitic worms impose a considerable worldwide health burden. One of the most impactful is schistosomiasis, a disease caused by blood-dwelling of the genus Schistosoma that affects more than 230 million people worldwide. Since praziquantel has also been extensively used to treat schistosomiasis and other parasitic flatworm infections, there is an urgent need to identify novel anthelmintic compounds, mainly from natural sources. In this study, the hexane extract from roots of Piper malacophyllum (Piperaceae) showed to be mainly composed for gibbilimbol B by HPLC/ESI-HRMS. Based on this result, this compound was isolated by chromatographic steps and its structure was confirmed by NMR. In vitro bioassays showed that gibbilimbol B was more active than praziquantel against larval stage of S. mansoni, with effective concentrations of 50 % (EC50 ) and 90 % (EC90 ) values of 2.6 and 3.4 μM, respectively. Importantly, gibbilimbol B showed no cytotoxicity to mammalian cells at a concentration 190 times greater than the antiparasitic effect, giving support for the anthelmintic potential of gibbilimbol B as lead compound for novel antischistosomal agents.
Collapse
Affiliation(s)
- Paulo U Carnaúba
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Vinícius C Rodrigues
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| | - Alberto de Oliveira
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408-100, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Praça Tereza Cristina, 88, Guarulhos, SP, 07023-070, Brazil
| |
Collapse
|
27
|
Porto R, Mengarda AC, Cajas RA, Salvadori MC, Teixeira FS, Arcanjo DDR, Siyadatpanah A, Pereira MDL, Wilairatana P, de Moraes J. Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni. Pharmaceuticals (Basel) 2021; 14:ph14070686. [PMID: 34358112 PMCID: PMC8308662 DOI: 10.3390/ph14070686] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Praziquantel is the only drug available to treat schistosomiasis and there is an urgent demand for new anthelmintic agents. Adopting a phenotypic drug screening strategy, here, we evaluated the antiparasitic properties of 46 commercially available cardiovascular drugs against S. mansoni. From these screenings, we found that amiodarone, telmisartan, propafenone, methyldopa, and doxazosin affected the viability of schistosomes in vitro, with effective concentrations of 50% (EC50) and 90% (EC90) values ranging from 8 to 50 µM. These results were further supported by scanning electron microscopy analysis. Subsequently, the most effective drug (amiodarone) was further tested in a murine model of schistosomiasis for both early and chronic S. mansoni infections using a single oral dose of 400 mg/kg or 100 mg/kg daily for five consecutive days. Amiodarone had a low efficacy in chronic infection, with the worm and egg burden reduction ranging from 10 to 30%. In contrast, amiodarone caused a significant reduction in worm and egg burden in early infection (>50%). Comparatively, treatment with amiodarone is more effective in early infection than praziquantel, demonstrating the potential role of this cardiovascular drug as an antischistosomal agent.
Collapse
Affiliation(s)
- Raquel Porto
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Ana C. Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Rayssa A. Cajas
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Fernanda S. Teixeira
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Daniel D. R. Arcanjo
- Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (J.d.M.)
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
- Correspondence: (P.W.); (J.d.M.)
| |
Collapse
|
28
|
Silva LM, Marconato DG, Nascimento da Silva MP, Barbosa Raposo NR, Faria Silva Facchini GD, Macedo GC, Teixeira FDS, Barbosa da Silveira Salvadori MC, Faria Pinto PD, Moraes JD, Pittella F, Da Silva Filho AA. Licochalcone A-loaded solid lipid nanoparticles improve antischistosomal activity in vitro and in vivo. Nanomedicine (Lond) 2021; 16:1641-1655. [PMID: 34256609 DOI: 10.2217/nnm-2021-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To isolate licochalcone A (LicoA) from licorice, prepare LicoA-loaded solid lipid nanoparticles (L-SLNs) and evaluate the L-SLNs in vitro and in vivo against Schistosoma mansoni. Materials & methods: LicoA was obtained by chromatographic fractionation and encapsulated in SLNs by a modified high shear homogenization method. Results: L-SLNs showed high encapsulation efficiency, with satisfactory particle size, polydispersity index and Zeta potential. Transmission electron microscopy revealed that L-SLNs were rounded and homogenously distributed. Toxicity studies revealed that SLNs decreased the hemolytic and cytotoxic properties of LicoA. Treatment with L-SLNs showed in vivo efficacy against S. mansoni. Conclusion: L-SLNs are efficient in reducing worm burden and SLNs may be a promising delivery system for LicoA to treat S. mansoni infections.
Collapse
Affiliation(s)
- Lívia Mara Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Danielle Gomes Marconato
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | - Nádia Rezende Barbosa Raposo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gabriela de Faria Silva Facchini
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology & Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | | | | | - Priscila de Faria Pinto
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, 07025-000, SP, Brazil
| | - Frederico Pittella
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| |
Collapse
|
29
|
Antibacterial, Antibiofilm, and Antischistosomal Activity of Montrichardia linifera (Arruda) Schott (Araceae) Leaf Extracts. Sci Pharm 2021. [DOI: 10.3390/scipharm89030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With a broad ethnopharmacological tradition in Brazil, Montrichardia linifera has been reported as a potent antirheumatic, antimicrobial, and antiprotozoan agent. However, there is a lack of studies on its effect on bacterial biofilm formation and Schistosoma mansoni worms. This study reports the effects of antibacterial, antibiofilm, and antischistosomal properties of leaf extracts of M. linifera. Phytochemical screening and identification of the main compounds of the extracts were performed. All the extracts evaluated showed antibacterial activity at the concentrations tested. We checked for the presence of flavonoids and derivatives of phenolic acids by the presence of spectra with bands characteristic of these classes in the sample analyzed. The antibacterial assays showed that the best MICs corresponded to 125 µg/mL against Enterococcus faecalis ATCC 29212 in all fractions. The ethanolic and methanolic extracts showed the ability to inhibit biofilm of Staphylococcus aureus ATCC 25123. For the antischistosomal activity, only the acetone and ethyl acetate extracts had a significant effect against helminths, with potent activity at a concentration of 50 µg/mL, killing 100% of the worms after 72 h of incubation. The M. linifera leaf extracts showed antibacterial activity, biofilm inhibition capacity, and anthelmintic activity against S. mansoni.
Collapse
|
30
|
Mengarda AC, Silva MP, Cirino ME, Morais TR, Conserva GAA, Lago JHG, de Moraes J. Licarin A, a neolignan isolated from Nectandra oppositifolia Nees & Mart. (Lauraceae), exhibited moderate preclinical efficacy against Schistosoma mansoni infection. Phytother Res 2021; 35:5154-5162. [PMID: 34089558 DOI: 10.1002/ptr.7184] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people, particularly in poor communities. Chemotherapy for schistosomiasis relies exclusively on praziquantel (PZQ). Previous studies have shown that licarin A (LIC-A), a dihydrobenzofuran neolignan, exhibited in vitro antiparasitic activity against Schistosoma mansoni adult worms. This study aimed to investigate the potential of LIC-A, isolated as main metabolite from leaves of Nectandra oppositifolia Nees & Mart. (Lauraceae), as an antischistosomal agent orally active in schistosomiasis animal model. PZQ was used as a reference compound. As result, LIC-A showed, at a single dose of 400 mg/kg, to be able to partially cure infected mice (worm burden reductions of ~50%). Parasite eggs, that are responsible for a variety of pathologies and transmission of schistosomiasis, were also moderately inhibited by LIC-A (egg burden reductions of ~50%-60%). Furthermore, it was observed that LIC-A achieved a slight reduction of hepatomegaly and splenomegaly. Collectively, although LIC-A was partially active when administered orally, these results give support for the antiparasitic potential LIC-A as lead compound for novel antischistosomal agent.
Collapse
Affiliation(s)
- Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Maria E Cirino
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| | - Geanne A A Conserva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo, Brazil
| |
Collapse
|
31
|
New evidence for tamoxifen as an antischistosomal agent: in vitro, in vivo and target fishing studies. Future Med Chem 2021; 13:945-957. [PMID: 33896196 DOI: 10.4155/fmc-2020-0311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Praziquantel is the only drug available to treat schistosomiasis, and there is an urgent demand for new anthelmintic agents. Methodology & results: We conducted in-depth in vitro and in vivo studies and report a target fishing investigation. In vitro, tamoxifen was active against adult and immature worms at low concentrations (<5 μM). Tamoxifen at a single dose (400 mg/kg) or once daily for five consecutive days (100 mg/kg/day) in mice harboring either adult (patent infection) or juvenile (prepatent infection) significantly reduced worm burden (30-70%) and egg production (70-90%). Target fishing studies revealed propionyl-CoA carboxylase as a potential target for tamoxifen in Schistosoma mansoni and glucose uptake by S. mansoni was also significantly reduced. Conclusion: Our results provide news evidence of antiparasitic effect of tamoxifen and reveal propionyl-CoA carboxylase as a potential target.
Collapse
|
32
|
Silva MP, Silva TM, Mengarda AC, Salvadori MC, Teixeira FS, Alencar SM, Luz Filho GC, Bueno-Silva B, de Moraes J. Brazilian red propolis exhibits antiparasitic properties in vitro and reduces worm burden and egg production in an mouse model harboring either early or chronic Schistosoma mansoni infection. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113387. [PMID: 32918996 DOI: 10.1016/j.jep.2020.113387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has been used in folk medicine for thousands of years and, in the past few decades, it has attracted renewed interest. Although propolis has been traditionally used in many communities worldwide against parasitic diseases, its effect against Schistosoma mansoni infection remains unclear. AIM OF THE STUDY To demonstrate the effects of Brazilian red propolis on Schistosoma mansoni ex vivo and in an animal model of schistosomiasis. MATERIALS AND METHODS In vitro, we monitored phenotypic and tegumental changes as well as the effects of the crude extract of propolis on pairing and egg production. In a mouse infected with either immature (early infection) or adult (chronic infection) worms, propolis was administered by oral gavage and we studied the influence of this natural product on worm burden and egg production. RESULTS Propolis 25 μg/mL reduced motility and caused 100% mortality of adult parasites ex vivo. Further analysis revealed a pronounced reduction in oviposition after exposure to propolis at sub-lethal concentrations. In addition, scanning electron microscopy showed morphological alterations in the tegument of schistosomes. In the animal model, propolis markedly reduced worm burden and egg production in both early and chronic S. mansoni infection when compared to untreated control animals. CONCLUSIONS The efficacy of Brazilian red propolis in both in vitro and in vivo studies suggests its potential anthelmintic properties against S. mansoni infection.
Collapse
Affiliation(s)
- Marcos P Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Thiago M Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Ana C Mengarda
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Severino M Alencar
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Bruno Bueno-Silva
- Departamento de Odontologia, Universidade Guarulhos, Guarulhos, SP, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| |
Collapse
|
33
|
Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop 2021; 213:105741. [PMID: 33159900 DOI: 10.1016/j.actatropica.2020.105741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Schistosomiasis is a neglected disease caused by helminth flatworms of the genus Schistosoma, affecting over 240 million people in more than 70 countries. The treatment relies on a single drug, praziquantel, making urgent the discovery of new compounds. Aurones are a natural type of flavonoids that display interesting pharmacological activities, particularly as chemotherapeutic agents against parasites. In pursuit of treatment alternatives, the present work conducted an in vitro and in vivo antischistosomal investigation with aurone derivatives against Schistosoma mansoni. After preparation of aurone derivatives and their in vitro evaluation on adult schistosomes, the three most active aurones were evaluated in cytotoxicity and haemolytic assays, as well as in confocal laser-scanning microscope studies, showing tegumental damage in parasites in a concentration-dependent manner with no haemolytic or cytotoxic potential toward mammalian cells. In a mouse model of schistosomiasis, at a single oral dose of 400 mg/kg, the selected aurones showed worm burden reductions of 35% to 65.0% and egg reductions of 25% to 70.0%. The most active thiophenyl aurone derivative 18, unlike PZQ, had efficacy in mice harboring juvenile S. mansoni, also showing significant inhibition of oviposition by parasites, giving support for the antiparasitic potential of aurones as lead compounds for novel antischistosomal drugs.
Collapse
|
34
|
Sessa DP, Mengarda AC, Simplicio PE, Antar GM, Lago JHG, de Moraes J. 15β-Senecioyl-oxy- ent-kaur-16-en-19-oic Acid, a Diterpene Isolated from Baccharis lateralis, as Promising Oral Compound for the Treatment of Schistosomiasis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3744-3750. [PMID: 33236902 DOI: 10.1021/acs.jnatprod.0c01050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Praziquantel is the only available drug to treat schistosomiasis, and therefore, urgent studies must be performed to identify new anthelmintic agents. This study reports the anthelmintic evaluation of two related ent-kaurane diterpenes isolated from aerial parts of Baccharis lateralis (Asteraceae), ent-kaur-16-en-19-oic acid (1) and 15β-senecioyl-oxy-ent-kaur-16-en-19-oic acid (2) against Schistosoma mansoni in vitro and in a murine model of schistosomiasis. Both compounds exhibited in vitro activity with lethal concentration 50% (LC50) values of 26.1 μM (1) and 11.6 μM (2) as well as reduced toxicity against human cell lines, revealing a good selectivity profile, mainly with compound 2 (selectivity index > 10). Compound 2 also decreased egg production and caused morphological alterations in the parasite reproductive system. In mice infected with S. mansoni, oral treatment with compound 2 at 400 mg/kg, the standard dose used in this model of schistosomiasis, caused a significant reduction in a total worm burden of 61.9% (P < 0.01). S. mansoni egg production, a key mechanism for both transmission and pathogenesis, was also markedly reduced. In addition, compound 2 achieved a significant reduction in hepatosplenomegaly. Therefore, the diterpene 15β-senecioyl-oxy-ent-kaur-16-en-19-oic acid (2) has an acceptable cytotoxicity profile and is orally active in a murine schistosomiasis model.
Collapse
Affiliation(s)
- Deborah P Sessa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-180, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | - Paula E Simplicio
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | - Guilherme M Antar
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-180, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| |
Collapse
|
35
|
Therapeutic Effect of Diminazene Aceturate on Parasitic Blood Fluke Schistosoma mansoni Infection. Antimicrob Agents Chemother 2020; 64:AAC.01372-20. [PMID: 32816737 DOI: 10.1128/aac.01372-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023] Open
Abstract
Praziquantel is currently the only drug available to treat schistosomiasis, a disease of enormous public health significance caused by a blood fluke of the genus Schistosoma Diminazene, a drug approved by the FDA, has been successfully used to treat diseases caused by blood protozoan parasites. In this study, we evaluated the antiparasitic properties of diminazene against Schistosoma mansoni ex vivo and in mice harboring either chronic or early S. mansoni infections. In vitro, we monitored phenotypic and tegumental changes as well as the effects of the drug on pairing and egg production. In mice infected with either adult (chronic infection) or immature (early infection) worms, diminazene was administered intraperitoneally (10 to 100 mg/kg of body weight) or by oral gavage (100 to 400 mg/kg), and we studied the influence of the drug on worm burden and egg production. Liver and spleen pathologies and serum aminotransferase levels were also analyzed. In vitro, 50% effective concentrations (EC50) and EC90 revealed that diminazene is able to kill both immature and adult parasites, and its effect was time and concentration dependent. In addition, confocal laser scanning microscopy showed morphological alterations in the teguments of schistosomes. In an animal model, the influence of the drug on worm burden, egg production, hepatomegaly, and splenomegaly depended on the dosing regimen applied and the route of administration. Diminazene also caused a significant reduction in aminotransferase levels. Comparatively, diminazene treatment was more effective in chronic infection than in early infection. In tandem, our study revealed that diminazene possesses anthelmintic properties and inhibits liver injury caused by Schistosoma eggs.
Collapse
|
36
|
Xavier RP, Mengarda AC, Silva MP, Roquini DB, Salvadori MC, Teixeira FS, Pinto PL, Morais TR, Ferreira LLG, Andricopulo AD, de Moraes J. H1-antihistamines as antischistosomal drugs: in vitro and in vivo studies. Parasit Vectors 2020; 13:278. [PMID: 32487175 PMCID: PMC7268501 DOI: 10.1186/s13071-020-04140-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Schistosomiasis is a socioeconomically devastating parasitic infection afflicting hundreds of millions of people and animals worldwide. It is the most important helminth infection, and its treatment relies solely on the drug praziquantel. Oral H1-antihistamines are available worldwide, and these agents are among the most widely used of all medications in children and adults. Given the importance of the drug repositioning strategy, we evaluated the antischistosomal properties of the H1-antihistamine drugs commonly used in clinical practices. Methods Twenty-one antihistamine drugs were initially screened against adult schistosomes ex vivo. Subsequently, we investigated the anthelmintic properties of these antihistamines in a murine model of schistosomiasis for both early and chronic S. mansoni infections at oral dosages of 400 mg/kg single dose or 100 mg/kg daily for five consecutive days. We also demonstrated and described the ability of three antihistamines to induce tegumental damage in schistosomes through the use of scanning electron microscopy. Results From phenotypic screening, we found that desloratadine, rupatadine, promethazine, and cinnarizine kill adult S. mansoni in vitro at low concentrations (5–15 µM). These results were further supported by scanning electron microscopy analysis. In an animal model, rupatadine and cinnarizine revealed moderate worm burden reductions in mice harboring either early or chronic S. mansoni infection. Egg production, a key mechanism for both transmission and pathogenesis, was also markedly inhibited by rupatadine and cinnarizine, and a significant reduction in hepatomegaly and splenomegaly was recorded. Although less effective, desloratadine also revealed significant activity against the adult and juvenile parasites. Conclusions Although the worm burden reductions achieved are all only moderate, comparatively, treatment with any of the three antihistamines is more effective in early infection than praziquantel. On the other hand, the clinical use of H1-antihistamines for the treatment of schistosomiasis is highly unlikely.![]()
Collapse
Affiliation(s)
- Rogério P Xavier
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Ana C Mengarda
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Daniel B Roquini
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Pedro L Pinto
- Núcleo de Enteroparasitas, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Thiago R Morais
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil.
| |
Collapse
|
37
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|